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Abstract: Indoor target localization is pivotal across various applications, encompassing security
monitoring, behavioral analysis, and elderly care. This work proposes an advanced target localization
algorithm that harnesses antennas endowed with sensing capabilities to capture the phase change
in the signal ratio, derived from the signal amplitude. This phase change, indicative of the target’s
movement direction, is analyzed alongside the front and rear arrival angle information and signal
amplitude characteristics obtained from LoRa signals. The algorithm, through a comprehensive
examination of the phase change patterns, amalgamated with arrival angle data and signal amplitude
characteristics, effectively estimates the precise location of the target. Experimental validations
underscore the algorithm’s efficacy in determining the target’s location during continuous walking
activity. Conducted within a 6 m × 12 m open platform, the algorithm achieves an average localization
error of 48.5 cm, underscoring its superior performance compared to existing methodologies.

Keywords: location estimation; non-contact sensing; LoRa; MUSIC algorithm; long-range sensing

1. Introduction

Target localization assumes a pivotal role across diverse domains, including but not
limited to elderly care, intrusion detection, and smart home applications. Conventional
methodologies for target localization predominantly entail contact-based wearable sensor
approaches [1] or computer vision-based techniques [2]. However, wearable sensors pose
considerable limitations in their utility and are often infeasible in certain scenarios, such
as intrusion detection. Moreover, their operation is often intricate, leading to suboptimal
user experiences. Conversely, computer vision-based methods address the issue of device-
wearing requirements but bring forth challenges pertaining to personal privacy, line-of-
sight obstructions, and substantial construction costs. In response to these challenges,
researchers have introduced an alternative paradigm grounded in radio frequency (RF)
signals, offering long-range, non-contact target localization that is notably more convenient
and comfortable.

The utilization of RF signals as a means of target localization has emerged as a focal
point of contemporary research due to its cost-effectiveness and the absence of device-
wearing prerequisites. The fundamental principle involves a transmitter emitting RF
signals toward a moving target, which then reflects the signals. These reflected signals
are subsequently received, analyzed, and processed by a receiver equipped with various
signal processing algorithms, thereby facilitating the extraction of information regarding
the moving target. In recent scholarly endeavors, diverse RF signal types, such as WiFi [3,4],
frequency-modulated continuous waves (FMCWs) [5], and RFID [6], have been explored.
However, these signal types still face challenges such as a limited sensing range and
suboptimal penetration.

In recent years, LoRa (Long-Range) signals have attracted widespread attention due
to their long propagation distance and strong penetration. Originally designed to facilitate
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remote communication between IoT (Internet of Things) devices, LoRa offers a communi-
cation range several orders of magnitude greater than that of WiFi. The linchpin behind
this remarkable long-range transmission capability is chirp spread spectrum (CSS) mod-
ulation and its consequential high coding gain. Current research endeavors about LoRa
have primarily been conducted to leverage its telecommunications capabilities for IoT
applications, with comparatively fewer investigations into wireless sensing utilizing LoRa
signals. Moreover, researchers have predominantly focused on establishing quantitative
mathematical relationships between phase changes in LoRa signals and the total distance
traversed by a target in a fixed direction, the utilization of phase magnitude changes in the
signal ratio for estimating target distances from transceiver pairs, and the application of
beamforming techniques to extend sensing ranges. However, there remains a dearth of
research dedicated to indoor and outdoor target localization.

To address the issue of device-free localization and tracking, two main categories
of methods can be identified: fingerprint-based and model-based methods. Fingerprint-
based methods [7,8] involve recording network information and signal strength at different
locations as fingerprint data. The current fingerprint information of the target is then
compared with a database to determine the device’s location. However, this method
requires extensive prior calibration and training, which is time-consuming and context
dependent. Furthermore, a large amount of fingerprint data and neural network training are
needed during the application. Updating the fingerprint database to accommodate changes
in the application environment also takes a significant amount of time. Additionally, the
performance of fingerprint-based methods deteriorates when the target is in motion [9].
The Doppler shift caused by target movement introduces instability in the feature-position
relationship, making it challenging to achieve accurate localization. Some existing methods
attempt to address the Doppler shift by deploying high-density networks [10,11] to transmit
customized signals. However, these approaches limit the scalability of real-life deployment.
On the other hand, model-based approaches establish a model that captures the relationship
between the target’s position or motion trajectory and the wireless measurements received
by the receiver. This model is then used to estimate the target’s position and trajectory.
WiFi localization systems could achieve decimeter-level localization accuracy [12,13] which
take the model based approach: estimating the location of mobile devices by computing
the angle-of-arrival (AoA), time-of-flight (ToF) and Doppler frequency shift (DFS) of the
received signal. The WideSee system [14], utilizing a pair of transceiver antennas, achieved
target localization within a 6 m × 8 m designated area using LoRa signals with a median
positioning error of 0.52 m. Nonetheless, ongoing research in this domain consists of
various challenges. (1) In the context of LoRa-based device-free tracking models, the phase
change in the received signal ratio is frequently employed to calculate the target’s motion
distance. However, this method does not provide precise target positioning, the accuracy
of which depends on the position of the target relative to the transceiver. (2) Device-free
tracking models for other signal types (e.g., WiFi) typically rely on channel state information
(CSI) phase data, which are not available in the case of LoRa signals.

In this paper, these challenges were addressed, and the following key contributions
were developed:

(1) The algorithm accurately estimates the target’s position by analyzing phase change
data from LoRa signals and incorporating signal amplitude characteristics. Empha-
sizing the extraction of direction-related details from signal amplitudes and utilizing
dynamic path change information enhances localization precision within a specified
area. Through quantitative analysis of phase changes and target motion, this approach
effectively demonstrates the utility of LoRa signals for precise and efficient target
localization in wireless sensing applications.

(2) In this work, the target localization method is modeled by utilizing signal information,
without any prior measurements within the detection area. By integrating the multiple
signal classification (MUSIC) algorithm with phase change information from LoRa
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signals, the localization accuracy is determined with an average error of 48.5 cm in an
outdoor space measuring 6 m × 12 m.

The subsequent sections of this paper are organized as follows: in Section 2, prior
works related to LoRa-based wireless sensing and signal amplitude-based tracking for
device-free target localization are examined; in Section 3, LoRa-related knowledge is
expounded and the data acquisition module utilized in our experiments is detailed; in
Section 4, an in-depth exposition of the LoRa signal amplitude-based localization method
employed in this study is provided; in Section 5, the experimental validation of the proposed
algorithm’s accuracy and robustness is systematically presented; and, finally, in Section 6,
we engage in discussions regarding the limitations of our methodology and propose future
research directions.

2. Related Work

LoRa-based communication and sensing. Current research in the domain of LoRa
predominantly revolves around harnessing its remote communication capabilities for IoT
applications. For instance, Lin et al. [15] utilized LoRa links to transmit human activity data
monitored by sensors. Petäjäjärvi et al. [16] employed LoRaMote, affixed to an individual’s
arm with a sensor-equipped band (including temperature and pressure sensors), for mon-
itoring the health of human subjects. Nordin et al. [17] investigated a rural hydrological
control system in Lake Chini, Malaysia, emphasizing the reliability of the central sensor
in LoRa and 2G networks and uncovering performance constraints in low-data sensor
networks, especially in rural areas. Philip et al. [18] employed LoRa for data collection from
industrial sensors on a shop floor. It is essential to note that in these endeavors, LoRa’s
remote communication capabilities were primarily leveraged. Thus, its potential in wireless
sensing applications was overlooked.

Kim et al. [19] analyzed the feasibility of LoRa for indoor localization and confirmed its
superior stability compared to WiFi and Bluetooth low energy (BLE) localization, relying on
received signal strength indicator (RSSI) measurements. However, despite the effectiveness
of RSSI measurements in localization, they inherently provide coarse-grained information
and are inadequate for sensing fine-grained human activities. Nandakumar et al. [20]
developed a multi-band backscatter system for localization using sub-centimeter-sized
devices. In contrast, our research’s overarching goal is to explore LoRa’s passive sensing
capability by harnessing LoRa hardware for wireless sensing, negating the necessity for
dedicated sensors.

LoRa-based contactless sensing. Zhang et al. [21] extended respiratory sensing up
to 25 m using a signal ratio scheme, addressing symbol frequency offset (SFO) and carrier
frequency offset (CFO) effects for long-range through-wall human sensing. They explored
the intricate relationship between target movement, direction, and phase changes, utilizing
phase magnitude in the signal ratio to infer target movement distance and direction. Xie
et al. [22] introduced Sen-fence, a LoRa-based contactless sensing system with a 50 m breath
sensing range. Sen-fence employs a virtual fence concept to control the sensing area, miti-
gating interference concerns. Zhang et al. [23] proposed a receiver-side LoRa beamforming
method for remote multi-target sensing, achieving up to five targets simultaneously with
high accuracy. Xie et al. [24] demonstrated the feasibility of LoRa signal-based sensing
beyond 100 m, employing fine signal processing and time-domain beamforming to amplify
signal variations. Chen et al. [14] introduced the WideSee system, deploying LoRa devices
on UAVs for wide-area wireless sensing within buildings. WideSee capitalizes on LoRa
signal characteristics, enhancing wall penetration and sensing range. The system uses a
drone-borne transceiver to improve sensing coverage, achieving a median positioning error
of 52 cm in indoor, device-free tracking conditions. However, WideSee’s tracking method
based on LoRa signal amplitude faces challenges in high positioning error and computa-
tional complexity, potentially limiting its real-time capabilities in practical scenarios.

Other wireless sensing techniques. Various wireless technologies are extensively
utilized in target positioning applications, encompassing millimeter-wave radar [25],
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Doppler radar [26], ultra-wideband (UWB) radar [27,28], FMCW radar [29–31], conven-
tional WiFi [8,32–34], radio-frequency identification (RFID) [35], and Zigbee [36]. WiFi-
based device-free localization and tracking is the most popular one and has many ap-
plications in indoor and outdoor scenes. However, challenges arise in the application
of signals like WiFi for contactless target localization and tracking. These challenges en-
compass densely deployed sensing devices, limited sensing ranges, and considerations
related to high power. CrossTrack [4] employs two to four sets of receiving antennas along
with a single transmitting antenna to achieve precise tracking, yielding median errors
of 0.61 m (2 Rxs), 0.41 m (3 Rxs), and 0.38 m (4 Rxs). WiDFS [11] has introduced a WiFi
tracking system utilizing three receiving antennas capable of real-time tracking of moving
individuals with sub-meter location accuracy. The system achieves real-time tracking,
demonstrating a median position error of 72.32 cm, even in environments characterized by
multipath-rich conditions.

In summary, device-free target positioning tracking, grounded in signal analysis, relies
on the principle that wireless signals, upon reflecting from a target, undergo changes
indicative of the target’s movement. Subsequent analysis of these signal variations yields
crucial positional information about the target. Notably, LoRa exhibits distinctive capabili-
ties, including extended propagation distances and wall-penetration abilities not found
in other signals. Consequently, LoRa finds unique applicability in real-world emergency
scenarios, such as disaster relief [37] and intrusion detection and localization [38]. It is
essential to underscore that the field of LoRa-based device-free localization and tracking
remains relatively unexplored, marked by challenges pertaining to accuracy and practical-
ity. Therefore, research dedicated to the wireless sensing aspects of LoRa signals carries
significant practical value and holds strategic importance. To tackle these challenges, this
article focuses on enhancing the accuracy and practicality of device-free tracking using
LoRa while addressing the issue of densely placed sensing devices. Our aim is to achieve
precise positioning within a broader sensing range of 6 m × 12 m.

Table 1 illustrates the distinction between our algorithm and other state-of-the-art algo-
rithms. The initial category encompasses algorithms reliant on WiFi signals, namely Algo-
rithm [3], CrossTrack [4], Witraj [9], Indotrack [10], WiDFS [11], DeFi [12] and WiDar2.0 [39].
These algorithms are designed for indoor and outdoor positioning within sensing areas
spanning dimensions from 2 m × 4 m to 7 m × 7 m. The number of receivers deployed
varies between one and four, resulting in localization errors ranging from 0.26 m to 0.75 m.

Table 1. Comparison with the state-of-the-art in target localization and tracking using RF signals.

Algorithm Sensing Area Size Number of Rx from One Side Signal Type Error

[3] 7 m × 7 m 3
√

WiFi 0.47 m

CrossTrack [4] 2 m × 4 m 2–4 × WiFi 0.41 m

Witraj [9] 4 m × 4 m 2–3 × WiFi 0.26 m

Indotrack [10] 6 m × 6 m 3 × WiFi 0.37 m

WiDFS [11] 7 m × 7 m 3 × WiFi 0.72 m

DeFi [12] 6 m × 7.8 m 2–4 × WiFi 0.6 m

WiDar2.0 [39] 6 m × 5 m 1–2 × WiFi 0.75 m

WiTrack2 [5] 5 m × 7 m 1
√

FMCW 0.17 m

WideSee [14] 6 m × 8 m 1
√

LoRa 0.52 m

This method 6 m × 12 m 1
√

LoRa 0.49 m

WiTrack2 [5] leverages FMCW technology, demonstrating remarkable precision in a
5 m × 7 m area with a solitary receiver and an impressively low error of 0.17 m.

Conclusively, WideSee [14] opts for LoRa technology within a 6 m × 8 m area, show-
casing an error of 0.52 m using a lone receiver. It can be observed that our algorithm
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achieves decimeter-level positioning accuracy within a large perceptual range, comparable
to state-of-the-art techniques. Importantly, our algorithm requires only a single receiving
antenna and accomplishes target localization on one side of the target area.

3. Background and Overview
3.1. LoRa Technology

LoRa technology uses CSS modulation at the physical layer (PHY), which is tailored
for long-range, low-power wireless communications. In LoRa, the transmitted data are
modulated into chirp signals. Given a certain carrier frequency, denoted as fc, the instan-
taneous frequency of chirp changes from fc − B

2 to fc +
B
2 in time − T

2 < t < T
2 , where B

denotes the bandwidth and T denotes the time needed for one chirp. The rate of change of
the frequency of the chirp signal is k = B

T . The time domain signal is a cosine waveform
whose frequency increases with time. The transmitted chirp signal can be expressed as a
complex exponential:

S(t) = ej2π fct+jπkt2
. (1)

3.2. LoRa Signals in Contact-Free Sensing

Wireless sensing primarily relies on detecting signal variations to perceive a target.
While signal amplitude fluctuations are extensively used in sensing, the utilization of
signal phase variations remains relatively uncommon. This is primarily due to the inherent
challenges posed by the lack of synchronization between transmitters and receivers, leading
to time-varying random phase offsets stemming from CFO and SFO. Consequently, the
direct use of signal phase readings for sensing purposes becomes impractical.

In the context of non-contact sensing, we examine a scenario where a signal is trans-
mitted from a LoRa node to a receiving antenna array. We assume that the LoRa node
generates a chirp signal. Upon reception, the incoming signal can be divided into two
distinct components: a static vector and a dynamic vector. The static vector, denoted as
Hs, arises from the signal’s propagation along the line-of-sight (LoS) path between the
transmitter and the receiver, along with the potential reflection from stationary objects
within the environment. On the other hand, the dynamic vector corresponds to the reflected
signal originating from a moving target. When these two components are superimposed,
the resulting received signal can be mathematically expressed as follows:

SR(t) = ej2π fct+jπkt2
(Hs + Ae−j 2πd(t)

λ ). (2)

A is the amplitude of the dynamic path, HS is the length of the static path, d(t) is the
length of the dynamic path, and λ is the signal wavelength. To remove the random phase
offset, a recent work [21] proposed using the ratio of the signals received by two antennas to
remove the random phase offset. The receiver antennas share a common oscillator, ensuring
identical carrier frequency offset (CFO) and sampling frequency offset (SFO) relative to
the transmitter. Consequently, this signal ratio effectively eliminates the common random
phase offset, enabling the acquisition of a stable phase difference reading for sensing. To be
precise, the signal ratio is calculated as:

SR(t) =
R1(t)
R2(t)

=
HS1 + a1(t)e−j 2πd(t)

λ

HS2 + a2(t)e−j 2π(d(t)+∆s)
λ

. (3)

where R1(t) and R2(t) are the signals received by two different antennas. HS1 and HS2 are
static signal components, and a1(t) and a2(t) are the attenuation and initial phase shift of
the dynamic path components of the two antennas, respectively. Compared to d(t), the
distance due to the different physical positions of the two antennas is much smaller and
can be considered constant over a short period of time. After a simple division operation
between the two signals, the new signal ratio has a stable phase, i.e., the phase difference
between the two original signals. A moving target causes the phase change of the signal
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ratio to be the same as the phase change of the original signal from the same antenna, and
the signal ratio is used to sense the moving target.

3.3. Data Transmission and Acquisition Module

The localization algorithm based on the LoRa signal amplitude utilizes a LoRa transmit-
ter module and a multi-antenna receiver array. The LoRa transmitter module is composed
of a LoRa SX1276 chip integrated development board operating at a center frequency
of 915 MHz with a bandwidth of 125 kHz, shown in Figure 1a. On the other hand, the
receiving module consists of a KrakenSDR and a set of five antennas, with a sampling rate
of 1 MHz, shown in Figure 1b. The KrakenSDR is connected to a laptop computer running
the Ubuntu operating system equipped with an Intel Core i5 CPU and 16 GB of RAM. The
received LoRa signals are then saved to a local file for further processing. Figure 2 shows
the process of collecting LoRa signal data.
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4. Positioning Algorithms Based on LoRa Signal Amplitudes
4.1. Algorithm Overview

Figure 3 provides an overview of the LoRa signal-based localization algorithm, which
comprises the following key modules:

1. Preprocessing of Extracted Target Motion Signals: In this initial module, the extracted
motion signals undergo preprocessing to eliminate the effects of static multipath and
direct signals. This is achieved by removing the time-averaged values from the signals,
thereby enhancing the sensitivity to dynamic variations.

2. Signal Ratio Generation and Dynamic Path Change Estimation: The IQ signals re-
ceived by the antennas are utilized to create signal ratios through a process of dividing
the signals from two antennas. These signal ratios are instrumental in estimating the
dynamic path changes resulting from target motion. The phase difference of the signal
ratio is calculated to determine the extent of dynamic path change, both before and
after the target’s motion.

3. MUSIC Algorithm for Angle Estimation: The MUSIC algorithm is employed to calcu-
late the angles associated with the LoRa signal during target motion. This involves
computing the covariance matrix of the signal, followed by the decomposition of its
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eigenvectors to extract the noise subspace. The spatial spectrum of the noise subspace
is then analyzed to determine the angles corresponding to the target’s motion before
and after.

4. Localization Based on the Angle and Dynamic Path Change: This module focuses on
deriving potential target localization based on the angle information and the calculated
dynamic path change. Within the maximum feasible distance covered by the moving
target, the algorithm determines the best-matching endpoints by considering dynamic
vector changes at each initial position.

5. Fast Fourier Transform (FFT) and Frequency Analysis: The amplitude of the extracted
target motion signal is subjected to a fast Fourier transform, followed by peak ampli-
tude detection. The resulting frequencies are correlated with the angle and velocity of
the moving target. These computed results are subsequently employed to refine and
corroborate the best estimates for target localization.
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In essence, the algorithm integrates these modules to achieve accurate and reliable
target localization based on LoRa signal characteristics and motion-induced changes.

4.2. Data Preprocessing

Subtracting the mean signal value is an efficient technique that involves mitigating
DC offset or static clutter effects. This is achieved by calculating the average signal value
and subtracting it from the original signal. Since the target’s velocity can be reasonably
assumed to remain constant over short time intervals, its movement exhibits periodicity
within these brief periods. Consequently, the data also manifest periodic characteristics
during these intervals. In contrast, multipath reflections originating from static objects and
the surrounding environment exhibit minimal or irregular motion. DC signals inherently
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lack phase information, and the data distribution within their corresponding distance units
lacks periodicity.

In this research, we adopt the average cancellation method to eliminate the impact of
static vectors and DC offsets by subtracting the average value at each antenna, essentially
at each row within the matrix. This calculation is expressed by Equation (4) as follows:

dupq = dupq − mean(p) (4)

where dupq represents the data in the pth row and qth column of the matrix, with 1 ≤ q ≤ M, and
mean(p) denotes the mean value of the data in the pth row of the matrix. It is noteworthy
that static vectors can be considered invariant over the short time span relevant to our
localization process.

However, to render the demeaned signal ratio data more conducive for phase extrac-
tion and to reveal the circular patterns, additional smoothing is essential. In our study,
we applied the Savitzky–Golay filter for this purpose. The Savitzky–Golay smoothing
technique leverages a linear least squares method to fit a continuous subset of data points
using a low-order polynomial function. This smoothing operation enhances the clarity of
the extracted phases and facilitates subsequent analysis.

4.3. Phase Extraction

In our study, we employed the tangent vector method, as outlined in reference [21], to
calculate the variation in the signal phase induced by human walking. During practical
experimentation, the signal ratio changes because different parts of the human body reflect
signals as it moves. Moreover, the mobile body obstructs the static path of the signal
reflection from stationary objects. As a result, the observed trajectory of the signal ratio
changes does not conform to a concentric circle; instead, it exhibits a non-concentric circular
pattern. Figure 4 illustrates the comparison between the theoretical and experimental
trajectories of the signal ratio changes. The center of this trajectory is notably distant
from the origin and deviates from the theoretical model, consequently leading to higher
measurement errors.
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Figure 4. Trajectory plot of the theoretical and experimental signal ratio variations: (a) plot of the
variation of the theoretical signal ratio, and (b) plot of the variation of the experimental signal ratio.

To address this challenge, we dissected the trajectories of the signal ratio changes into
two distinct arcs—one corresponding to the head and the other to the tail—as well as several
complete circles. Subsequently, we conducted a calibration process to rectify the phase
changes along each circle by subtracting the center of the respective circle. This calibration
procedure serves to align the experimental data more closely with the theoretical model,
thus minimizing the disparity between them. Subsequently, we proceeded to compute the
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phase difference between two tangent vectors that are separated by a defined distance. This
calculation allows us to derive the associated phase change corresponding to the dynamic
components, as depicted in Figure 5.
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4.4. MUSIC Algorithm

In the context of a single-incidence array, we consider a linear receiving array compris-
ing M antennas positioned at the receiver. The incident signal arrives at the antenna array
with an angle-of-arrival denoted as θ, as illustrated in Figure 6. The separation between the
antennas, denoted as d, is set to half the wavelength of the incoming signal. It is important
to note that the signal has distinct propagation path lengths at different antennas due to its
arrival angle. Since the propagation path is significantly longer than the antenna spacing
(k >> d), the path difference between neighbouring antennas can be expressed as k.
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Consequently, a phase difference of k is introduced at adjacent antennas, where f
represents the signal frequency and c denotes the speed of light. We can formulate the
introduced phase difference as a function of the AoA:

φ(θ) = e−j2π f d sin (θ)/c (5)
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The phase difference at the antenna array is expressed as:

α(θ) =
[
1, φ(θ), . . . , φ(θ)M−1

]T
(6)

where α(θ) is referred to as the steering vector. If the signal received by the first antenna is
s(t), then the signal vector received by the antenna array is:

X(t) = [x1(t), . . . , xM(t)]T = α(θ)s(t) + N(t) (7)

where N(t) is the noise vector. In the case of only one incident signal, the target angle-of-
arrival can be easily obtained by measuring the phase difference between the antennas.

When n incident signals arrive at the antenna array, the signal received by each antenna
is a superposition of all the incident signals. According to Equation (7), the received signal
vector is expressed as

X(t) = [x1(t), . . . , xM(t)]T =
n

∑
i=1

α(θι)si(t) + N(t) (8)

where θi is the AoA of the i-th incident signal and Si is the i-th incident signal at the first
antenna. We can determine the matrix of the received signal data X(t) in the time domain.

The fundamental concept of the MUSIC algorithm involves the eigenstructure analysis
of an M × M correlation matrix Rx derived from the received signals at M antennas. From
Equation (8), we express Rx as:

Rx = E[XXH] (9)

where H represents the conjugate transpose. Subsequently, we performed eigenvalue
decomposition on the spatial covariance matrix Rx. This decomposition yields eigenvalues
and eigenvectors. The eigenvectors can be categorized into two distinct subspaces: the
signal subspace and the noise subspace. To facilitate further analysis, we arranged the
eigenvectors in descending order based on their corresponding eigenvalues. The signal
subspace is then composed of the first n eigenvectors, where n corresponds to the number
of targets for which we intend to predict the AoA. The remaining eigenvectors constitute
the noise subspace EN.

Since the signal and noise subspaces are orthogonal, we can denote the spatial spectral
function as follows:

P(θ) =
1

αH(θ)ENEN
Hα(θ)

(10)

In this context, the target’s arrival angle corresponds to the peak value within the
computed spatial spectrum.

Our approach in this paper addresses the localization problem under the assumption
that the target undergoes smooth motion over a short distance with a consistent velocity
during a brief time interval. Specifically, we executed multiple successive estimations
of the target’s position employing a sliding window of size w. Each estimation process
necessitates the collection of samples within a time window of size τ. In our algorithm, we
empirically configured w and τ to be 0.5 s and 1 s, respectively. Additionally, we employed
the MUSIC algorithm to extract the angle-of-arrival information both before and after the
target’s motion in this algorithm.

4.5. Preliminary Screening Locations

The determination of the target movement range involves the consideration of both
the front and rear arrival angles, as well as the walking speed. The extension line of
the arrival angle before and after the target’s movement enables the identification of all
conceivable starting and ending points. Through a systematic comparison with dynamic
path variations, the optimal concluding point among all conceivable starting points can be
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ascertained, thus yielding the preliminary positioning outcome, as illustrated in Figure 7.
The process involves several key steps:

1. Determination of the Possible Target Positions: Initially, we extended a line from
the potential target positions both before and after the target’s movement along the
angle-of-arrival at the receiving array. This action delineates the region encompassing
the feasible target positions.

2. Calculation of the Post-Motion Positions: Starting from the pre-motion position of the
target and taking into account the human walking speed, we computed all possible
post-motion positions within this defined region. Additionally, we calculated the
corresponding dynamic path change from the initial position to describe the trajectory
shift of the target before and after its motion.

3. Comparative Analysis: To identify the most likely endpoint among all the starting
point, we compared the actual dynamic path change with the dynamic path change
calculated for each possible starting point. The closest point to the actual path change
is determined as the endpoint for that particular starting point. This iterative process
is repeated for all initial points.
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In summary, determining the target movement range involves taking into account
both front and rear arrival angles, as well as the walking speed. Extending arrival angles
before and after the target’s movement facilitates the identification of conceivable start
and end points. A systematic comparison with dynamic path variations leads to the
determination of the optimal concluding point among all conceivable starting points,
resulting in the preliminary positioning outcome. The computational complexity of the
preliminary screening locations algorithm is O(N2).

4.6. Matching Optimal Positioning Based on the Magnitude Information

The target information derived from extracting the direction-related information in
the signal amplitude matches the optimal positioning.

The specific steps are as follows. The autocorrelation of the extracted amplitude of the
target motion signal is subjected to a fast Fourier transform followed by peak amplitude
detection. At the m-th receiving antenna (S(m)), signals are received from a total of K
different sources. Then, the signal received from the k-th source at moment t can be
expressed as follows:

xt,k = at,kej(µk+
2πvt

λ cos θk) (11)
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where α t,k is the amplitude of the signal and µk is the phase of the signal at the initial
moment (i.e., t = 0). Then, the signal received by the m-th receiving antenna at moment t is
a superposition of k signals, which can be expressed as follows:

y(t) =
K

∑
k=1

at,kej(µk+
2πvt

λ cos θk) (12)

We denoted R(τ) as the autocorrelation of the amplitude of the received signal at delay
τ. Then, R(τ) can be expressed as follows:

R(τ) = CA +
K−1

∑
k=1

K

∑
j=k+1

Ck,j · cos(2π
vτ

λ
(cos θk − cos θj)) (13)

where CA is a constant term and R(τ) consists of K(K − 1)/2 harmonics. The frequency of
each harmonic is related to the cosine of the AoA of the two sources (i.e., θk,θj, k = 1, 2..., K,
j = 1, 2..., K).

fk,j =
v
λ

∣∣∣cosθk − cosθj

∣∣∣ (14)

The frequency, denoted as fk,j, can be determined by conducting a fast Fourier trans-
form on the autocorrelation of the amplitude signal, followed by the detection of peak
amplitudes. This computed frequency is inherently linked to both the angle and velocity of
the moving target.

During a brief period of target motion, it can be assumed that there is no change in
the direction of the target’s motion. To account for this, the algorithm constructs velocity
vectors for the target both before and after its motion, considering all possible initial points.
Subsequently, the algorithm calculates the angle between each velocity vector and the
transceiver’s position. The calculated angles are then compared with the derived frequency
value. The goal is to identify the velocity vectors that align most closely with the observed
frequency. This process leads to the determination of the most compatible estimated target
positioning, ultimately yielding the final result for target localization.

5. Evaluation

To assess the robustness and accuracy of the algorithm, we conducted a series of exper-
iments designed to evaluate its performance under various conditions. These experiments
encompassed a range of factors, including different target motion speeds, varying LoS
distances, diverse human targets, both indoor and outdoor environments, and different
motion directions. By subjecting the algorithm to these varied scenarios, we aimed to thor-
oughly evaluate its performance and validate its accuracy across a spectrum of real-world
conditions. In the ensuing experiments, we employ a target movement distance of 1 m to
validate the proposed algorithm. In more pragmatic application scenarios, the segmen-
tation of walking segments may be employed as a strategy to address target movement
positioning over longer distances.

5.1. Comparison with the State-of-the-Art Method

In this section, we present a comparative analysis of our algorithm with three existing
WiFi and LoRa-based location tracking systems: the WideSee system [14], the WiDar2
system [39], and the WiTraj system [9]. To conduct a thorough comparison, we conducted
experiments involving a straight line walk of 1 m at various locations on an outdoor
6 m × 12 m open platform. The tracking error was calculated using cylindrical error
analysis, with a person being considered a cylinder with a radius of 0.25 m. The minimum
distance between the estimated position and the surface of the cylinder was utilized as the
tracking error for that position. We compared the algorithmic errors of the above three
location tracking systems with the errors from our proposed algorithm, and subsequently
compared the tracking accuracy of the three systems.
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In the WiTraj system, the algorithm leverages spatial and temporal constraints to derive
probabilistic estimates of the starting position and trajectory. Since subsequent human
positions and velocities can be determined based on current positions and velocities, the
confidence value for the entire trajectory at the starting position is computed by comparing
the sum of confidence values for all positions along the trajectory to obtain the final initial
localization. The time complexity of the WiTraj method can be considered as O(N), where
N represents the duration of the CSI data being processed.

On the other hand, the WiDar2 system constructs a unified model that considers angle-
of-arrival, time-of-flight, and Doppler shifts collectively, complemented by the development
of an efficient algorithm for their joint estimation. WiDar2 introduces a sophisticated
pipeline to transform erroneous raw parameters into precise locations. This pipeline
initially identifies parameters corresponding to reflections of interest, subsequently refining
range estimates, and ultimately producing accurate target locations. The time complexity
of path matching can be O(P × N), where P is the number of potential paths to consider
and N is the number of CSI measurements.

In contrast, the WideSee system constructs four sets of nonlinear equations that vary
continuously over a short period of time. This is achieved by establishing the relationship
between the motion speed and the angle between the target and the transceiver. The system
then employs particle swarms and a global search to obtain globally optimal solutions for
target localization. The computational complexity of the search algorithm is O(N × M),
where N is the dimension of the particle swarm and M is the number of iterations.

The experimental comparison results are summarized in Table 2, illustrating that our
algorithm excels in short-range mobile measurement localization on an open platform of
6 m × 12 m, demonstrating an average error of 48.5 cm.

Table 2. MAE for different algorithms.

Algorithm Time Complexity MAE

WiTraj [9] O(N) 53.2 cm
Widar2 [39] O(P × N) 60.9 cm

WideSee [14] O(N × M) 76.1 cm
This method O(N2) 48.5 cm

5.2. Impact of Different Environments

To assess the robustness of our algorithm across various environmental conditions,
we conducted evaluations in two real-world settings: an outdoor open platform and
an indoor corridor. The indoor setting consisted of a 3 m × 6 m section of a corridor,
while the outdoor scenario featured a 3 m × 6 m open platform. We conducted a total of
120 experiments at varying distances within two distinct experimental environments. In the
indoor environment, the presence of walls, ceilings, and columns introduced more complex
multipath effects compared to the multipath effects of the outdoor environment, which
were relatively minimal. We systematically assessed how these different environmental
conditions affected the accuracy of our algorithm.

Figure 8 displays the cumulative distribution function (CDF) of target localization
errors in these distinct environments. Notably, our algorithm exhibited superior tracking
accuracy in outdoor environments due to its simpler multipath reflections. In the outdoor
setting, the median error was 0.45 m, with an average error of 0.46 m. In contrast, the
indoor environment resulted in a median localization error of 0.51 m, with an average error
of 0.53 m.
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5.3. Impact of the Walking Speed

We conducted an assessment to investigate the impact of various target speeds on
the algorithm’s performance. Within the measurement area, 36 markers were strategically
positioned, with each marker serving as the ground truth for the experimental scene.
The test procedure involved the tester walking a 1 m distance to each marker at various
speeds, recording data five times at each location. Participants were instructed to walk at
three distinct speeds: slow (below 1 m/s), which corresponds to a leisurely stroll; normal
(1–1.5 m/s), roughly equivalent to a typical outdoor walking speed; and fast (1.5–3 m/s),
near a brisk walking pace. These participants were tasked with walking a 1 m distance at
different positions on a 6 m × 12 m open platform at these different speeds.

Figure 9 illustrates the results obtained at varying walking speeds. Remarkably, the
algorithm consistently achieved high localization accuracy across the different walking
speeds. This demonstrates the algorithm’s robustness and its ability to accurately localize
targets regardless of their speed.
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5.4. Impact of the Transmitter–Receiver Distance

To assess the impact of the transceiver spacing on the algorithm’s accuracy, we con-
ducted experiments in which we systematically varied the spacing between transceivers in
1 m increments, ranging from 1 to 6 m. The 6 m spacing corresponds to the length of the ex-
perimental scene. Data were collected for each spacing configuration, and a comprehensive
analysis was performed.
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Figure 10 illustrates the relationship between the accuracy of the algorithm and the
distance between transceivers. The results clearly demonstrate that the distance between
transceivers does indeed affect the accuracy of the algorithm. Visual representations of
the data illustrate that the accuracy of the algorithm gradually improves as the transceiver
spacing increases. The algorithm achieves its highest accuracy when the transceiver spacing
is set to 6 m across the experimental site.
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This phenomenon can be attributed to the fact that when the transceiver spacing is
small, the change in the angle-of-arrival caused by the target’s movement over a long
distance becomes minimal, leading to a reduction in algorithm accuracy. Conversely, with
a larger transceiver spacing, the change in the angle-of-arrival resulting from the target’s
movement over longer distances becomes more significant, allowing the algorithm to
estimate the target’s position with greater precision.

In summary, the experiment highlights the significant impact of the transceiver spacing
on the accuracy of the algorithm. It also underscores the importance of selecting an
appropriate transceiver spacing, which can notably enhance the algorithm’s accuracy and
its applicability in real-world localization scenarios.

5.5. Impact of Human Diversity

To assess the algorithm’s performance across diverse individuals, we conducted
experiments involving five volunteers, comprising one female and four male students.
The objective of this experiment was to evaluate how different individuals might affect
the accuracy of the algorithm. Each participant performed the same experiment using an
identical setup.

During the experiment, participants were instructed to walk a distance of 1 m along
the mid-plumb line of the transceiver, positioned at distances ranging from 2 m to 12 m,
thus simulating various walking trajectories for different individuals.

Upon concluding the experiment, we processed and analyzed the collected data. The
analysis yielded error distribution graphs for each of the five individuals walking 1 m from
different starting points, as depicted in Figure 11.

The outcomes of this experiment not only validate the algorithm’s reliability in practi-
cal applications but also furnish essential reference data for potential algorithm enhance-
ments. The experimental evaluation explicitly underscores the algorithm’s robustness
in diverse scenarios, encompassing various test targets, postures, and arm swings. The
findings indicate minimal influence from varying heights and weights on the efficacy of
the proposed algorithm. Notably, the algorithm exhibits pronounced resilience even in the
presence of disparate characteristics, such as variations in gait postures and arm swings.
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Across diverse locations and individuals, the algorithm consistently maintains errors within
a reasonable range. This compelling evidence attests to the algorithm’s robustness and its
ability to sustain high accuracy despite significant human diversity.
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5.6. Impact of the Target Moving Direction

We conducted an evaluation to examine the lateral and vertical movements of the tar-
get in relation to the transceiver within the sensing range. The objective was to understand
how different motion directions might impact the algorithm’s accuracy.

Figure 12 provides an illustration of the signal ratio variations when moving the same
distance both laterally and vertically in relation to the transceiver. Notably, when the
target moves longitudinally relative to the transceiver, the dynamic path change is more
significant. Conversely, when the target moves laterally relative to the transceiver, the
dynamic path change is relatively smaller. The signal ratio exhibits a more predictable
pattern when the target moves longitudinally. In such cases, the target’s chest or back
faces the transceiver, leading to a more pronounced torso reflection compared to other
body parts (e.g., arms and legs). This aligns more closely with the assumption of a single
dynamic reflection.
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Conversely, during lateral movement relative to the transceiver, the participant’s arms
and legs move alternately toward the transceiver, resulting in a torso reflection surface
that can be intermittently blocked by the arms and shoulders. This intermittent blocking
complicates the multipath superposition, making the signal ratio changes less regular.

To further investigate the distribution of errors associated with these different move-
ment directions, we collected data pertaining to both lateral and longitudinal walking
trajectories relative to the transceiver at various positions. The test procedure involved the
tester walking a 1 m distance to each marker in different walking directions, recording data
five times at each location.

In Figure 13, the values d(t1), d(t2), and d(t3) represent the reflected path lengths at the
initial and final positions of the moving target. When the target moves longitudinally with
respect to the transceiver, the phase difference of the signal ratio is:

∆ϕ = 2π
d(t2)− d(t2)

λ
(15)
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By examining the schematic diagram, we can observe that when the target moves
longitudinally in relation to the transceiver, the dynamic path variation in the signal ratio
is substantial, while the change in the signal arrival angle before and after the human
movement is relatively small.

Conversely, when the target moves horizontally relative to the transceiver, the dynamic
path variation in the signal ratio is minimal, but the variation in the signal arrival angle
before and after human movement is significant. These differing signal characteristics
arising from different directions of human motion have an impact on the algorithm’s
accuracy when dealing with targets moving in different directions.

Figure 14 presents a cumulative distribution function plot of errors for both vertical and
horizontal movements covering a distance of 1 m. It can be observed that when the target
moves longitudinally relative to the transceiver, the algorithm’s performance is slightly
better compared to cases where the target moves horizontally. This further highlights that
the algorithm’s accuracy is influenced by the direction of the motion exhibited by the target.
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6. Discussion

In this paper, we focused on the field of non-contact localization and tracking technol-
ogy, specifically presenting a target localization algorithm based on the amplitude of LoRa
signals. The algorithm utilizes the mean abatement method to effectively eliminate the
interference caused by multipath effects and static object clutter present in the environment.
The primary objective is to accurately estimate the position information of the target by
leveraging the angle-of-arrival information extracted through the MUSIC algorithm, the
dynamic path changes information derived from the signal ratio phase difference, and
the target motion-related information obtained from the LoRa echo signal amplitude. The
proposed algorithm demonstrates a positioning accuracy with an average error of 48.5 cm
within a 6 m × 12 m outdoor space. The effectiveness of the algorithm is thoroughly vali-
dated through theoretical analysis and comparative experiments, showcasing its excellent
performance in target localization.

In future research, there are exciting opportunities to extend the sensing range of
LoRa, particularly by investigating its applicability in outdoor environments with sparser
node deployments. Leveraging LoRa signals for sensing with strategically positioned
nodes can significantly expand the potential of LoRa technology for various applications.
Additionally, adapting the proposed localization algorithm for multiplayer scenarios is
an intriguing avenue involving the strategic placement of receiving antennas to explore
localization in scenarios involving multiple targets.

Furthermore, the algorithm introduced in this study can be a foundational component
of a broader tracking system, particularly for monitoring and tracking targets in a 2D plane.
Its adaptability and potential for real-world applications position it as a valuable tool in the
evolving landscape of wireless sensing and tracking technologies.

7. Conclusions

In this paper, we propose the integration of the Multiple Signal Classification (MUSIC)
algorithm with phase change information from LoRa signals, introducing a novel method
for device-less target localization. The results demonstrate an average error of 48.5 cm in
a 6 m × 12 m outdoor space. Rooted in LoRa signal analysis, our approach provides a
precise and efficient means of target localization. By quantitatively analyzing the correlation
between phase changes in LoRa signals and target motion, the algorithm extracts crucial
information for accurate positioning. The utilization of direction-related details in signal
amplitudes and optimal positioning matching underscores its potential efficacy, achieving
accuracy at the decimeter level. Further refinement and validation of this method hold
promise for improved performance and broader applicability in real-world scenarios.
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Abbreviations
In order to make it easier to understand the notations and abbreviations used in this paper, the table
lists symbols used in this paper.
RF Radio Frequency
FMCW frequency-modulated continuous waves
LoRa Long Range
IoT Internet of Things
AoA Angle-of-Arrival
DFS Doppler Frequency Shift
ToF Time-of-Flight
CSS Chirp Spread Spectrum
CSI Channel State Information
MUSIC Multiple Signal Classification
BLE Bluetooth Low Energy
RSSI Received Signal Strength Indicator
SFO Symbol Frequency Offset
CFO Carrier Frequency Offset
UAVs Unmanned Aerial Vehicles
PHY Physical Layer
fc carrier frequency
B bandwidth
T time needed for one chirp
S(t) signal that is received at time t
A amplitude of the dynamic path
Hs static vector
d(t) reflection path lengths of the moving target
R(t) signals received by antenna
a(t) attenuation and initial phase shift of the dynamic path
FFT fast Fourier transform
DC Direct Current
φ(θ) Adjacent antennas’ phase difference
α(θ) Steering vector of a path signal
N(t) noise signal vector
X(t) Received signal vector on an antenna array
θ Angle-of-arrival of a path signal
R Correlation matrix of X(t)
E A subspace is composed of eigenvectors
R(τ) autocorrelation of the amplitude of the received signal at delay τ

CA constant term depending on the total signal power
CDF cumulative distribution function
∆ϕ phase change of the dynamic component
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