
Citation: Deng, Y.; Liu, J.; Zhou, Y.

Research on Image Processing

Resource Reconstruction Based on

Load Balancing Strategy. Electronics

2024, 13, 1027. https://doi.org/

10.3390/electronics13061027

Academic Editor: Dongkyun Kim

Received: 29 December 2023

Revised: 3 March 2024

Accepted: 6 March 2024

Published: 8 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Research on Image Processing Resource Reconstruction Based on
Load Balancing Strategy
Yuxiao Deng 1, Jingyu Liu 1,* and Yang Zhou 2

1 Beijing Institute of Control and Electronic Technology, Beijing 102300, China; deng_yuxiao@163.com
2 School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China;

zhouyango@buaa.edu.cn
* Correspondence: liu_jingyu@163.com

Abstract: With the development of intelligent vehicles, the vehicle image processing system has put
forward increasing demand for computing resource utilization efficiency and real-time processing.
However, the traditional information processing method that binds software and hardware severely
restricts the efficient use of image processing resources. In order to solve this problem, this paper
proposes a resource reconstruction scheme based on a load balancing strategy, which can realize
unified management and dynamic allocation of image processing resources by establishing a system
resource view. Then, this paper builds a physical verification platform and constructs a comparative
verification experiment to verify the effectiveness of the resource reconstruction scheme. Experimental
results prove that this resource reconstruction scheme can effectively improve the resource utilization
efficiency of multi-core digital signal processing (DSP), realize software-defined hardware functions,
and optimize the real-time performance of parallel processing.

Keywords: resource reconstruction; multi-core digital signal processing; load balancing; task
scheduling algorithm

1. Introduction

In recent years, with the development of the intelligence degree of intelligent vehicles,
the on-board control system has required a higher environmental perception ability and
a multi-source information processing ability, where the high-resolution image informa-
tion processing ability is determined by the utilization efficiency of processing resources.
To achieve unified system-distributed computing resource management, we optimize
the architecture of the vehicle control system and propose an image processing resource
reconstruction method.

The vehicle control system architecture has experienced long-term development.
Cheng J. [1] proposed a truck control system based on a controller area network (CAN)
bus in 2001, which successfully realized the data sharing of an ABS braking device and
improved the performance of an ABS system. However, the bandwidth of the CAN bus is
narrow, and the real-time data interaction cannot be guaranteed . In order to achieve real-
time data interaction, Zhu S.Y. [2] designed a vehicle control system based on an Ethernet
bus for the single-soldier unmanned tracked vehicle and successfully used Ethernet in series
with Global Positioning System (GPS), ultrasonic sensors, and an internal control system to
achieve intelligent obstacle avoidance for the unmanned tracked vehicle. However, since
the data transmission bandwidth is in kilobytes (KB), if any image processing equipment
is introduced, the system cannot meet the real-time transmission on the megabyte (MB)
or gigabyte (GB) level . Huang Lei [3] designed an intelligent networked vehicle hybrid
control system based on the time-sensitive networking (TSN) network, which realized the
intelligent tracking of driverless vehicles, but the TSN network was only used for audio
and video transmission in the system, without too much participation in data processing,
and the application scenarios can be extended.

Electronics 2024, 13, 1027. https://doi.org/10.3390/electronics13061027 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13061027
https://doi.org/10.3390/electronics13061027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-0164-767X
https://doi.org/10.3390/electronics13061027
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13061027?type=check_update&version=1

Electronics 2024, 13, 1027 2 of 16

Early PC microcomputers did not have simulation systems, so the vehicle control
system used two sets of PC microcomputer systems in order to constitute a closed loop
of the system; however, this method is too complex, and the design cost is too high [4].
Chen C.D. [5] used DSP for intelligent image processing of unmanned vehicles and success-
fully transplanted the road environment detection algorithm to DSP but did not design for
DSP’s real-time data processing. In order to improve the system’s flexibility, Bi J.Q. [6] de-
signed a multi-level vehicle control system, splitting up the control system into four layers,
including a sensor layer, a perception layer, a decision-making layer, and an executive layer,
which realized the intelligent perceptual decision-making system, effectively improved
system’s flexibility, and was equipped with algorithm independence, providing ideas for
the design of reconfigurable system software . In the existing research related to DSP
reconstruction, some studies do not focus on DSP itself but combine a field-programmable
gate array (FPGA) and DSP and use the programmable characteristics of FPGA to indi-
rectly realize DSP reconstruction [7–10]. This method, however, cannot be applied to a
control system that only uses DSP. In order to improve the resource utilization efficiency
of multi-core DSP under the constraint of low cost, Zhao Q. [11] proposed an airborne
reconfigurable control system based on the parallel connection of multiple DSPs. This had
both reconstruction ability and strong scalability, but it needed FPGA as auxiliary, and the
system’s structure is relatively complex, and the real-time reconfiguration needed to be
strengthened. Chen [12] proposed a spaceborne imaging algorithm based on multi-core
DSP, which evenly distributes the algorithm to eight cores for parallel processing. However,
this allocation method does not conduct online evaluation of core availability, which is
blind. By building a dynamic library, Wang G.X. [13] proposed a reconstruction method
using a DSP dynamic link library and realized dynamic loading of files, However, this could
not change the system software structure, and the scheme was less flexible. Based on a
dynamic software update, He S.Z. [14] proposed a DSP reconstruction method and realized
the dynamic reconfiguration between DSP cores, having good real-time performance and
flexibility; however, the scheme did not consider cross-device reconfiguration, and there is
still room for expansion. Song Y. [15] built a parallel processing platform by implanting an
operating system in each core to achieve real-time parallel processing of data. However,
the construction process of this method is relatively complicated and conflicts with the
strong constraints on the resource space of multi-core DSP. To solve the load balancing
problem [16–20], Wang H.B. [21] proposed an improved weighted minimum connection
load balancing scheduling algorithm for web server clusters, which separately scheduled
tasks according to resource requirements and effectively improved the resource utilization
efficiency; however, there was no dynamic classification of tasks, and the scheduling effect
can be optimized. Xia J.J. [22] proposed a parallel processing solution based on the round
robin [23] method for multi-core DSP. Although it can improve load balancing, it does
not conduct real-time assessment of the resource distribution status, which is still blind.
Zhao H.L. [24] proposed a load balancing prediction algorithm for multi-core DSP, but it
cannot achieve real-time updates of resource status distribution. Based on the minimum
migration degree and segmentation degree, Huang S.J. [25] proposed a load balancing task
scheduling algorithm that effectively reduced the excessive overhead and context switching
times caused by task migration and improved the load balancing degree of an embedded
control system. Based on Modified Ant Colony Optimization (MACO), Dai F. [26] pro-
posed a task scheduling algorithm and realized optimal load balancing scheduling, but this
scheme has only been tested by simulation.

In summary, the above-mentioned studies have carried out extensive research of a
vehicle control system’s resource allocation, but there are still shortcomings in improving
the dynamic utilization rate of system resources. In order to improve system resource
utilization, this study tries to realize dynamic reconstruction of image processing resources
by scheduling task files across devices.

The study is organized as follows. In the next section, we introduce the architecture of
the reconstruction control system. In Section 3, an image processing resource reconstruction

Electronics 2024, 13, 1027 3 of 16

scheme is proposed, and a task scheduling algorithm based on load balancing is constructed.
The comparative verification experiment and the experimental results are presented in
Section 4 to demonstrate the performance of the resource reconstruction scheme. Finally,
the discussions and conclusion are made in Sections 5 and 6, respectively.

2. Architecture Design of the Reconstruction Control System
2.1. Vehicle Control System Architecture

The intelligent vehicle control system includes a perception system, a decision module,
controllers, and a high-speed information transmission system. The perception system
includes cameras, radars, GPS, and other information contacts and is responsible for
collecting information about the surrounding environment of the vehicle. The decision
module generates driving decisions, such as path planning and risk aversion, according
to the input of environmental parameters. The controllers generate movements according
to the driving strategy, such as steering, electronic throttle, speed change, and braking.
The high-speed information transmission system is responsible for information interaction
between nodes, sensor image transmission, command data transmission, and so on.

Taking an electric vehicle as an example, as shown in Figure 1, the six cameras, three ul-
trasonic sensors, and three millimeter-microwave radars together constitute a sensor array.
All these sensors are deployed around the vehicle to collect the surrounding environmental
parameters. The collected environmental parameters are sent to the integrated informa-
tion processing module through the high-speed information transmission system. The
integrated information processing module contains multiple boards for image processing,
driving decision generation, control command transmission, and others.

Figure 1. Schematic diagram of the vehicle control system architecture.

2.2. Hardware Architecture Design

To simplify the vehicle control system, the study focuses on the image processing
resource reconstruction, and each processing unit is simplified to a TMS320C6678(C6678)
DSP board, which has high performance, low energy consumption, and an operating fre-
quency up to 10 GHz. It also integrates the high-speed TareNet bus with a communication
rate of up to 2 TB/s. It supports a variety of serial ports and high-speed communication
interfaces and has 20 GMAC/s or 160 GFLOP/s floating-point operation capability. In
addition, each core of C6678 can run at a frequency of 1.25 GHz. All eight cores of C6678
can be reset independently, supporting independent access [27]. The internal architecture
of C6678 is shown in Figure 2, and each DSP core has a two-layer memory architecture:
Level 1 data memory (L1D), Level 1 program memory (L1P), and Level 2 memory (L2). All
three can be configured as cache or independent memory (SRAM). In addition, this type of

Electronics 2024, 13, 1027 4 of 16

DSP also has a 4 MB multicore shared memory controller (MSMC) and expandable DDR3
memory space.

Figure 2. On-chip structure of TMS320C6678 DSP.

The hardware architecture of the control system is shown in Figure 3.

Figure 3. The hardware architecture of the control system.

In Figure 3, the hardware architecture of the control system adopts the master–slave
mode, which is similar to the master–slave mode of C6678. All C6678 boards are mounted

Electronics 2024, 13, 1027 5 of 16

on the TSN network bus. One C6678 is selected as the management node, which is
responsible for the system commander, such as receiving data from sensors and software,
generating the task deployment strategy and resource reconstruction strategy, scheduling
the mirror files, and establishing the system state resource view. The rest of the C6678 boards
act as work nodes, which are responsible for executing the instructions of the management
node, processing images, and feeding back their own state resource parameters. The
purpose of the transmission interface modules is to eliminate communication protocols and
implement modular mounting. Each working node detects its own underlying resources,
periodically packages the resource data, and transmits them to the system through the TSN
network. The management node collects and generates real-time status resource views. In
addition, when reconstruction is triggered, the management nodes generate reconstruction
scheduling policies based on the resource views. The resource scheduler extracts files from
the image file library and deploys them to working nodes through the TSN network. The
working nodes execute reconstruction tasks and feed the results back to the management
node. The basic process of reconstruction is shown in Figure 4.

Figure 4. Basic process of reconstruction.

2.3. Software Architecture Design

To realize resource reconstruction, the study decouples tasks from the processing
resources and breaks the binding between hardware devices and software functions. Ad-
ditionally, the software architecture of the control system is designed hierarchically and
divided into four layers, including a hardware resource layer, an operating system layer,
a service interface layer, and a task requirement layer. The hardware resource layer is
composed of multi-core DSP core processing resources such as NOR flash, static random-
access memory (SRAM), Double Data Rate 3 Synchronous Dynamic RAM (DDR3), and TSN
network communication resources. The operating system layer is the sys/bios embedded
operating system, which provides a variety of threading modes for the use of programs.
It can also freely configure the DSP memory addressing space through the express DSP
Components-tools (XDC-tools) software driver, make schedulable program files, and con-
figure API interfaces. Then, the service interface layer includes various APP programs
that make up the task flow of the control system, such as algorithm programs, drivers,
human–computer interaction architecture, databases, and resource status acquisition. The
service interface layer also includes various protocol interfaces, such as communication
protocols, interface files, a task scheduler, and a data messaging interface. Finally, the

Electronics 2024, 13, 1027 6 of 16

perceptual information is the input data of the task requirement layer, which is collected by
the sensor array, and the output of the layer is the task flow [28]. The software architecture
design is shown in Figure 5.

Figure 5. The software architecture of the control system.

In Figure 5, the software organization structure unbinds software programs and
hardware resources, allowing users to perform customized operations according to task
requirements. It can also coordinate and manage control system resources, laying a good
foundation for the reconstruction of image processing resources.

3. Image Processing Resource Reconstruction Scheme Based on Load Balancing Strategy

When the DSP performs complex operations, the occupancy rate of the computing
resources, the bus resources, and the storage resources increases sharply, causing DSP
performance to decrease. In order to solve this problem, the study designs a load balancing
reconstruction scheme, which contains two aspects: a scheduling algorithm based on the
load balancing strategy and a reconfiguration scheme.

3.1. Scheduling Algorithm Based on Load Balancing Strategy

In order to improve reconstruction efficiency, the study proposes a reconstruction
scheduling algorithm based on the load balancing strategy. The algorithm first builds a
system resource view, which monitors the running status of each core, currently running
task types and heartbeats in real time. When image data are received, the algorithm checks
the real-time monitoring results of the resource view, quickly selects light-load nodes by
comparing with the load balancing threshold and constructs a scheduling resource pool
vector, and then dynamically allocates the image to the idle cores in the scheduling resource
pool to deal with. This section will elaborate on the reconstruction scheduling algorithm
based on the load balancing strategy from three aspects: the resource view establishing
method, the load balancing evaluation method, and the scheduling algorithm scheme.

Electronics 2024, 13, 1027 7 of 16

3.1.1. Resource View Establishing Method

The DSP adopts the master–slave working mode internally. Each core of the DSP runs
the resource collection interface function UpdateStatusData (u32 taskNum). The input
parameter of the function UpdateStatusData (u32 taskNum) is the core serial number. Then,
each core builds a resource parameter array, including node number, running status, heart-
beat, and task number. Each work core sends a resource parameter to core 0 during running
time. Core 0 collects the resource parameters of the other cores and sends data packets
to the management core. The management core stores the resource status parameters of
the entire system in multiple structStatusFeedBack structures and then builds a system
resource status parameter view.

3.1.2. Load Balancing Evaluation Method

Task scheduling must examine the load balance of all nodes in each period. If a core
has too many unfinished tasks, then it is not suitable to be assigned new tasks because it
requires a very long time. Therefore, when the system performs load balancing scheduling,
it first needs to form a scheduling resource pool based on the resource view. We define the
load parameter L, which describes the number of images scheduled for a single core within
a certain period. Then, we define parameter M, which describes the number of existing
image processing tasks on the core at the current moment. The weighted sum of these two
parameters gives the core comprehensive performance index Q, as shown in Equation (1):

Q = α1L + α2M. (1)

In Equation (1), Q represents the comprehensive performance index of the core;
α1 and α2 represent the weight parameters, respectively; and Qt is set as a threshold
such that, when Q < Qt, the core will be included in the scheduling resource pool. Then,
we can schedule the unprocessed data for cores in the scheduling resource pool.

A scheduling resource pool array P at the first scheduling time t0 is shown in Equation (2):

P = [P1, P2, P3, Pn]. (2)

In Equation (2), the scheduling resource pool array P includes all schedulable cores. If
the number of existing image processing tasks on the core i is zero at the current moment
t0, then Mi = 0, Pi = 1. On the other hand, if the number of existing image processing
tasks on the core i is not zero at the current moment t0, then Pi = 0.

According to Equations (1) and (2), the core status information of the scheduling
resource pool is updated in real time, and then the images will be allocated to idle cores for
processing. In practical applications, the task scheduling scheme also needs to consider the
relationship between the resource view establishment time TA, the image deployment time
TB, and the image processing time TC, as shown in Equation (3):

TC ≫ TA + TB. (3)

In Equation (3), TC is much longer than TA+TB. Therefore, we can ignore the impact
of TA and TB.

3.1.3. Scheduling Algorithm Scheme

This paper proposes an image processing resource reconstruction and scheduling
algorithm based on the load balancing evaluation method proposed above. At t0, there are
N images that need to be processed in parallel. Then, the scheduling algorithm is triggered,
and the system allocates images to the core in the scheduling resource pool with Pi = 1.
After T0, these allocated images are processed, and then the scheduling resource pool array
P is updated at the same time. Repeating the above operation K times, all N images are
processed, the scheduling algorithm is ended, and then the system gets the time T for
parallel processing, as shown in Equation (4):

Electronics 2024, 13, 1027 8 of 16

T = K × T0, (4)

where the steps of the scheduling algorithm are as follows:

1. There are N images that need to be processed in parallel, and the system calculates the
comprehensive performance index Q of each core. If Q < Qt, the core will be included
in the scheduling resource pool, and then the scheduling resource pool is built;

2. At t0, the control system checks the scheduling resource pool array P. If the number
of elements is S in P, with the values equal to Pi = 1, then the number of cores that
can participate in parallel computing is S;

3. The S images will be sent to these cores that can participate in parallel computing.
Then, the number of images is updated to N′ = N − S, which need to be processed in
parallel. If N′ ≤ 0, the algorithm goes to step 5; otherwise, it goes to step 4;

4. Then, update the scheduling resource pool array P in real time, and we can get a new
value of S and repeat step 3;

5. According to the number of times K needed to repeat step 3, we can get the total time
T = K × T0 of the parallel computing, and the scheduling algorithm is over.

The scheduling algorithm flow chart is shown in Figure 6, and the timeline chart of
the scheduling algorithm is shown in Figure 7.

Figure 6. Scheduling algorithm process.

Electronics 2024, 13, 1027 9 of 16

Figure 7. Scheduling algorithm process.

3.2. Reconstruction Scheme

The image processing task is an event-triggered task and does not generate status data.
Therefore, the code of the task can be made into a mirror file and independently stored
and scheduled under the C6678 programming system. The mirror files can be scheduled
at high speed between different DSP nodes. The following reconstruction scheme will be
described from three aspects: mirror file production, data package format provisions, and
image processing resource reconstruction process.

3.2.1. Mirror File Production

The control system makes mirror files based on master–slave DSP architecture for all
cores respectively, as shown in Figure 8, where core x represents the DSP cores, such as
core 0, core 1, core 2, core 3, core 4, core 5, core 6, and core 7. The function of core 0 is
startup, resetting, and loading image processing files for other cores. After compiling, the
core x md-parameter file and the core x out-format file will be generated. The code segment
and data segment are added to the out-format files, where the parameters include startup
mode, large or small end mode, and phase-locked loop (PLL) frequency. Then, the core
x md-parameter file and the core x out-format file will be transmitted into a btbl-format
file by Hex6x.exe. Finally, the btbl-format file will be transmitted into a bin-format file by
Txt2bin-tool, where the bin-format file is the mirror file and is stored in a physical storage
unit, such as NOR flash or DDR3.

The structure of the mirror file stored in the slave core contains just the program entry
address, code segment, and data segment, as shown in Figure 9.

Electronics 2024, 13, 1027 10 of 16

Figure 8. Production process of mirror files.

Figure 9. Mirror file structure.

3.2.2. Data Package Format Provisions

The data packet format is designed based on TCP/IP protocol. The packet is divided
into five parts, including the Synchronization Header, Device Word, Data Length, Effective
Data, and Parity Bit. The length of the Synchronization Header (0xEB) is 1 byte, the length
of Device Word is 1 byte, the length of Data Length is 2 bytes, but the Effective Data length
depends on the actual situation. Finally, the length of Parity Bit is 4 bytes. The data package
format is shown in Figure 10.

Figure 10. The data package format.

3.2.3. Image Processing Resource Reconstruction Process

The hardware architecture of the control system shown in Figure 1 can be simplified
into a distributed computing architecture that is composed of five DSP nodes (DSP1, DSP2,
DSP3, DSP4, and DSP5), in which core 0 of DSP1 is designated as the management core,
and core 1 to core 7 of each DSP node are used as the working cores. The management core
monitors the resource status of the distributed computing architecture in real time. When
the distributed computing architecture receives the parallel processing task requirements,
the management core formulates a reconstruction strategy based on the monitoring results

Electronics 2024, 13, 1027 11 of 16

of the working cores, sends the reconstruction command to the reconstruction node, and
then the management core schedules the mirror file from the physical storage unit to the
reconstruction cores. The reconstruction process is shown in Figure 11.

Figure 11. Image processing reconstruction process.

4. Experiment
4.1. Experiment for System Environment

The focus of this experiment is to verify the image processing ability of the system
environment shown in Figure 1. The high-speed camera records five groups of pictures in
different sizes continuously, where each group contains 10 frames, and the record period
of each frame is 100 µs. Then, these five groups of images will be processed by the edge
detection algorithm in one working core respectively, where the five groups of images are
shown in Figure 12, and the processing time of each group is shown in Table 1.

According to Table 1, the average processing time Ta grows with the increase in the
image size.

Table 1. The processing time of each group.

Core Number t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 Ta

Core 1 9 ms 9 ms 9 ms 9 ms 9 ms 9 ms 9 ms 9 ms 9 ms 9 ms 9 ms
Core 2 19 ms 19 ms 18 ms 19 ms 19 ms 18 ms 19 ms 19 ms 18ms 18 ms 18.6 ms
Core 3 52 ms 52 ms 52 ms 51 ms 53 ms 52 ms 52 ms 53 ms 53 ms 53 ms 52.3 ms
Core 4 74 ms 74 ms 75 ms 75 ms 74 ms 75 ms 75 ms 74 ms 74 ms 74 ms 74.4 ms
Core 5 96 ms 95 ms 94 ms 94 ms 94 ms 96 ms 95 ms 96 ms 95 ms 95 ms 95 ms

Electronics 2024, 13, 1027 12 of 16

Figure 12. Five groups of images.

4.2. Resource Reconstruction Experiment Based on the Traditional Method

The focus of this experiment is to verify the efficiency of the traditional resource
reconstruction method for the parallel processing task. The high-speed camera records
50 frames of pictures continuously, where the size of each frame is 103 KB, and the record
period of each frame is 100 µs. These 50 images will be equally divided into five groups,
and then these five groups of images will be processed by the edge detection algorithm.
Resource reconstruction based on the traditional method is shown in Figure 13.

Figure 13. Resource reconstruction based on the traditional method.

Electronics 2024, 13, 1027 13 of 16

The processing time of each core for the parallel processing task in the traditional
method is shown in Table 2.

Table 2. The processing time of each core in the traditional method.

Core Number Total Number of T0 Time

Core 1 13 676 ms
Core 2 16 832 ms
Core 3 10 520 ms
Core 4 15 780 ms
Core 5 11 572 ms

According to Figure 13 and Table 2, the usage efficiency of the working cores is
relatively low because some cores need to wait for the existing image processing task to
end before they can start processing the current task. Therefore, the traditional method
seriously limits the real-time performance of tasks and resource utilization efficiency.

4.3. Resource Reconstruction Experiment Based on Load Balancing Strategy

The focus of this experiment is to verify the efficiency of the resource reconstruction
scheme based on the load balancing strategy for the parallel processing task. The high-
speed camera records 50 frames of pictures continuously, where the size of each frame
is 103 KB, and the record period of each frame is 100 µs. Then, these 50 images will be
processed by the edge detection algorithm. The resource reconstruction based on the load
balancing strategy is shown in Figure 14.

Figure 14. Resource reconstruction based on the load balancing strategy.

The processing time of each core for the parallel processing task based on the load
balancing strategy is shown in Table 3.

According to Tables 2 and 3, compared with traditional methods, the processing time
for the parallel processing task based on the load balancing strategy is shorter and is
optimized by 18.75%. Moreover, the computing power of each core is fully utilized.

Electronics 2024, 13, 1027 14 of 16

Table 3. The processing time of each core in the resource reconstruction scheme.

Core Number Total Number of T0 Time

Core 1 13 676 ms
Core 2 13 676 ms
Core 3 13 676 ms
Core 4 13 676 ms
Core 5 13 676 ms

5. Discussions

According to the experiment results in Section 4, the resource reconstruction scheme
based on the load balancing strategy reduces the image processing time and improves
resource utilization efficiency. The advantages of the reconstruction scheme can be summa-
rized as follows:

1. The reconstruction scheme lift the binding of software tasks and hardware devices;
2. The reconstruction scheme achieved unified visual management of system processing

resources by inserting interface functions into tasks;
3. By scheduling mirror files across nodes and using the reconstruction scheduling

algorithm based on the load balancing strategy, the reconstruction scheme reduced
the image processing time and improved resource utilization efficiency.

Compared with the method in Ref. [15], the method proposed in this article can realize
resource reconstruction based on load balancing without deploying an operating system on
each core and has advantages in development difficulty and code writing complexity. Com-
pared with the methods in Refs. [12,22,23], the method proposed in this article can conduct
real-time assessment of resource distribution and avoid blindness in resource allocation.
However, this paper does not consider the reconstruction of heterogeneous resources, nor
does it verify the reconstruction effect of GB-level or larger-capacity images. Therefore,
the next stage of our research is to verify the feasibility of this reconstruction scheme in
heterogeneous resources, and then realize the image processing resource reconstruction for
large-scale images.

6. Conclusions

In this paper, we propose an image processing resource reconstruction scheme based
on the load balancing strategy, which can reduce the image processing time and improve
resource utilization efficiency for parallel processing tasks. The comparative experiments
based on the physical platform verified the effectiveness of the reconstruction scheme
based on the load balancing strategy. The next step of this research will focus on how to
dynamically allocate resources to tasks based on the load balancing strategy when there
are multi-dimensional coupling constraints between parallel tasks.

Author Contributions: Y.D. implemented the experiment and wrote the first draft of the paper, J.L.
and Y.Z. provided funding for the paper and revised it. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available in this article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DSP Digital Signal Processing
CAN Controller Area Network
GPS Global Positioning System
KB Kilobyte

Electronics 2024, 13, 1027 15 of 16

MB Megabyte
GB Gigabyte
TSN Time-Sensitive Networking
FPGA Field-Programmable Gate Array
MACO Modified Ant Colony Optimization
PLL Phase-Locked Loop
MSMC Multicore Shared Memory Controller
SRAM Static Random-Access Memory
DDR3 Double Data Rate 3
ASCII American Standard Code for Information Interchange
XDC-tools eXpress DSP Components-tools

References
1. Cheng, J.; Cui, J.; Gou, K. Implementation method of CAN bus communication in vehicle control system. Automot. Eng. 2001,

23, 300–305.
2. Zhu, S. Design and Implementation of Vehicle Control System for Individual Small Tracked Unmanned Vehicles. Master’s Thesis,

Nanjing University of Science and Technology, Nanjing, China, 2009.
3. Huang, L. Design and Implementation of Hybrid Operating System for Intelligent Connected Cars. Master’s Thesis, Zhejiang

University, Hangzhou, China, 2018.
4. Cheng, J.; Cui, J.; Xu, G.; Gao, Y. Vehicle control system integrated development system. Automot. Eng. 2000, 22, 109–114.
5. Chen, C. Dynamic Image Recognition of Intelligent Traffic Vehicles Based on DSP. Master’s Thesis, Fujian Normal University,

Fuzhou, China, 2018.
6. Bi, J.; Lu, G.; Wang, J.; Jiang, Y. Design and implementation of micro smart car software system. Comput. Eng. Appl. 2013,

49, 234–238.
7. Shen, X.; Ma, J.; Hu, Z.; Li, Y. Load balancing algorithm for heterogeneous signal processing platforms. Telecommun. Eng. 2023,

63, 1978–1984.
8. Niu, Z.; Sun, H. Design and implementation of Winograd algorithm convolutional neural network accelerator based on FPGA.

Chin. J. Liq. Cryst. 2023, 38, 1521–1530.
9. Geng, T.; Wang, T.; Sanaullah, A.; Yang, C.; Xu, R.; Patel, R.; Herbordt, M. FPDeep: Acceleration and balancing of CNN training

on FPGA clusters. In Proceedings of the 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), Boulder, CO, USA, 29 April–1 May 2018; IEEE: New York City, NY, USA, 2018; pp. 81–84.

10. Li, M.; Zhang, J.; Wan, J.; Ren, Y.; Zhou, L.; Wu, B.; Yang, R.; Wang, J. Distributed machine learning load balancing strategy in
cloud computing services. Wirel. Netw. 2020, 26, 5517–5533. [CrossRef]

11. Zhao, Q.; Zhao, X. Design of airborne embedded reconfigurable signal processing system. Aeronaut. Comput. Technol. 2014,
44, 125–128.

12. Chen, Y.; Xiao, G.; Quan, Y.; Ren, A.; Bie, B.; Xing, M. Implementation of spaceborne dual-base FMCW SAR imaging algorithm
based on multi-core DSP. Syst. Eng. Electron. Technol. 2024, 46, 121–129.

13. Wang, G. Research and Implementation of Dynamic Reconfiguration Framework for Embedded Multi-Core DSP. Master’s Thesis,
Xi’an University of Electronic Science and Technology, Xi’an, China, 2015.

14. He, S. Design and Implementation of Reconfigurable Digital Signal Processing System Based on Multi-Core DSP. Master’s Thesis,
Tianjin Polytechnic University, Tianjin, China, 2019.

15. Yang, S.; Liu, X.; He, Y. Design of heterogeneous master-slave operating system architecture based on multi-core DSP. In
Proceedings of the 2023 IEEE 6th International Conference on Information Systems and Computer Aided Education (ICISCAE),
Dalian, China, 23–25 September 2023; IEEE: New York City, NY, USA, 2023; pp. 221–224.

16. Li, R.; Zhou, X.; Wang, Q.; Mei, S. GPU-based high-throughput parallel algorithm for satellite communication baseband
processing. Comput. Eng. Sci. 2023, 45, 1720.

17. Ghomi, E.J.; Rahmani, A.M.; Qader, N.N. Load-balancing algorithms in cloud computing: A survey. J. Netw. Comput. Appl. 2017,
88, 50–71. [CrossRef]

18. Khiyaita, A.; El Bakkali, H.; Zbakh, M.; El Kettani, D. Load balancing cloud computing: state of art. In 2012 National Days of
Network Security and Systems; IEEE: New York, NY, USA, 2012; pp. 106–109.

19. Kumar, P.; Kumar, R. Issues and challenges of load balancing techniques in cloud computing: A survey. Acm. Comput. Surv.
(CSUR) 2019, 51, 1–35. [CrossRef]

20. Lan, Y.L.; Wang, K.; Hsu, Y.H. Dynamic load-balanced path optimization in SDN-based data center networks. In Proceedings of
the 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Prague,
Czech Republic, 20–22 July 2016; IEEE: New York, NY, USA, 2016; pp. 1–6.

21. Wang, H. Research on Adaptive Load Balancing Scheduling Strategy of Web Server Cluster System. Ph.D. Thesis, Jilin University,
Changchun, China, 2013.

22. Xia, J.; Chang, Y.; Liang, Z.; Song, H. Multi-core DSP signal processing parallel design. Radar Sci. Technol. 2013, 11, 617–620.

http://doi.org/10.1007/s11276-019-02042-2
http://dx.doi.org/10.1016/j.jnca.2017.04.007
http://dx.doi.org/10.1145/3281010

Electronics 2024, 13, 1027 16 of 16

23. Sun, H.; Liu, W.; Zhang, J. Reordering performance analysis of multipath transmission under Round-Robin allocation method. J.
Electron. Inf. 2011, 33, 1943–1948. [CrossRef]

24. Zhao, H.; Wei, W.; Tang, J. Performance prediction algorithm under multi-DSP platform. Inf. Electron. Eng. 2011, 9, 472–477.
25. Huang, S.; Xiao, F.; Cao, Z. Research on Sporadic real-time task scheduling method for high utilization set. J. Univ. Electron. Sci.

Technol. China 2021, 50, 572–579.
26. Dai, F. Research on Load Balancing Scheduling of Microkernels in Heterogeneous Multi-Core Processors. Master’s Thesis, Guilin

University of Technology, Guilin, China, 2019.
27. He, S.; Wang, W.; Tian, H.; Liu, X. Design and implementation of dynamic reconfiguration scheme for multi-core DSP. Mech. Des.

2018, 35, 29–32.
28. Cao, S.; Zhao, Y.; Wei, J.; Yang, S.; Han, H.; Sun, X.; Yan, L. Space-based cloud-fog computing architecture and its applications.

In Proceedings of the 2019 IEEE World Congress on Services (SERVICES), Milan, Italy, 8–13 July 2019; IEEE: New York, NY,
USA, 2019; Volume 2642, pp. 166–171.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3724/SP.J.1146.2010.01310

	Introduction
	Architecture Design of the Reconstruction Control System
	Vehicle Control System Architecture
	Hardware Architecture Design
	Software Architecture Design

	Image Processing Resource Reconstruction Scheme Based on Load Balancing Strategy
	Scheduling Algorithm Based on Load Balancing Strategy
	Resource View Establishing Method
	Load Balancing Evaluation Method
	Scheduling Algorithm Scheme

	Reconstruction Scheme
	Mirror File Production
	Data Package Format Provisions
	Image Processing Resource Reconstruction Process

	Experiment
	Experiment for System Environment
	Resource Reconstruction Experiment Based on the Traditional Method
	Resource Reconstruction Experiment Based on Load Balancing Strategy

	Discussions
	Conclusions
	References

