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Abstract: Cyber-attacks have adverse impacts on DC microgrid systems. Existing literature shows
plenty of attack detection methods but lacks appropriate mitigation and prevention approaches for
cyber-attacks in DC microgrids. To overcome this limitation, this paper proposes a novel solution
based on a nonlinear controller to mitigate the adverse effects of various cyber-attacks, such as
distributed denial of service attacks and false data injection attacks, on various components of a
DC microgrid system consisting of a photovoltaic power source, a permanent magnet synchronous
generator-based variable speed wind generator, a fuel cell, battery energy storage, and loads. To
demonstrate the effectiveness of the proposed solution, single and repetitive cyber-attacks on specific
components of the microgrid have been considered. An index-based quantitative improvement
analysis for the proposed control method has been made. Extensive simulations have been performed
by the MATLAB/Simulink V9 software. Simulation results demonstrate the effectiveness of the pro-
posed nonlinear controller-based method in mitigating the adverse effects of cyber-attacks. Moreover,
the performance of the proposed method is better than that of the proportional-integral controller.
Due to the simplicity of the proposed solution, it can easily be implemented in real practice.

Keywords: cyber-attack; DC microgrid security; DDoS; FDI; nonlinear controller; mitigation

1. Introduction

The microgrid (MG) power system concept has gained wider popularity in recent times
due to its localized, autonomous, and resilient power supply [1–7]. Besides the increasing
demand for direct current loads (DC-loads), the simplified interface with renewable power
generation, the reduction of usage and losses associated with power converters, and the
perception that DC microgrid (DC MG) could be a cheaper and more efficient alternative
for power supply in small-scale areas like residential areas, university campuses, offices,
shopping malls, military bases, aircraft, etc.

Again, the entire DC MG can be monitored by the supervisory control and data
acquisition (SCADA) system that stores, monitors, and processes all the data related to
the power network, which necessitates multilevel controls for providing reliability and
dynamic response for the DC MG system. This multilevel monitoring and control requires
two-way communication among the main grid, DC MG, and the SCADA system, which
eventually makes the total structure a cyber-physical system. By introducing communica-
tion channels with a computerized control system, the functionality and efficiency of the
smart power network can be enhanced with a dynamic demand management system. But,
this potentiality can introduce the security vulnerability of such a cyber-physical system.

Recently, lots of research has been conducted on detecting and managing the risk of
cyber-attacks in power systems [8–11]. The work in [6] describes the security vulnerabilities
of smart power systems, especially the DC MG, and discusses some possible forms of
attacks such as masquerading, message reply attacks, eavesdropping, false data injection
(FDI), distributed denial-of-service (DDoS), and privacy leakage on the smart meters.
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Beg et al. propose a method of FDI attack detection in the DC MG system [12]. Likewise, a
data-driven approach to distinguishing between cyber-attacks and physical faults using
a sequential minimal optimization-based support vector machine has been used in [13].
For FDI attacks, different dynamic state estimation-based detection methods have been
broadly discussed in several literatures using deep learning [14], phasor measurement unit
data [15], the Chi-square method and Euclidean distance detector [16], the Markov model
for determining the state space decision [17], the anomaly detection algorithm [18], and
the harmony search algorithm using the K-nearest neighbor [19]. Some other techniques,
such as the Diagnostic Robust Generalized Potential technique [20], distributed block chain-
based protection framework against DDOS attack through the communicating channel [21],
and a parametric feedback linearization-based control scheme for delay minimization due
to DDoS attack [22], show effective responses for the power grids.

From the thorough literature search, it appears that the appropriate techniques to
mitigate the adverse effects of cyber-attacks on the DC MG are lacking. Moreover, till now,
the cyber-attacks that occur only once in a system have been discussed. However, there can
be repetitive attacks as well. That means, once an attack has been mitigated, another attack
can affect the system one more time. It can continue for a long time, and the whole power
system may exhaust and fail.

Based on the above background, this paper proposes new and effective control means
in the form of a nonlinear controller to mitigate the adverse effects of cyber-attacks on
various components of the DC MG. A DC MG model consisting of a photovoltaic (PV)
system, fuel cell, battery energy storage, and a permanent magnet synchronous generator
(PMSG)-based variable-speed wind generator system has been developed. Two types of
cyber-attacks have been considered in this work, i.e., the DDoS attack, which exhausts
system resources by sending flood requests to prevent legitimate users from accessing the
system, and the FDI attack, where an intruder aims to attack any data as long as it can
result in a wrong estimation for the state variables of a system [23–27]. The reason to choose
these two specific cyber-attacks is that, in a recent study [28], it is mentioned that the DDoS
attacks affect 80% of the electrical enterprises [29] in 14 countries and thus are one of the
most severe attacks [30]. Moreover, the work in [31] states that the FDI is a threatening
attack that may cause energy theft by end users, false dispatch on the distribution process,
and device breakdown during power generation.

Four parameters, such as the duty cycle of the DC-DC boost converter of the PV
system, the reference value of the firing-angle controller of the AC-DC inverter of the
PMSG-based wind generator, the reference value of the battery energy management system
controller, and the load profile, have been chosen as the cyber-attack points. To demonstrate
the effectiveness of the proposed solution in more detail, the mentioned two cyber-attacks
in the form of single and repetitive attacks at specific components of the microgrid have
been considered. Extensive simulations have been performed by the MATLAB/Simulink
V9 software.

The novelty and main contributions of this paper can be summarized as follows:

(i) Development of a new nonlinear controller to mitigate the adverse effects of cyber-
attacks on the DC microgrid system.

(ii) Consideration of both single and repetitive attacks on the microgrid system.
(iii) Performance comparison between the proposed nonlinear controller and a proportional-

integral (PI) controller for cyber-attack mitigation.

The organization of the paper is as follows: Section 2 describes the cyberphysical
modeling of the DC MG system to analyze the cybersecurity issues and solution techniques.
Also, this section explains the cybersecurity aspects of the DC MG system. Moreover,
a detailed description of the proposed controller and control algorithm for cyber-attack
mitigation has been provided in this section. Section 3 shows and describes the simulation
results and the effectiveness of the proposed mitigation technique. Finally, Section 4
provides some conclusions for the proposed work.
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2. Materials and Methods
2.1. Cyberphysical Modeling of a DC Microgrid System

For the simulation, the system as shown in Figure 1 has been considered, where there
is a solar panel with the Perturb and Observatory-based Maximum Power Point Tracking
(MPPT) system [32] that produces the duty cycle for the boost converter and provides
power to the DC grid. A battery energy storage system (BESS) is also equipped to minimize
power fluctuation due to temperature and solar irradiation change [33]. Moreover, a proton
exchange membrane-based fuel cell (FC) [34] connected with a DC-DC converter, a PMSG-
based variable-speed wind power system (WPS) [35] equipped with an AC-DC inverter,
and a DC load are connected with the DC bus that consumes 5.12 MW of power at 400 V.
The power capacities of the PV, FC, and WG are 3 MW, 112.5 KW, and 2 MW, respectively.
The designed DC bus is connected to the main grid via an inverter through a switching
mechanism that ensures bidirectional power flow to and from both grids. The whole DC
MG is controlled and monitored through the centralized control system, i.e., the SCADA,
in different layers. Cyber-attacks may happen at any point of supervisory control.
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2.2. Possible Cyber Threats in the DC Microgrid System

As shown in Figure 1, the DC MG is connected to the main grid system, and the total
cyberphysical system is being monitored by the SCADA system in different layers. As
all the controller set points are handled through the SCADA, it is possible to tamper with
any kinds of data from there or destroy the interface with the grid, which may result in
an unexpected and unbalanced situation. For example, an intruder can change the value
of the duty cycle, which is the input to the boost converter of the PV system, abruptly to
any value. Information on the duty cycle can be missing from the boost converter. Again,
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an attacker can attack the load profile, which will cause a change in the load value at the
SCADA, whereas the physical load value will remain unchanged. In all of these cases,
the physical system will receive misleading information from the SCADA, which will
result in a deviation of the PV array terminal voltage and the voltage and power at the
DC MG terminal.

Moreover, since every controller has some reference values, an intruder can easily
change that set point, which can hamper the performance of the controller. For example,
in the BESS, an intruder can change the reference value of the power. In that case, the
controller will not be able to provide the optimum power required for the system at that
moment, and that will hamper the performance of the power system, and the consumers
will also be affected by the high or low voltage caused by the variable nature of the solar
or wind. If such a situation continues for a longer time, the equipment attached to the
power system will be damaged, and the whole system may be shut down. Table 1 shows
the potential cyber threat and its impact on the overall DC microgrid system.

Table 1. Potential cyber threat and its impact on the DC microgrid.

Type of
Attack Nature of the Attack Device Affected

by the Attack
Effect on the

Device

Overall
Consequence on

the Microgrid

FDI

Intruder manipulates
the controller
parameters

Inverter,
Converter,
Thyristor

controller, and
MPPT controller Changes in voltage

and power cause
cascading effects on

other devices.

System shutdown
and may cause

equipment
damage as well.

Results in an
overall

socio-economic
imbalance.

Intruder tampers
with the load profile Load

DDoS
Disrupts the normal

data flow, resulting in
delays in the system

Inverter,
Converter,
Thyristor

controller, and
MPPT controller

2.3. Distinguishing Cyber-Attacks from Other Disturbances

As already mentioned, to consider the cyber-attack scenario, in this work four param-
eters have been chosen, i.e., the duty cycle of the PV system, the reference value of the
firing-angle controller of the PMSG-based wind generator, the reference value of the BESS
control scheme, and the load profile. All these quantities are independent of the fault or
any other transient instability scenario on the grid. The duty cycle usually varies with
the change in solar irradiance and the temperature to obtain the maximum power point
in the case of the PV system or with the fuel cell dynamics in the case of the FC system.
This type of variation is time-dependent and does not change instantly or abruptly. Again,
during a fault condition, the reference values of the controller never change unless those
are manipulated intentionally. Similarly, in the case of a load, its value never varies with
the fault. The only parameter that can vary is the voltage, which may go very low, and the
current, which may become very high during the fault. The value of the load may vary with
respect to the demand throughout the day, but this will not happen abruptly or enormously,
as the load profile is always maintained and monitored according to the grid code by the
SCADA. Whereas in the case of an FDI cyber-attack, the parameters can be changed to very
sudden and unusual values, or in the case of a DDoS attack, due to the flood of data, some
delayed response may occur. Therefore, by recognizing the pattern of the duty cycle and
load profile along with monitoring the reference values of each controller at the SCADA,
the cyber-attack scenarios can possibly be recognized.

2.4. Modeling of Cyber-Attacks

As already mentioned, this work has considered two types of cyber-attacks, such
as FDI and DDoS attacks. A detailed description of the attacks and their modeling are
discussed below.
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2.4.1. False Data Injection (FDI) Attack Model

FDI attack refers to adding an attack vector (c) to the control vector (z), resulting in a
manipulated control vector (zc), as shown in Equation (1).

zc = z + c (1)

The FDI detection problem can be thought of as a binary classification problem from a
machine-learning standpoint. Let samples with M characteristics from either c (negative
class) or ca be the measurement data (positive class). The definition of the matching class
labels, y, is given in Equation (2):

y =

{
+1 ; i f c 6= 0
−1 ; i f c = 0

(2)

The distance between two arbitrary samples, si and sj, without losing generality, is
provided by Equations (3)–(5) [36]:

∥∥si − sj
∥∥

2 =


∥∥zi − zj + ci − cj

∥∥
2 ; i f ci , cj 6= 0∥∥zi − zj + ci

∥∥
2 ; i f ci 6= 0, cj = 0∥∥zi − zj

∥∥
2 ; i f ci , cj = 0

FDI attacks can result in a change in the duty cycle of the PV boost converter and the
load profile, which can impact the overall power system.

2.4.2. Distributed Denial of Service (DDoS) Attack Model

In DDoS attacks, the attacker targets the communication links of the system and makes
them jammed. As a result, communication becomes slow or completely stopped. Since
the communication network is of extreme significance in the PV system, DDoS attacks
have a very disruptive impact on the system. Equations (6) and (7) present the original
control signal and delayed signal, respectively, if the communication delay in the network
produced by a DDoS attack is N0 [37].

xoriginal (t) = x(t) =
N

∑
i=0

xi (6)

xdelay (t) = x(t− No) =
N−No

∑
i=−No

xi (7)

Equation (8) illustrates that adding N0 sample time to the current timestep xdelay is
needed to obtain the same sample from the original control signal xoriginal.

xdelay (t + N0) = xoriginal (t) (8)

This is what the DDoS attack sequence looks like: (a) According to (9a), the PV
system functions normally, that is, it communicates with remote SCADA and other con-
trollers in a normal manner. (b) Suddenly, at sample time t1 ≥ 0 and continuing until
t2 = t1 + N0 ≤ N, where N0 is the delay that varies depending on the intensity of the DDoS
attack. According to (9b), the signal is completely lost during this time, or zero. (c) The
signal should maintain the t1 + 1 signal sample as in (9c) in post-attack because DDoS
should not jeopardize the signal’s integrity. The composite control signal that reaches the
PV controller can be expressed as (9).

x(t) =


xoriginal (t) i f 0 ≤ t < t1, pre attack (9a)

0 i f t1 < t < t2, attack (9b)
xdelay (t) i f t2 < t < N, post attack (9c)
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2.5. Proposed Nonlinear Control Methodology for Cyber-Attack Mitigation

In this work, a nonlinear controller-based approach has been used to mitigate the
adverse effects of cyber-attacks on the performance of the microgrid system. The control
algorithm and the controller description are provided in the following:

2.5.1. Control Algorithm

All kinds of vulnerabilities in a power system have a direct impact on the terminal
voltage. Therefore, the main objective is to regain the voltage at its required level within
the shortest possible time. Thus, the DC link voltage (VDC) has been used as the controller
input. This voltage is compared with the reference voltage of VDC (400 V) to obtain the
error function ∆VDC. Figure 2 shows the flowchart of the basic algorithm of the proposed
cyber-attack mitigation techniques.
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Figure 2. Flowchart of the proposed control algorithm. Figure 2. Flowchart of the proposed control algorithm.

In a normal situation, the error value is zero. The controller continuously monitors the
voltage deviation on the DC bus. In case of any deviation in ∆VDC, the controller will first
check all the set point values to determine whether there is any cyber-attack or any other
disturbances in the system. If the set point values are unchanged, then this will indicate the
occurrence of other disturbances, and accordingly, a suitable controller will be activated.
But, if any of the set point values is changed, then this will ensure the occurrence of a
cyber-attack. In this work, as the main focus is to mitigate the adverse effects of cyber-
attacks, the control algorithm will check for the location of the cyber-attack depending
upon the manipulated parameter. This can be detected by monitoring the performances of
the individual distributed energy resources (DER), because the cyber-attack impact will be
higher on that specific DER where the attack has occurred. Again, if there is any deviation
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in the load value, R, then the controller for the R value correction will be enabled and will
ensure the voltage deviation is zero. When the system becomes stable, the controller will
be disconnected immediately, and the system will resume its original status.

2.5.2. Nonlinear Controller

As the power grid is highly nonlinear, the application of nonlinear controllers is highly
preferred. This control action can be governed by any nonlinear differential equation or
any other mathematical model. In this work, an exponential equation has been used as the
nonlinear controller function, as shown in the following:

D/R = 1− K2e−|∆VDC |K1 (10)

where K1 and K2 are the constant values, and ∆VDC and D/R are the input and output
variables of the controller, respectively. Equation (10) is used for cyber-attack mitigation in
the case of the load (resistance value, R) and duty cycle, D, of the PV system. By tuning the
values of K1 and K2, the required controlled values of the manipulated signal are obtained.
The parameters have been set in such a way that the controller can handle any kind of
voltage deviation, from very high to very low. The parameters of the controller have been
shown in Table 2.

Table 2. Parameter values of the controllers.

Nonlinear Controller PI Controller
Attack Point

K1 K2 Kp Ki

D of PV 0.735 0.5 0.9972 0.896
R 0.0215 0.9468 0.34 0.09

2.6. PI Controller for Cyber-Attack Mitigation

In this work, the performance of the proposed nonlinear controller-based attack
mitigation approach has been compared with that of a PI-based controller. The PI is one of
the popular controllers that is extensively used in industrial control systems. The transfer
function that has been used for the PI controller in Laplace domain (s) is as follows:

D/R = |∆VDC|
[

Kp +
1
s

Ki

]
(11)

where Kp and Ki are the proportional and integral gains of the PI controller, respectively.
∆VDC and D/R are the input and output variables of the controller, respectively, and bear
the same meaning as mentioned in the previous subsection. The values of the parameters
Kp and Ki are shown in Table 2. These values have been obtained by trial and error, and
they can handle any abrupt change in the input from high to low values. For tuning these
K1, K2, Kp, and Ki parameters using the trial-and-error method, we experimented with a
range of values from 0 to 1 with an interval of 0.0001 and observed the performance. Hence,
the values mentioned in Table 2 gave us the best and most consistent results for the system.

3. Results and Discussion

In this section, the effectiveness of the proposed controller in the DC microgrid sys-
tem has been evaluated. The evaluation has been shown through some graphical images
obtained from the real-time simulation and also mathematically by calculating the per-
centage improvement from the voltage index value. The details are described in the
following subsections:

3.1. Simulation Condition

The simulations are performed through the MATLAB/Simulink software. In the
simulation study, we’ve considered constant irradiance and temperature in the PV system
and constant wind speed in the wind power system, as these parameters vary gradually
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with time and any cyber-attack may happen within a few seconds, so these changes will
not impact much. In all cyber-attack cases, we have activated the mitigation controller after
0.1 s of the occurrence of the attack. This 0.1 s time has been considered a time delay to
allow the sensor to choose the right type of controller based on the location of the attack
to mitigate the adverse effects of cyber-attacks. The time step of the simulation is 5 µs for
all cases. The scenarios that have been considered in this work are briefly listed in the
following Table 3 based on the pattern, type, and location of the attack.

Table 3. Cyber-attack scenario.

Case of Study Scenario Pattern of
Attack

Type of
Attack

Location of
Attack

1
Single Attack

FDI
Duty Cycle of the

PV Boost Converter
2 DDoS

Case-I
Attack on PV System

3 Random Attack FDI
Case-II

Attack on Load Profile 1 Single Attack FDI Load Profile

3.2. Analysis of Cyber Security Issues and Solutions for DC Microgrid Systems
3.2.1. Cyber-Attack on the PV System
CASE-I, SCENARIO-1 (Effects and Solution of the FDI Attack on the Duty Cycle of the PV
Boost Converter)

In the case of the false data injection attack scenario, it has been considered that, at 0.5 s
of simulation, the intruder attacks the duty cycle at the input of the DC-DC boost converter.
Figures 3–6 show the responses of four parameters, such as the duty cycle, PV array voltage,
DC grid voltage, and output power, respectively. As shown from the responses, the duty
cycle increases to its 90% value, which is a very high value as its range typically may vary
from 0 to 1. Also, the terminal voltage of the PV array goes close to zero, and the DC grid
voltage and the power at the grid become very low.
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the duty cycle.

In that situation, to recover the steadiness of the grid, the controller has been activated
at 0.6 s. For the PI controller case, the duty cycle comes back to 0.5 within almost 6 s,
compared to that in the case of the nonlinear controller, where the duty cycle comes back to
the desired value immediately, within 1 s. As the D value is recovered, both the voltages
at the terminal of the PV array and the DC grid gradually come back to the 400 V level.
Following the voltage, the output power is also improved. It is quite certain that in all
four cases, the performance of the nonlinear controller is much better than that of the
PI controller.
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CASE-I, SCENARIO-2 (Effects and Solution of the DDOS Attack on the Duty Cycle of the
PV Boost Converter)

The DDoS is another very frequent type of cyber-attack. It causes floods of data that
prohibit normal data flow through the communication channel. Therefore, the system will
receive no signal for a few moments or a longer period of time. In the case of the DDoS
attack, the scenario has been simulated as the intruder attacks the duty cycle by making it
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zero in the boost converter input at 0.5 s. Figures 7–10 show the responses of the duty cycle,
voltage at both the terminal of the PV array and the DC grid, and load power, respectively.
From these figures, it is clear that the sudden absence of duty cycle in the DC-DC Boost
converter makes the system vulnerable, as the DC grid voltage and PV array terminal
have been activated to handle such a situation. The controller has been activated at 0.6 s,
and both controllers attempt to make the duty cycle value at 0.5 at the terminal of the
boost converter.
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From Figures 7–10, it is evident that the performance of the nonlinear controller and
the PI controller is significantly different. For every case, the nonlinear controller performs
almost instantly after the activation and helps the duty cycle and DC grid voltage come
back instantly at their rated values of 0.5 and 400 V, respectively. But, in the case of the PI
controller, the duty cycle value was restored almost after 7 s, and the PV array voltage took
a long time to become stable, although the DC grid terminal voltage and the output power
came back after 5 s.

CASE-I, SCENARIO-3 (Effects and Solution of Random FDI Attack on Duty Cycle of the
PV Boost Converter)

In the case of the random false data injection attack scenario, it has been considered
that, at 0.5 s of simulation, the intruder attacks with a random change in value of the duty
cycle at the input of the DC-DC boost converter of the PV system. Figures 11–14 show the
responses of four parameters, such as the duty cycle, PV array voltage, DC grid voltage,
and output power. As shown from the responses, the duty cycle varies randomly within a
10–90% value range. Also, the terminal voltage of the PV array, the DC grid voltage, and
the power at the grid vary randomly from very low to very high values in an inversely
proportional manner with the duty cycle change.
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Figure 11. Random FDI attack on the duty cycle of the PV boost converter scenario and mitigation
effects on the duty cycle.

In that situation, to recover the stability of the grid, the controller has been activated
at 0.6 s. For the PI controller case, the duty cycle comes back to 0.5 within almost 6 s,
compared to that in the case of the nonlinear (N-L) controller, where the duty cycle comes
back to the desired value immediately, within 1 s. As the D value is recovered, both the
voltages at the terminal of the PV array and the DC grid gradually come back to the 400 V
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level. Following the voltage, the output power is also improved. It is quite certain that in
all four cases, the performance of the nonlinear (N-L) controller is much better than that
of the PI controller. This proves the robustness of the controllers, which means they can
handle any abrupt changes properly within a very short period of time.
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Figure 12. Random FDI attack on the duty cycle of the PV boost converter scenario and mitigation
effects on the terminal voltage of the PV array.
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Figure 13. Random FDI attack on the duty cycle of the PV boost converter scenario and mitigation
effects on the voltage at the DC link.
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Figure 14. Random FDI attack on the duty cycle of the PV boost converter scenario and mitigation
effects on the load power.

3.2.2. Cyber-Attack on Load Profile
CASE-II, SCENARIO-1 (Effects and Solution of FDI Attack on Load)

In this case, the attack has been simulated in such a way that at 0.5 s, the intruder
changes the value of the load from the original set value of 0.0533 Ω to a high value of
0.3 Ω. For such a high load value, the terminal voltage of the DC grid rises to 558.4 V. As a
result, the maximum power point condition becomes diverged, and the power goes very
low. And the system becomes unstable. In this situation, at 0.6 s, the controllers have been
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activated to stabilize the system by setting back the load. Figures 15–18 show the responses
of the duty cycle, voltage at both the terminal of the PV array and the DC grid, and load
power, respectively.
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3.2.3. Index-Based Performance Evaluation of the Proposed Controllers

The performance of the proposed cyber security mitigation techniques has been
evaluated through the voltage index calculation using the following equation [38]:

Voltage Index =
∫ T

0
|∆VDC|dt (12)

where T is the simulation time for different cases. The lower the value of the voltage
index, the better the system’s performance. In other words, the lower the deviation of the
DC grid terminal voltage with respect to time, the greater the system’s stability. For an
obvious understanding of the controller performance, we have calculated the percentage
improvement following the equation below:

Vindex No controller −VindexWith controller
Vindex No controller

× 100 (13)

Table 4 shows the voltage index values for all the scenarios that have been considered
in this study. From these index values, it is evident that the cyber-attack makes the PV-
connected DC microgrid very insecure, as the voltage index value without the controller
is huge. Using the proposed controllers, the system’s performance improved greatly.
However, in all cases, it is clearly apparent from the percentage improvement data that the
nonlinear controller is slightly better than the PI controller. For all the scenarios in Case-I,
the proposed nonlinear controller demonstrated an average 2% improvement compared
to the PI controller. Again, on the same comparison basis, a significant improvement
of around 10% is evident for Case-II using the nonlinear controller. In both cases, the
percentage improvements are statistically significant.

Table 4. Voltage index values for various controllers.

Attack
Scenario

Voltage Index

No Controller Proposed Nonlinear Based Controller PI Controller

Index Index Percentage Improvement (%) Index Percentage Improvement (%)

Case-I
Scenario 1 7.442 0.1104 98.517 0.1518 96.96

Scenario 2 3.927 0.0517 98.684 0.1511 96.15

Scenario 3 4.398 0.1140 97.41 0.1518 96.55

Case-II
Scenario 1 3.763 0.0534 98.58 0.3772 89.98

4. Conclusions

This work proposes a novel solution based on a nonlinear controller to mitigate
the adverse effects of cyber-attacks on various components of a DC microgrid system.
Two types of cyber-attacks, i.e., distributed denial of service and false data injection, in the
form of single and repetitive attacks on specific components of the microgrid system, have
been considered. An index-based quantitative analysis for the proposed control method
has been made. Based on the obtained simulation results, the following conclusions
can be drawn:

(i) The proposed nonlinear controller-based method is effective in mitigating the adverse
effects of cyber-attacks on the DC microgrid system.

(ii) The performance of the proposed controller is better than that of the PI controller.
(iii) Due to the simplicity of the proposed solution, it can easily be implemented in

real practice.
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It is important to note here that the proposed controller is designed for the particular
power system arrangement shown in Figure 1. However, the controller is scalable and can
be effective for different power systems just by re-tuning the control parameters.

To the best of our knowledge, there is no work available yet in the literature for cyber-
attack mitigation in the power grid system. Hence, we approached a simplistic method of
mitigation using a nonlinear controller, considering the above-mentioned advantages. In
the near future, we will be more open to exploring and experimenting with other novel
solutions, including artificial intelligence-based control and mitigation methods.
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