i:;l?é electronics

Article

ComPipe: A Novel Flow Placement and Measurement Algorithm
for Programmable Composite Pipelines

Dengyu Ran 12, Xiao Chen 123 and Lei Song **

check for
updates

Citation: Ran, D.; Chen, X,; Song, L.
ComPipe: A Novel Flow Placement
and Measurement Algorithm for
Programmable Composite Pipelines.
Electronics 2024, 13, 1022. https://
doi.org/10.3390/electronics13061022

Academic Editor: Christos J. Bouras

Received: 17 January 2024
Revised: 23 February 2024
Accepted: 27 February 2024
Published: 8 March 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of
Sciences, Beijing 100190, China; randy@dsp.ac.cn (D.R.); xxchen@dsp.ac.cn (X.C.)

School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences,
Beijing 100049, China

3 Peng Cheng Laboratory, Shenzhen 518055, China

Correspondence: songl@dsp.ac.cn

Abstract: Programmable networks comprise heterogeneous network devices based on both hard-
ware and software. Hardware devices provide superior bandwidth and low latency but encounter
challenges in managing large table entries. Conversely, software devices offer abundant flow tables
but have a limited forwarding capacity. To overcome this limitation, some commercial switches
offer implementations that combine both hardware and software devices. In this context, this paper
presents the Composite Pipeline (ComPipe), an algorithm for high-performance and high-precision
flow placement and measurement. ComPipe utilizes a multi-level hashing algorithm for the real-time
identification of heavy hitters, incorporates a unique flow eviction strategy, and is implemented on
commercial programmable hardware. For non-heavy flows, ComPipe employs sketch structures
to accomplish a high-performance flow synopsis within limited memory constraints. This design
allows to replace flow rules entirely in the data plane, ensuring the timely detection and offloading
of heavy-hitter flows, and offering a unified interface to the controller. The ComPipe prototype has
been implemented in both testbed and simulation environments. The results indicate that ComPipe
is an effective solution for dynamic flow placement in programmable networks, distinguished by its
low cost, high performance, and high accuracy.

Keywords: programmable networks; composite pipeline; heterogeneous network devices; flow

placement and measurement; high performance and precision

1. Introduction

In contemporary heterogeneous network environments, devices leveraging programmable
networks exhibit distinct advantages and constraints, driven by underlying hardware and
software paradigms. Table 1 outlines these differences: hardware devices like programmable
Application Specific Integrated Circuit (ASIC) based on the Reconfigurable Match-Action Table
(RMT) architecture [1] provide high bandwidth, low latency, and reduced jitter. They also offer
custom processing flexibility via P4 language-defined pipelines. However, their functionality
is limited by scarce lookup resources, especially when it comes to managing large table
entries. In contrast, software-based switches, such as Open vSwitch (OVS) [2], feature ample
memory for storing flow tables but are hindered by a constrained forwarding capability,
due to the high CPU clock cycle demands per packet. Consequently, many commercial
network devices, including cloud gateways [3-5] and Smart Network Interface Cards
(Smart-NICs) [6,7], are adopting composite pipeline structures. This approach leverages the
strengths of both hardware and software, aiming to enhance performance and flexibility in
diverse network settings.
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Table 1. Comparison of programmable pipeline implementations.
Type of Implementation =~ Flow Table Capacity Lookup Speed Update Speed Complexity
Hardware Pipeline low high high low
Software Pipeline high low low low
Composite Pipeline high high high high

In the composite pipeline structure, packet processing initiates with hardware-based
tables. If a packet finds a matching entry, the corresponding actions are executed; if not, it
gets rerouted to the CPU for software-based table matching. This design only resorts to
software tables when hardware tables lack a matching rule, thus enhancing forwarding
performance and reducing the burden typically associated with pure software forwarding.
Furthermore, within the cloud network, this method reduces the processing headroom
that network engineers reserve for each CPU core, thereby further lowering both Capital
Expenditures (CapEx) and Operating Expenditures (OpEXx) [3]. Yet, the dynamic nature of
network traffic introduces a complex challenge in flow table placement [8]. With continually
ever-changing traffic patterns, it becomes crucial to develop an intelligent and adaptable
algorithm for managing flow rules across both hardware and software tables. Such an
algorithm must dynamically respond to traffic fluctuations, strategically allocating flow
entries between hardware and software based on their immediate utility and overarching
performance objectives. This method seeks a balance between the efficiency of hardware
processing and the scalability and flexibility of software solutions.

When designing a flow table placement algorithm, it is crucial to fully consider the
skewed pattern of network traffic, a characteristic often mathematically modeled by Zipf’s
distribution [9-11]. Specifically, significant flows in the network, also known as heavy
hitters or “elephant flows”, constitute only a small portion of all network flows in terms
of number but occupy a substantial amount of bandwidth resources. In contrast, the less
significant flows, also referred to as “mouse flows”, dominate in number but account for
a relatively small proportion of the bandwidth. In the context of a composite pipeline,
effectively utilizing the skewness of traffic—by dynamically identifying heavy hitters
and offloading them to the hardware—holds the potential to enhance traffic processing
capabilities while further reducing the CPU resource consumption of software switches.

Current methods primarily involve the controller periodically polling the data plane’s
counters to collect statistical information, followed by the execution of the placement al-
gorithm [8]. However, this polling mechanism suffers from a lag in timeliness, impacting
the effectiveness of flow table replacements. For instance, heavy-hitter characteristics
might shift in the interval between controller actions. An alternative approach is a periodic
replacement strategy, which involves swapping the flow tables between software and hard-
ware when the software traffic exceeds the hardware traffic. This method, however, can
result in frequent flow table replacements and not fully utilize the advantages of hardware
forwarding. A more recent development is the Elixir [5], which utilizes a sampling method
for flow placement. While this method eases hardware implementation and accommodates
more intricate replacement algorithms, its fixed sampling rate may result in a scenario
where heavy hitters are still partially processed by the software flow table. Furthermore,
the substantial CPU and bandwidth requirements for processing sampled packets in soft-
ware make high-rate sampling an impractical approach. Consequently, there is a pressing
need for more sophisticated and adaptable strategies to overcome the challenges of timeli-
ness and frequency in flow table replacements. Implementing such methods could lead to
a more efficient use of hardware and software resources, significantly enhancing overall
system performance.

In this study, we introduce Composite Pipeline (ComPipe), a novel methodology for
flow placement and measurement. ComPipe is uniquely designed to identify heavy hitters
in real-time, achieving this with minimal memory overhead on hardware. Concurrently,
it manages less flows through software, ensuring high throughput overall. At its core,
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ComPipe employs a multi-level, hash-based algorithm adept at detecting heavy hitters,
coupled with an innovative flow ‘eviction” strategy. This approach efficiently maintains
a register table for heavy hitters within the hardware. For less heavy flows, ComPipe
leverages sketch data structures to construct statistical flow synopsis, effectively optimizing
performance even when faced with memory limitations.

This design empowers the data plane to independently manage flow table replace-
ments, yielding multiple benefits. Firstly, it allows for the swift identification and hardware
offloading of heavy hitters, facilitating rapid processing. Secondly, this approach con-
servatively utilizes CPU resources in the software pipeline, which is a critical advantage
in cloud environments. Furthermore, it presents a unified southbound interface for the
controller, simplifying network function development and data plane programming. This
is achieved by using standard southbound interfaces such as OpenFlow [12], POF [13],
and P4Runtime [14]. For the control plane, instead of distinguishing between software and
hardware pipelines, the composite pipeline is managed as a single device, significantly
reducing the complexity of network management.

We developed a ComPipe prototype and deployed it on a testbed platform comprising
a DPDK-based POF Switch [15] and a Barefoot Wedgel00BF-65X P4 Switch. To evaluate
the performance of ComPipe, extensive experiments were conducted in a simulated en-
vironment, benchmarking ComPipe against leading-edge flow measurement algorithms.
The results of these experiments reveal that ComPipe consistently delivers more precise
measurements across two fundamental tasks of network flow detection.

In summary, this paper makes the following contributions:

*  We present ComPipe, an innovative flow placement and measurement algorithm
designed for the composite pipeline architecture. While its potential applications span
numerous critical domains, this field has traditionally been underexplored in research.

¢ We have implemented the heavy-hitter detection algorithm entirely in the data plane,
ensuring its full compatibility with the RMT architecture. This enhancement provides
a more reliable and efficient mechanism for real-time identification of large traffic
flows at the hardware.

¢ In the software pipeline, we have implemented the recording of less heavy flows,
employing a multi-core approach to expedite this process. This strategy is aimed at sig-
nificantly enhancing the overall measurement throughput of the software data plane.

*  We conducted extensive experiments in both testbed environments and simulations to
verify the high performance and precision of ComPipe. These experiments demon-
strate the feasibility and effectiveness of ComPipe in practical applications.

The remainder of this paper is structured as follows: Section 2 offers a comprehensive
review of related work in the realms of flow placement, heavy-hitter detection, and net-
work flow recording. In Section 3, we detail the design and underlying algorithms of
ComPipe, accompanied by a mathematical analysis. Section 4 elucidates how ComPipe
facilitates multiple measurement tasks, along with the technical specifics of executing these
tasks. Section 5 discusses practical implementation strategies for ComPipe on commercial
hardware and software platforms. The evaluation of ComPipe is thoroughly examined in
Section 6. Finally, Section 7 provides concluding remarks and suggests potential avenues
for future research.

2. Related Work

Flow Placement: Numerous academic studies, based on the principle of traffic skew-
ness, have delved into flow placement strategies in software and hardware data planes.
TFO [16] employs controllers for monitoring traffic across varied time scales, segment-
ing flow tables based on traffic skewness. CacheFlow [17] constructs a directed acyclic
graph model to identify and analyze dependencies between rules, employing either the
Dependent-Set Algorithm or the Cover-Set Algorithm to determine which rules should
be cached in hardware. LFP [18] proposes a method for network function offloading,
blending sampling and machine learning to decide on hardware node offloading based



Electronics 2024, 13, 1022

40f19

on initial flow packet predictions. OVS-CAB [7] presents an offloading mechanism for
Open vSwitch on smart network interface cards, addressing rule overlap issues effectively.
Sailfish [3], a pioneering cloud gateway utilizing programmable switches, employs a dual
hardware—software design. It strategically places crucial table entries like VXLAN rout-
ing and VM-NC mapping in hardware, while retaining volatile and large stateful tables
in software. However, it lacks dynamic migration capability for these tables based on
traffic variations. Elixir [5] differentiates between heavy and burst traffic through static
sampling and counters, decoupling flow rate identification from the replacement process.
Nonetheless, its static sampling approach might compromise accuracy in low-speed traffic
scenarios or be resource-intensive for high-speed traffic. Previous studies primarily concen-
trated on intelligent software algorithms for decision offloading in flow table partitioning.
In contrast, ComPipe emphasizes programmable heterogeneous pipeline environments,
exploiting hardware data plane programmability to measure large flows directly on ASIC,
thus minimizing software—hardware communication overhead.

Heavy-Hitter Detection (HHD): Narrowly defined, a “Heavy Hitter” refers to network
flows occupying bandwidth beyond a specific threshold. Broadly speaking, HHD tech-
niques can be applied to other measurement objectives, such as identifying persistent flows,
heavy change flows, and super spreaders. HashParallel and HashPipe [19] approximate
the implementation of the Space-Saving algorithm [20] to meet the design constraints
of the P4 language. This method involves dividing counters into multiple independent
stages to adapt to the match-action structure of programmable data planes. However, these
methods do not satisfy the design constraints of programmable switches under the RMT
architecture. Building on the foundations of HashPipe, PRECISE [21] introduces a scheme
that adeptly balances partial packet recirculation, facilitating high-speed processing in
hardware programmable switches based on RMT. FlowRadar [22] introduces an innovative
approach, where the data plane encodes network flows using XOR operations, with de-
coding managed by the control plane. This method employs joint data structures, such as
heaps, for effective heavy-hitter identification and can be implemented on the data plane
via P4. Conversely, HeavyKeeper [11] adopts a count-with-exponential-decay strategy
to proactively filter out lower-frequency items, thereby enhancing the accuracy of heavy-
hitter detection. In the realms of heavy-hitter and Top-k query accuracy, HeavyKeeper
demonstrates remarkable effectiveness. Other algorithms used for heavy-hitter queries
include classic methods under traditional network frameworks, such as Frequency [23],
Lossy Counting [24], Unbiased Space Saving [25], and Augmented Sketch (AS) [26].

Record of Network Flows: Sketch algorithms constitute a series of classic methods for
processing data streams. Their core objective is to record the frequency of all items while
trading off some completeness in data stream recording for reduced memory usage in
data structures. Representative algorithms in this category include Count Sketch (CS) [27],
Count-Min Sketch (CMS) [28], and Conservative Update Sketch (CUS) [28]. These algo-
rithms typically employ a data structure composed of a d X w array of counters, with each
row functioning as a hash table of length w and a total of d rows. They map items onto
d counters through multiple hash mappings. The primary distinction among them lies
in their varying update strategies. Both CMS and CUS algorithms offer one-sided error
guarantees, meaning the reported frequencies will not be lower than the actual values.
In contrast, CS features two-sided error, indicating that query results might either overes-
timate or underestimate the true values. SALSA [29] proposes a method of dynamically
adjusting counter sizes, merging counters with their neighbors upon overflow, thereby
allowing more counters within a given space to enhance the accuracy of data stream
analysis. However, this merging logic inevitably slows down the data insertion speed.
TowerSketch [30] improves measurement accuracy by using counters of different sizes to
record flows of varying magnitudes while maintaining simplicity in data insertion opera-
tions. TowerSketch’s update strategy can be chosen from CS, CMS, or CUS. Elastic Sketch
(ES) [10] is a general network measurement algorithm that distinguishes frequently from
infrequently occurring items through a ostracism mechanism. ES consists of two parts:
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the heavy part, a hash table for recording frequent items, and the light part, a CMS for
infrequent items. ES is capable of addressing six network measurement tasks, including
heavy-hitter detection. Additionally, there are other well-known sketch algorithms such as
the LogLog Filter (LLF) [31], MV-Sketch [32], Pyramid Sketch [33], and OneSketch [34].

3. Design
3.1. Design Overview

As shown in Figure 1, ComPipe’s method for segregating heavy-hitter flows from less
heavy flows is illustrated. Within the hardware pipeline (HP), a multi-level hash structure
is employed to accurately identify and record heavy hitters. Simultaneously, less heavy
flows are redirected to the software pipeline (SP) through an eviction algorithm, aiding
in sketch construction. This technique effectively addresses flow distribution skewness;
the HP significantly improves frequency estimation accuracy by preemptively filtering out
the most frequent items. In the SP, redundancy is minimized since items already recorded
in the HP are not duplicated in the sketch, reducing the likelihood of collisions between
non-heavy flows and heavy hitters. This not only decreases the potential for misclassifying
low-frequency items as having high frequency but also substantially enhances the system’s
overall precision in traffic measurement and classification. Table 2 outlines the main
notations used in Sections 3.2 and 3.3.

Controller

/HardwarePipeIine w (SoftwarePipeline \

i Heavy Hitters ) i Complete Flow Table 1
Al Ad
ID Ca D Ca 8-bit| L3
4pit] L2
= (W T ¢
o) Upy s /
A 7o % 0/,,8”
P\\“ /'e#/..c 9&;.0
Figure 1. Data structure and work flow of ComPipe.
Table 2. Summary of notations.
Notation Description
v f packet p with flow ID f
d number of hash tables in hardware pipeline
K Number of concurrent flows that can be accommodated in the hardware pipeline
hi(.) hash function of the jth table in hardware pipeline
Ajli] the ith bucket in the jth table of a hardware pipeline
(ID, Cy) the two fields recorded in each bucket of hardware pipeline
w number of 8-bit counters in software pipeline
<x(4) hash function of the kth array in software pipeline, where k € [1, 3]

Li[t] the tth counter in the kth array of software pipeline, where k € [1, 3]
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3.2. Data Structure and Algorithm Design of ComPipe

In this section, we will detail the design aspects of ComPipe. In Section 3.2.1, we will
discuss the underlying data structures of ComPipe. In Sections 3.2.2 and 3.2.3, we will
respectively elaborate on how to insert and query flows within ComPipe.

3.2.1. Data Structure of ComPipe

As mentioned above, the data structure is divided into two main parts: the HP and
SP, designated for recording heavy hitters and less heavy flows, respectively. The HP
is composed of d hash tables (Aj, Ay, ..., A;) connected in series, each employing an
independent hash function /;(.). Each table contains e = K/d buckets, with each bucket
comprising two fields: a flow identifier (ID) and a flow count (C 4). Thus, the entire structure
totals K buckets, designated for tracking the Top-K flows with the highest frequency.
Here, the quantity K also approximately equals the total number of flows that the HP can
accommodate. This layered design effectively addresses the dynamism of network flows
and the imbalance of traffic volumes.

In the SP, ComPipe employs a Count-Min version of the Tower Sketch [30] (CM-Tower).
The CM-Tower is structured into three counting arrays: £1 with 4 x w 2-bit counters, £,
with 2 x w 4-bit counters, and £3 with w 8-bit counters. Each array is paired with its
respective hash function g (.) for 1 < k < 3. The counters are designed to solely record
the count of an item, escalating to overflow at thresholds of 3, 15, and 255 for the 2-bit,
4-bit, and 8-bit counters, respectively. Here, Ly [t] represents the tth counter in the kth array.
The insertion process in CM-Tower mirrors that in CM-Sketch: the flow ID is first extracted,
followed by the application of d hash functions to identify one counter in each array. These
counters, termed as d hash counters, are then incremented. For querying, the smallest
non-overflow counter value is retrieved from the d hash counters; if all have overflowed,
the query defaults to 255. This architecture allows CM-Tower to adeptly record smaller
flows and, through its varied bit-width counters, significantly improves upon the number
of counters and reduces hash collisions, a notable advancement over the CM-Sketch.

3.2.2. Insertion of ComPipe

The pseudocode for ComPipe’s insertion process is delineated in Algorithm 1. Initially,
all flow IDs in the measurement structures are set to NULL, and their corresponding count
fields are initialized to 0. Given a packet p with flow ID f, the ID,,;, and C,,;,, fields in p’s
metadata are first set to NULL and INT_MAX, respectively. Then, by computing the hash
function 1;(f)(1 < j <d,1 < hj(f) <e), itis mapped to each bucket A;[h;(f)] in the HP.
During the sequential access of each bucket, based on the information of A;[h;(f)], there
are three possible cases:

Case 1: If A;[h;(f)].ID = NULL, indicating an unoccupied bucket, ComPipe inserts f
by setting A;[h;(f)].ID = f and A;[h;(f)].Ca = 1 (lines 3-5 in Algorithm 1).

Case 2: If A;[hj(f)].ID = f, implying f is already in the bucket, ComPipe increments
Aj[hi(f)]-Ca by 1 (lines 6-8 in Algorithm 1).

Case 3: If A;[h;(f)].ID # f, this indicates a hash collision. ComPipe then checks if f
is stored in subsequent hash tables or if an empty slot is available. It tracks the minimum
counter value and its ID in the metadata’s C4 field and continues backward searching (lines
9-13 in Algorithm 1).

If the insertion process fails to complete after traversing all 4 hash tables, indicating a
lack of available buckets in Aj[h;(f)], ComPipe then forwards the packet to the software
pipeline for further processing. Here, it retrieves the records corresponding to the flow ID f.
In the event that the measurement value of f exceeds the frequency of the candidate light
flow, ComPipe initiates an eviction operation. This involves evicting (p.ID iy, p-Cpin) and
replacing it with (f,1). Subsequently, p.ID,,;, is inserted into the CM-Tower, where the
associated counters are incremented by p.C,,;,. Furthermore, the eviction operation also
includes the crucial step of offloading the flow table of the newly identified heavy hitter to
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the hardware. This enables all subsequent packets of this flow to be efficiently measured

and forwarded along the hardware’s fast path.

Algorithm 1: Insertion of ComPipe.

Input: Incoming packet p with flow ID f
1 Function Insert(p):

2 p.IDyiy < NULL; p.Cyiyy <~ INT_MAX;
3 forj=1toddo
4 if A, [hj(f)] is an empty slot then
5 (Ajlhi()IID, Ajlhi(f)]-Ca) = (f,1);
6 return
7 else if A]-[hj(f)].ID = f then
9 return
10 else if A;[h;(f)].ID # f then
1 if p.Cpin > Ajlh;j(f)].Ca then
12 ‘ P-Crin < Aj[hj(f)]‘CA}
13 end
14 end
15 end
16 if Query (f) +1 > Query (p.IDyin) + p.Cpin, then
17 > See Section 3.2.3 for Query procedure
18 Evict (p.IDyin, p-Cin), replace with (f, 1)
19 Insert (p.IDyin, P-Chin) to Ly
20 else
21 | Insert (f, 1) to £y
22 end
23 return

In Figure 2, we demonstrate three example cases of insertion within this structure.

L3 90

e 11 9(‘;:2 Evict <L, 2>
B> Yds

L1 1142 A I

A

o (F 3 Insert <Q, 1> 4--”9-@@
Software Pipeline overflow

<D, 1>
new packet A1 — A3 Aa
Aifh1(D Aalh2(D LI

p ZMOU _p 55 [20O0 \GiL, 0> <G, 5> <), 6>

Q& g g0 PR g o \ <H, 4> <K, 3>

UGN RSP L) <F, 1> <, 8> (AT oy L

S As[h3(Q)] candidate heavy hitter: Q
. . <F, 2> <Q, 1> candidate light flow: L
. Hardware Pipeline

Figure 2. Insert examples of ComPipe.

(1) When inserting flow D, it is not matched in the first hash table, but in the second, it

hashes to an unoccupied first bucket, allowing for the direct insertion of (D, 1).
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(2) For the insertion of flow F, it also finds no match in the first hash table. However,
in the second table, F hashes to the second bucket where a matching element exists,
prompting an increment in the corresponding C4 counter.

(3) Finally, when inserting flow Q, it demonstrates a scenario where no match is found
across the four-level hash table. Here, the flow with the smallest counter value along the
matching path is selected as a candidate light flow (in this example, L). In the SD, it is
established that Q has a higher count than L, leading to the replacement of (L,2) with
(Q,1). Consequently, Q’s entry is transferred to the hardware pipeline, ensuring that
subsequent packets from Q bypass the software, thereby reducing the hardware-software
communication overhead.

This operation exemplifies the dynamic nature of the structure, which consistently
removes the key with the smallest current count to insert a new one. This approach
effectively ensures that only the Top-K flows with the highest counts are retained in
the structure.

3.2.3. Query of ComPipe

To query a flow f in ComPipe, the process begins with an examination of the heavy
part A; in the HP. If f corresponds to a cell in A;[h;(f)], ComPipe reports the sum of the
associated count C 4 in HP and the count value obtained from querying f in the SP. In cases
where f does not match any cell in HP, the query response is solely based on the count
value identified in SP.

In the SP, the querying mechanism involves returning the smallest value among the
counters L [gr(f)] that f hashes to. Here, any counter that has overflowed is treated as
having a value of +c0. Should all counters associated with f in SP reach overflow, the query
defaults to returning a value of 255.

3.3. Mathematical Analysis

The accuracy of flow measurements in HP is high, as the flow table entries precisely
measure the matched flows. Consequently, the primary source of measurement error in
ComPipe arises from the SP component. Without loss of generality, assume that there are
N counting arrays £;(1 < k < N), and the range of each counter array [0,w - 2=1 —1].
Defining J as 2k — 1, it follows that for any actual flow size a;, the condition &;_1 < a; < J;
holds true. This condition indicates the range within which the actual flow size a; falls.

According to CM-Tower [30], for Ve > O0and e - w - 2k=1 > 1, the estimated value d; of
fi is bounded by:

N
Pr{digu,-—i—e.a}}l—ﬂ(e.wl'zk_l) (1)
where a = )" | a; is the total actual size of m flows measured by the software pipeline.

Based on the upper bound of the measurement error of CM-Tower, the upper bound
of the measurement error of ComPipe can be derived as:

N
Pr{d; <a;+e(@a—a,)} > 1—H(1) )

L - 2k—1
o \€-w-2

where g, = Zle 2]3':1 Aj[j].C4 is the total count of the counters in the HP. Given the
skewness principle of network traffic, a — a,, the difference between the total actual size
and the HP count, is typically much smaller than 4 itself. Consequently, ComPipe achieves
a more stringent error bound compared to CM-Tower. Moreover, according to the formula,
a larger w value reduces errors for SP.

3.4. Discussion

Our approach, while inspired by HashPipe [19], introduces several key enhancements.
First, HashPipe employs an ’Always insert in the first stage’ strategy, ensuring consideration
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for every key. However, this can lead to redundant IDs across different tables in the
pipeline, inefficiently utilizing hardware memory. In contrast, our method, recognizing the
inevitability of directing the first packet of a flow to the software for forwarding rules, opts
for a different strategy. We allow packets to traverse all pipeline stages to identify candidate
light flows, deferring the replacement or forwarding decision until the packet’s return from
the software. Additionally, previous studies have pointed out HashPipe’s limitations in
terms of compatibility with the current RMT programmable switch architecture, especially
its challenges with in-stage branching and constraints on accessing memory in a single
stage [21]. These limitations render it unsuitable for direct application to the commercial
P4 pipeline. The implementation of ComPipe on commercial programmable hardware is
detailed in Section 5.1.

In the software pipeline, when packets are forwarded from the hardware, there are
generally two typical processing approaches. The first method involves deleting the count
value in the software pipeline before inserting it in the hardware. This approach reduces
collisions between large and small flows in the CM-Tower but may underestimate the count
for other elements mapped to the same position, violating the one-side error guarantee of
the measurement system. An alternative approach, suggested by OneSketch [34], merges
the counts of light flows into the heavy ones while retaining a backup in the light part.
However, this strategy introduces complexity in insertion and can decrease throughput
due to the necessity of duplicate control strategies. Our approach contrasts with these by
replacing < ID,;4,C4 > with < IDyp, 1 > in the hardware pipeline. This method upholds
the one-side error guarantee of the measurement and reduces comparison times relative to
OneSketch. The trade-off, however, is that heavy-hitter queries must now also include the
software pipeline.

4. Multiple Measurement Application
4.1. Flow Size Estimation

ComPipe efficiently measures any flow f. As highlighted in Section 3, when f is
identified as a heavy hitter in HP, its primary measurement occurs through HP. Additionally,
as flow f may have prior measurements in the SP, a combined HP+SP approach is necessary
for accurately representing the measurement value of any flow f.

4.2. Heavy-Hitter Detection

For detecting heavy hitters, we utilize only the flow IDs recorded in the HP as feasible
candidates for heavy hitters. By summing their count values with those from the SP, flows
exceeding a certain threshold are identified as heavy hitters. Alternatively, similar to the
flow size estimation process, flow sizes can be obtained from the HP+SP, reporting those
surpassing a predefined threshold as significant. This approach enhances the accuracy in
identifying important flows.

4.3. Flow Size Distribution

The distribution for various flows is directly queried from the HP, while the MRAC
algorithm [35] estimates small flow size distributions in SP. The overall distribution is then
obtained by combining these two results.

4.4. Heavy Change Detection Estimation

ComPipe facilitates heavy-change detection by constructing snapshots of heavy hitters
for two adjacent time windows. Heavy changes are marked when either a substantial
decrease in flow volume occurs between the windows exceeding a threshold, or a new
heavy hitter emerges in the latter window.

4.5. Cardinality Estimation

Cardinality estimation in ComPipe aggregates the count of distinct flows in both HP
and SP. While HP directly reads the C 4 in the hash table, SP employs the linear counting
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method [36] to calculate minor flow volumes. The cardinality is then estimated by summing
these counts.

5. Implementations
5.1. Hardware Pipeline Implementations

We implemented ComPipe using P4 and compiled it on the programmable Tofino [37]
ASIC to evaluate the resource consumption on the hardware pipeline. Considering the
limited resources of ASICs and the need to support various network functions, ComPipe’s
resource efficiency is pivotal for its practical application in real-world scenarios.

To realize the hash tables in ComPipe, we employed the register tables available in
commercial switches and utilized the Stateful Arithmetic and Logical Units (SALUs) in
each stage to check and update entries within these register tables. This approach has
the advantage of allowing modifications to these tables entirely within the data plane,
without the need to involve the host CPU. However, SALUs are subject to resource lim-
itations: branching operations are expensive, and the RMT pipeline limits the number
of branching operations per stage (to a maximum of 2). As the ComPipe, outlined in
Algorithm 1, necessitates four branching operations, we redesigned the data structure to fit
this constraint.

Our tailored ComPipe implementation is optimized for line-rate operations within P4
switches. As depicted in Figure 3, each hash table is split into two register tables across two
stages, each 16 bits wide and of length w, to store flow IDs and their counts. In the first
stage, we determine whether A [I1 (f)].ID is equal or NULL, and if not, we proceed to
the second stage for counter comparison and packet metadata update. Utilizing the RMT
parallel matching capabilities, we simultaneously ascertain A;[h;(f)].ID in the second
stage. This approach effectively minimizes the number of required pipeline stages, limiting
it to at most d + 2 for a d-level hash implementation.

Table Soge 1 2 3 4 5
1 Mo Ao/A1
2 M1 Ao/A1
3 M2 Ao/A1
4 Ms Ao/A1

Figure 3. Tailored ComPipe implementation for RMT architecture.

Prior to forwarding packets to the SP, ComPipe necessitates the insertion of specific
metadata into the packet header. These metadata include the packet’s ingress port number,
the current and candidate flow IDs, candidate flow count, and operation type. These fields
enable the SP to make informed decisions and operations. The operation type is encoded;
for instance, “00” signifies a new heavy hitter inserted into the HP, requiring the SP to
offload its flow table without recording frequency, while “01” indicates a software-driven
decision to offload flow tables based on ComPipe’s algorithmic comparison between the
current and candidate flow.

Given the hardware limitations of ASICs and insights from our experimental anal-
ysis in Section 6.3, we recommend employing 4 hash tables in the hardware pipeline,
necessitating only 4 + 2 = 6 pipeline stages. For d = 4 and K = 1024, we calculated the
resource consumption of ComPipe as shown in Table 3. In the table, we also list a switch.p4
program [38] that implements typical top-of-rack (TOR) switch functions, such as L2/L3
forwarding, VLAN, QoS, etc.
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Table 3. Hardware resources used by ComPipe.
Percentage
Resource ! - - - -
switch.p4 ComPipe switch.p4 + ComPipe

Hash Bits 30.5% 8.9% 34.3%
SRAM 66.7% 15.0% 78.5%
Map RAM 23.1% 6.7% 25.5%
TCAM 45.5% 3.3% 46.5%
Match Crossbar 39.9% 15.2% 42.3%
Stateful ALUs 37.5% 40.0% 65.4%
VLIW Actions 22.7% 6.25% 24.0%
Stages 100.0% 50% 100.0%

1 SRAM: Static Random Access Memory; TCAM: Ternary Content Addressable Memory; VLIW: Very Long
Instruction Word; ALUs: Arithmetic Logic Units.

Our evaluation revealed that ComPipe predominantly utilizes SRAM and Stateful
ALUs, accounting for 15.0% and 40.0% of total resources, respectively. Notably, adding
extra logic to the ASIC does not genuinely affect the ASIC processing throughput, as long as
it can be accommodated within the ASIC resource constraints. Therefore, we can integrate
ComPipe into the switch ASIC for packet processing at the line rate.

5.2. Software Pipeline Implementations

We have integrated the ComPipe software pipeline into a prototype software switch,
a crucial component in virtualized software across contemporary public and private cloud
environments. Numerous open-source solutions exist for software switch implementation;
our work is based on the POFSwitch [15] on top of DPDK [39]. This particular version
leverages kernel bypass technology to avoid frequent hardware interrupts and extraneous
data copying, thereby allowing direct access to driver interfaces in user space for efficient
packet handling. This design ensures high throughput and low latency in network packet
processing and forwarding.

To scale the algorithm’s performance, we adopted a multi-core approach. Utilizing
the Receive-Side Scaling (RSS) algorithm and the NIC multi-queue technology, our system
computes hash values from packet five-tuples for packet dispatch, facilitating balanced
load distribution across various forwarding cores. Each core is equipped with a CM-Tower
data structure as detailed in Section 3.2.1 and adheres to the principles of Algorithm 1 for
insertion. This efficient design not only elevates the processing capability of the software
pipeline but also aligns with the high-performance network processing requirements of
modern network infrastructures.

6. Evaluation
6.1. Experimental Setup
6.1.1. Datasets

(1) MAWI Dataset. We use one-minute traces on ISP from the anonymized dataset
MAWI [40] for our long-term testing. There are around 28 million packets and 20 million
flows in this dataset.

(2) IP Trace Dataset. We use the Anonymized Internet Traces 2018 Dataset published
by CAIDA [41], derived from 10G traces on the Equinix NYC monitor. We divide one
hour’s trace into 600 different ten-second datasets for separate testing. Each minute’s trace
contains 1.5-1.8 million packets from 0.9-1.1 million flows. Each item is identified by its
source IP address.

(3) Web Dataset. We use the WebDocs dataset [42], which is a spidered collection of
web HTML documents. The whole collection contains about 70 million items in this dataset.

(4) Data Center Dataset. We use data from UNI2 data centers studied in the IMC 2010
paper [43]. The trace contains 47 million anonymized packets from 18 million flows.
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6.1.2. Evaluation Metrics
(1) Average Absolute Error (AAE). AAE is calculated as AAE = I‘%\ Yfey |si —sil,

where ¥ represents the set of flows, s; is the true size of flow fi’ , and s; is its estimated size.
This metric measures the average magnitude of errors in the frequency estimates.

(2) Average Relative Error (ARE). ARE is given by ARE = &—‘ > fley |st;151|, where ¥
denotes the set of flows, s; is the actual size of flow fl-’ , and s; is the estimated size. This
statistic assesses the average size of errors relative to the true frequencies.

(3) F1 Score. The F1 Score is defined as F1 = nglillz{{;, where PR is the Precision Rate
and RR is the Recall Rate. This formula calculates the harmonic mean of precision and
recall, offering a composite reflection of these two metrics.

(4) Throughput. The update performance of the data structure is quantified by the
number of packets processed per second (PPS). These metrics are tested in Testbed, and im-

provements are assessed through multi-core acceleration methods.

6.1.3. Simulation Setup

ComPipe was implemented using C++ language. The system employs 32-bit Bob
Hash [44] with distinct seeds for different hash tables. Our experiments were conducted on
a high-performance server, featuring dual 16-core Intel Xeon Silver 4208 CPUs @ 2.10 GHz
and 128 GB of RAM. This server boasts a three-tier cache hierarchy, with each core equipped
with 32KB L1 data and instruction caches, a dedicated 1024 KB L2 cache per core, and a
shared 11 MB L3 cache.

For the simulation experiments, we initially assessed the performance of Flow Size
Estimation (FSE) and Heavy-Hitter Detection (HHD) tasks, with detailed implementation
aspects discussed in Section 6.2. Additionally, we compared ComPipe against nine ad-
vanced traffic measurement algorithms: Space-Saving (SS) [20], Unbiased Space-Saving
(USS) [25], Count-min Sketch (CM) [28], Conservative Update Sketch (CU) [28], Augmented
sketch (Augmented) [26], Elastic Sketch (Elastic) [10], SALSA [29], MV-Sketch (MV) [32]
and LogLog Filter (LLF) [31]. For the ComPipe setup, we fixed the parameter d at 4 and ad-
justed e and w to suit different memory sizes, maintaining a 1:4 memory ratio between the
HP and SP. This ratio was also used for algorithms with similar structures, such as Elastic
Sketch, where we utilized eight-bit counters for positive and negative votes. For the light
part of Elastic, CMS, CUS, SALSA, and MVS, three hash functions were used, following the
recommendations in [45]. SS and USS each allocated 100 Bytes per bucket, scaled according
to available memory. For LLF, we adopted the CU strategy, allocating 75% of the memory,
with each register set to four bits, three hash functions, and a threshold of five.

6.1.4. Testbed Setup

Figure 4 presents the hardware—software data plane testbed employed in our study.
The HP comprises a Wedge 100BF-65X programmable P4 switch equipped with an Intel
Tofino chip. The data plane program, developed in P4y, is installed on this chip. The SP
operates on a Linux system, powered by an Intel Xeon Silver 4216 CPU @ 2.10 GHz,
equipped with 64 GB RAM and an Intel E810-C 100G NIC, configured in 4 x 25 G mode.
The system runs on CentOS 7.9.2009, with the software compiled using the -O3 optimization
option. ComPipe is developed based on POFSwitch and DPDK 22.11. A separate server,
mirroring the hardware specifications of the SP, hosts the controller. This controller manages
the SP through the relevant southbound protocol. For traffic generation and analysis,
the Keysight Ixia XGS12 network test platform is employed, enabling the assessment of
forwarding throughput for both the hardware and software components.
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Figure 4. The testbed topology of the experiments.

6.2. Experiments on Measurement Tasks

In the following sections, we present the experimental results of the two most repre-
sentative measurement tasks: FSE and HHD. We recognize that memory size is a critical
parameter for all measurement schemes, as it impacts both measurement accuracy and
performance. To evaluate the effect of memory size on all approaches, experiments were
conducted under various memory size configurations.

6.2.1. Flow Size Estimation

As demonstrated in Figures 5 and 6, ComPipe significantly outperforms the other
nine measurement algorithms across various memory scales. By offloading heavy hitters to
the HP, as elucidated in our mathematical analysis, ComPipe effectively reduces counting
errors and hash collisions compared to purely sketch-based algorithms. In contrast to
algorithms like Elastic that utilize multi-level hash structures, ComPipe reduces the memory
resources required for each bucket on the HP. Simultaneously, in the SP, with the advantage
of the CM-Tower, ComPipe can accommodate more counters, thus notably enhancing
measurement accuracy, especially in low-memory environments.

—=— ComPipe —— SS —— USS —— CM —+— CU —— Augmented —— Elastic —— SALSA —— MV ——LLF

10°
4
104 \\\N 10° \\\_* 10
102
3
1 01 \\‘
102 102 102
1 10° ’ 1
10 0 200 400 600 800 1000 0 200 400 600 800 1000 10 0 200 400 600 800 1000 10 0 200 400 600 800 1000
Memory Size (KB) Memory Size (KB) Memory Size (KB) Memory Size (KB)
(a) MAWI (b) IP Trace (c) WebDocs (d) Data Center
Figure 5. AAE of frequency estimation for flow size.
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Figure 6. ARE of frequency estimation for flow size.
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When evaluating the AAE, ComPipe’s accuracy surpasses that of the nine comparative
algorithms across four distinct datasets. However, it is notable that ComPipe’s AAE is
approximately 3.9 times lower than that of Elastic Sketch, the best-performing algorithm
in this category. Additionally, ComPipe’s AAE is about 52.8 and 10.1 times lower than
traditional algorithms like CM and CU, respectively.

As for the ARE, ComPipe demonstrates substantial superiority over the nine compari-
son algorithms across these datasets. The ARE values for ComPipe are markedly lower,
being 70.2,73.1, 53.8,10.3,12.5, 3.9, 13.5, 17 .4, and 7.2 times lower than the other algorithms,
respectively. This indicates a significant enhancement in accuracy, showcasing ComPipe’s
effectiveness in diverse network environments.

6.2.2. Heavy-Hitters Detection

The threshold for identifying heavy hitters in ComPipe is set at 2 x 10> of the total
flow size. ComPipe exclusively considers flows within the HP as heavy-hitter candidates,
integrating these with count values from the SP to ascertain the overall flow frequency.
Owing to its multi-level hash structure and sophisticated eviction algorithms, ComPipe
efficiently retains large flows within the HP, dynamically accommodating high-volume
flows as traffic patterns evolve. Unlike Elastic, which directly executes eviction decisions
within the hardware data plane, ComPipe defers such judgments until after consulting the
SP. This approach enables ComPipe to detect and manage heavy hitters more accurately
and dynamically in real-time, ensuring that heavy hitters are maintained in the hardware
for longer durations.

As illustrated in Figures 7-9, ComPipe’s performance on IP Trace datasets is slightly
inferior to LLF and Elastic Sketch when memory sizes exceeded 800 KB. However, in MAWI,
WebDocs and data center scenarios, it surpasses the other nine algorithms, reporting heavy
hitters more accurately.
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Figure 7. AAE of frequency estimation for heavy hitters.
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Figure 9. F1 Score of frequency estimation for heavy hitters.

Regarding AAE, the performance of ComPipe substantially exceeds that of the nine
comparison algorithms across the four datasets. On average, the ComPipe AAE is lower
by factors of 374.6, 364.2, 217.9, 28.1, 61.7, 1.8, 40.8, 128.1 and 7.6 compared to each of
these algorithms.

In terms of ARE, ComPipe maintains its significant lead over the nine algorithms, with av-
erage ARE values lower by factors of 366.2, 347.8, 207.2, 36.5, 70.6, 1.9, 76.5, 153.9 and
8.9, respectively.

Concerning the F1 Score, which balances precision and recall, ComPipe’s performance
is notably higher. Its F1 Scores average 79.6%, 79.6%, 81.1%, 52.6%, 75.5%, 3.3%, 81.2%,
85.7%, and 50.3% more than the corresponding scores of the nine comparative algorithms.

6.3. Experiments on Parameter Settings

We evaluated how varying levels of hash (denoted as d) within a multi-level hash
structure affect the accuracy of HHD tasks. Using the IP Trace dataset, we experimented
with d values ranging from 4 to 64, keeping other parameters constant, to gauge its im-
pact on measurement precision. As depicted in Figure 10, we observed that at lower
memory configurations, increasing the value of d tends to enhance measurement accu-
racy. Conversely, in scenarios with larger memory sizes, a smaller d value appears more
advantageous for accuracy.
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12 0.20
10} 1.00+
0.15}
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0.75}
g 6 go.m- T
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0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
MemorySize (KB) MemorySize (KB) MemorySize (KB)
(a) AAE (b) ARE (c) F1

Figure 10. Parameter settings of frequency estimation for heavy hitters.

A key observation for hardware implementations is that while higher 4 values do
not diminish the processing throughput, they do require more pipeline stages. This factor
becomes critical when integrating ComPipe with other network applications in a hardware
environment, as it can pose challenges in optimal resource allocation given the hardware
limitations. Therefore, it is essential to strike a balance between accuracy, memory efficiency,
and hardware resource utilization in designing multi-level hash structures. This balance is
necessary to ensure adaptability to diverse network conditions and application requirements.
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6.4. Experiments on Throughput

We analyzed the throughput performance of ComPipe, CU, and CM within a consistent
hardware setup. As depicted in Figure 11, we increased the number of CPU cores allocated
to the switch and recorded the forwarding rates. For context, we also measured the
throughput of the original POFSwitch. The findings indicate that with a single CPU core,
the ComPipe throughput is on par with that of CM and CU. However, due to the use
of two-bit and four-bit counters, which necessitate arithmetic operations like shifting, its
performance demonstrated a downward trend as the CPU cores increased. Despite an
average decrease of about 9.4% compared to CU and about 20.4% compared to CM, this
performance drop is offset by the significant increase in accuracy as previously mentioned,
achieving improvements by factors of 52.8 and 10.1, respectively.
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Figure 11. Throughput.

Furthermore, under the real-world workloads, ComPipe’s distinct software-hardware
separated measurement approach means that only about 20-30% of the total traffic volume
is processed by the software switch. This results in ComPipe surpassing pure software-
based forwarding solutions in terms of processing efficiency, thereby necessitating fewer
CPU cores for comparable performance.

7. Conclusions

This study delves into the challenges of flow placement and measurement within
programmable composite pipelines. To achieve an algorithm design that is both precise
and efficient, we introduced the ComPipe scheme, which integrates a unique collaborative
mechanism of hardware and software pipelines. In the hardware pipeline, we established a
multi-level hash structure for heavy-hitter detection. This method enables the real-time,
reliable, and efficient identification of heavy hitters. Subsequently, in the software pipeline,
we employed a network flow recording technique based on the sketch algorithm, coupled
with multi-core processing to enhance the overall forwarding capacity of the software
pipeline. Following this, we successfully implemented ComPipe on hardware and software
platforms and supported five typical traffic measurement tasks. To evaluate ComPipe’s
performance, we conducted extensive experiments, comparing it with current state-of-
the-art traffic measurement solutions. The results demonstrate that ComPipe achieves
higher measurement accuracy while reducing resource consumption, thereby confirming
its performance. ComPipe extends the capabilities of the data plane, enabling it to handle
large-scale table entries while maintaining high performance.
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Abbreviations

The following abbreviations are used in this manuscript:

HP Hardware Pipeline

SP Software Pipeline

VXLAN Virtual eXtensible Local-Area Network
VM Virtual Machine

FSE Flow Size Estimation

HHD Heavy-Hitter Detection

RMT Reconfigurable Match-Action Table

ASIC Application Specific Integrated Circuit

P4 Programming Protocol-Independent Packet Processors
POF Protocol Oblivious

SRAM Static Random Access memory

TCAM  Ternary Content Addressable Memory

VLIW Very Long Instruction Word

ALUs Arithmetic Logic Units

ISP Internet Service Provider
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