
Citation: Channa, A.; Ruggeri, G.;

Ifrim, R.-C.; Mammone, N.; Iera, A.;

Popescu, N. Cloud-Connected

Bracelet for Continuous Monitoring of

Parkinson’s Disease Patients:

Integrating Continuous Wavelet

Transform and AlexNet Network.

Electronics 2024, 13, 1002. https://

doi.org/10.3390/electronics13061002

Academic Editors: Francisco

Gómez-Rodríguez, Francisco

Luna-Perejón, Lourdes Miró

Amarante, Javier Civit Masot and

Luis Muñoz

Received: 4 February 2024

Revised: 25 February 2024

Accepted: 4 March 2024

Published: 7 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Cloud-Connected Bracelet for Continuous Monitoring of
Parkinson’s Disease Patients: Integrating Advanced Wearable
Technologies and Machine Learning
Asma Channa 1,2,* , Giuseppe Ruggeri 2 , Rares-Cristian Ifrim 1, Nadia Mammone 3 , Antonio Iera 4,5

and Nirvana Popescu 1

1 Computer Science Department, University Politehnica of Bucharest, 060042 Bucharest, Romania;
rares.ifrim@stud.acs.upb.ro (R.-C.I.); nirvana.popescu@upb.ro (N.P.)

2 Department of Information, Infrastructure and Sustainable Energy Engineering (DIIES),
University Mediterranea of Reggio Calabria, 89124 Reggio Calabria, Italy; giuseppe.ruggeri@unirc.it

3 Department of Civil, Energy, Environmental and Material Engineering (DICEAM),
University Mediterranea of Reggio Calabria, 89124 Reggio Calabria, Italy; nadia.mammone@unirc.it

4 Department of Computer Engineering, Modeling, Electronic and System Engineering, University of Calabria,
87036 Arcavacata, Italy; antonio.iera@dimes.unical.it

5 National Inter-University Consortium for Telecommunications (CNIT), 43124 Parma, Italy
* Correspondence: asma.channa@stud.acs.upb.ro

Abstract: Parkinson’s disease (PD) is one of the most unremitting and dynamic neurodegenerative hu-
man diseases. Various wearable IoT devices have emerged for detecting, diagnosing, and quantifying
PD, predominantly utilizing inertial sensors and computational algorithms. However, their prolif-
eration poses novel challenges concerning security, privacy, connectivity, and power optimization.
Clinically, continuous monitoring of patients’ motor function is imperative for optimizing Levodopa
(L-dopa) dosage while mitigating adverse effects and motor activity decline. Tracking motor function
alterations between visits is challenging, risking erroneous clinical decisions. Thus, there is a pressing
need to furnish medical professionals with an ecosystem facilitating comprehensive Parkinson’s
stage evaluation and disease progression monitoring, particularly regarding tremor and bradyki-
nesia. This study endeavors to establish a holistic ecosystem centered around an energy-efficient
Wi-Fi-enabled wearable bracelet dubbed A-WEAR. A-WEAR functions as a data collection conduit
for Parkinson’s-related motion data, securely transmitting them to the Cloud for storage, processing,
and severity estimation via bespoke learning algorithms. The experimental results demonstrate the
resilience and effectiveness of the suggested technique, with 86.4% accuracy for bradykinesia and
90.9% accuracy for tremor estimation, along with good sensitivity and specificity for each scoring
class. The recommended approach will support the timely determination of the severity of PD and
ongoing patient activity monitoring. The system helps medical practitioners in decision making when
initially assessing patients with PD and reviewing their progress and the effects of any treatment.

Keywords: smart bracelet; Parkinson’s disease; internet of things; cloud computing; remote monitoring;
tremor; bradykinesia; severity analysis

1. Introduction

According to [1], 10 million people worldwide are affected by Parkinson’s disease
(PD) and suffer from different symptoms. Some of the most cardinal motor symptoms are
tremors, freezing of gait (FOG), bradykinesia, and postural instability, which fritter away
their independence and quality of life (QoL).

Since PD is an irreversible neurodegenerative disorder and although there is no
standard treatment for it, the medication named Levodopa, even after more than 50 years
of development [2], is considered more effective and provides symptomatic relief [3],
especially at an early stage of the disease. Levodopa works by replenishing dopamine in
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the brain, a neurotransmitter whose depletion is a hallmark of PD. In newly diagnosed
patients, the drug effects lie for several hours, but with the increased severity of the
disease, the response turns to short duration and patients with PD (PwPD) need to alter the
intervals between drug intake or increase or decrease the dosage [4,5]. Despite its efficacy,
Levodopa’s long-term use is associated with complications, such as motor fluctuations and
dyskinesias, underscoring the complex relationship between the drug and the disease’s
pathophysiology. PD is evaluated through clinical assessment by using Movement Disorder
Society-Unified PD Rating Scale (MDS-UPDRS) or by Hoehn and Yahr (H and Y) scale [6]
and, to evaluate any specific motor disability, i.e., tremor, bradykinesia or rigidity, the
summation of relevant UPDRS III items is performed.

Moreover, ensuring appropriate medical treatment and determining the correct dosage
of medication for individual patients often involves frequent qualitative clinical assess-
ments based on rating scales conducted by observers. However, due to the complexity
and variability of PD symptoms among patients, relying solely on these rating scales
and assessments by a single observer poses challenges. Such evaluations can be time-
consuming, subject to significant variation, and influenced by the observer’s experience
and background, potentially leading to bias in interpreting the Unified PD Rating Scale
(UPDRS) or H and Y ratings. Additionally, the motor state of a patient observed dur-
ing clinical examinations often fails to accurately reflect their usual condition, as it can
be significantly influenced by factors such as fatigue, anxiety, or dehydration resulting
from travel. Consequently, clinical assessments provide only a snapshot in time, lacking
comprehensive information about the patient’s condition before and after examination.
Therefore, the most accurate approach to capturing and understanding patients’ motor
function is through continuous monitoring of their body movements over an extended
period, rather than relying solely on brief assessments during specific exercises. Thanks
to the availability of small form factor, lightweight and low-power inertial sensors have
already paved the way in the wearable healthcare domain [7,8] and free-living activity
monitoring [9–11]. Table 1 explains the different proposals suggested for PD patients. Each
device is for a specific PD application scenario, such as in [12], who measured the stiffness
in muscles while performing tasks, ref. [13], who used wearable devices on each limb
to diagnose PD, and ref. [14], who analyzed signals from the lower limb to detect FOG
episodes. Each proposed system used multiple nodes for data collection and was unable
to provide an end-to-end system to track the motor activities of PD patients. In addition
to this, most of the discussed work in Table 1 explored different sensors with different
methods to analyze motor symptoms, including soft computing techniques and statistical
analysis. Since tremor and bradykinesia exhibit features relevant to classification both in
the time and frequency domain, a TF (time–frequency) representation is able to provide
a holistic view of such information. This is the first study in which TF representations of
movement data are used to evaluate motor function and the severity in PD patients. Since
a link exists between the severity levels (0–4) and the mutual relationship between the
time–frequency maps can provide information about motion planning at different spatial
locations. The deep convolutional neural network (CNN) takes these TF maps as input and
could learn the intended severity levels from the mutual relationship between TF patterns
of the various scores. Hence, a wrist-based wearable device is proposed in this study which
monitors PD patient locomotion continuously and analyzes the severity of symptoms by
converting inertial signals to TF mapping using continuous wavelet transform and CNN
models. This helps medical personnel monitor PD patients in an uninterrupted way.

The paper is structured as follows: Section 2 provides a review of the literature
regarding PD detection, Section 3 introduces the proposed system, Section 4 discusses the
designed hardware and its features, Section 5 describes the implementation on the cloud,
Section 6 discusses the designed deep learning (DL) model, Section 7 presents the results,
and the discussion is concluded in Section 8, with future work and limitations presented in
Section 9.
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Table 1. Instances of wearable gadgets categorized by their specific application domains.

Ref. PD Application Scenario Wearability Communication
Technology Energy Profile Approach

[12]

Measure stiffness and
preserve the wrist
motions in DLAs for both
healthy and PD subjects.

Arm-hand system BLE module or
UART module

Four-cell
lithium-ion battery
embedded battery

Shapiro–Wilk test to check
data normality and employed
Wilcoxon tests for
within-subject differences and
Mann–Whitney tests for
between-group comparisons.

[13] PD diagnosis and
monitoring

2 devices on upper
limbs and 2 on
lower limbs

Bluetooth Rechargeable LiPo
batterie

Normality of data distribution
using Kolmogorov–Smirnov
tests while Spearman’s
correlation coefficients used
for feature selection and
finally binary classification is
performed on data

[15]
Classification of tremor
and bradykinesia
symptoms

Skin-mounted
sensor on dorsal
and smartwatch
on wrist

Bluetooth Li-ion 334 mAh

Signals first down-sampled
using a polyphase filtering
approach, time and frequency
domain features (total 74)
were extracted and then,
classified using RF classifier

[14] Detecting FoG episodes Feet Bluetooth
One coin cell
rechargeable
(lithium-ion)

features such as weight span,
dominant frequency, range of
accelaration curve, etc., are
extracted. Descriptive and
inferential statistics to verify
clinical outcome differences,
ANOVA (p-value = 0.05) was
used to test each UPDRS
sub-item and the chi-squared
test for the presence/absence
of dyskinesia.

[16]

Quantitative assessment
of PD using motion and
neurophysiological
signals

Five sensors: left
wrist, right wrist,
left ankle, right
ankle, and waist

Wi-Fi

Sync and powered
by docking station.
Dock is powered
by a battery, and it
is capable of 22 h
of continuous
operation in
real-time

Statistical analysis: Pearson
correlation and for DBS
treatment experiment, angular
amplitude and symmetry
index to compute the
asymmetric conditions before
and after DBS was ON.

[17]

Open method for
symptoms severity and
discriminate
treatment-related changes
in motor states

Arms, legs, and
torso Wi-Fi

Opal (APDM, Inc.,
Portland, OR,
USA): 8 h-4 day
battery life while
BioStamp (MC10,
Inc., Cambridge,
MA, USA) can be
worn for 24 h life

Time and frequency domain
features extracted and resting
tremor classified using ML

[18] Assess postural instability On chest XBee

rechargeable 3.7 V
500 mAh LiPo
battery can
operate for more
than 5 h

Time and frequency domain
features and rough
classification between stable
and unstable behaviors.
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2. Literature Review

The research literature of the past decade has extensively discussed the utilization
of wearable devices for measuring motor disability, tracking disease progression, and
assessing daily life activities (DLAs) in PD patients. Numerous studies have explored the
integration of wearable sensor devices with machine learning (ML) methods for various
purposes. However, despite these efforts, the practical implementation of technological
systems to support PD diagnosis, online monitoring, and home monitoring in everyday
clinical practice remains elusive.

Researchers developed and designed wearables specifically for improving early diag-
nosis and monitoring the PD patients based on ML or DL. In [19], researchers conducted
experiments involving 10 PD cases and two healthy subjects to evaluate tremor severity
using integrated pullover triaxial accelerometers. Tremor assessment and peak detection
techniques were employed to determine movement frequency. The study found that ac-
celerometers, along with UPDRS scores, demonstrated 71% and 89% sensitivity in detecting
the correlation of rest tremor and posture tremor, respectively. However, while the pullover,
or smart clothes, showed promising results, they posed challenges in routine and con-
tinuous PD assessment. Consequently, the study provides limited insights into UPDRS
severities, potentially impacting performance measurements. Similarly, in [20], researchers
utilized wearable accelerometers on arms to estimate tremor severity across various ac-
tivities involving PD cases and healthy subjects. The study achieved an 87% accuracy
in severity classification using a Hidden Markov Model (HMM), a statistical model that
assumes the system being modeled is a Markov process with unobserved (hidden) states.
HMMs are particularly useful in applications where the observation sequence is influenced
by underlying factors that are not directly observable, making them ideal for analyzing
temporal patterns in Parkinson’s disease symptoms. However, the study’s applicability is
limited due to the absence of data for tremor severity level 4.

In [21], triaxial accelerometer data collected via a smartwatch during hand motor
activities in 19 PD patients was analyzed. The study employed wavelet feature extrac-
tion and a support vector machine (SVM) classifier to predict tremor severity. The model
achieved 78.91% accuracy in Leave-One-Out Cross-Validation (LOOCV), indicating promis-
ing results. In this study, the method LOOCV was employed to ensure the robustness of
the model’s performance. LOOCV involves using a single observation from the original
sample as the validation data, and the remaining observations as the training data. This
process is repeated such that each observation in the sample is used once as the validation
data. This technique is particularly beneficial in scenarios where the dataset is limited,
as it maximizes the use of available data for training and testing, thereby providing a
thorough evaluation of the model’s predictive capabilities. However, combining severity
levels 2, 3, and 4 into one score could potentially complicate tremor level identification by
neurologists. In [22], the authors used BioStamp nPoint to transmit inertial sensor signal
data to a cloud computing environment for PD hand tremor quantification. A multilayer
perceptron neural network yielded considerable accuracy. Similarly, in [23], the study
aimed to quantify PD tremor response to different deep brain stimulation (DBS) amplitude
settings using a deep learning convolutional neural network. The model demonstrated
100% classification accuracy for tremor quantification across various DBS settings.

In [24], five ML algorithms were evaluated to distinguish between DBS amplitude set-
tings. The support vector machine (SVM) achieved the highest classification accuracy, with
K-nearest neighbors showing considerable performance with minimal model development
time. However, these studies had limited validation, focusing on hand tremor assessment
and involving only one subject for proof of concept. Similarly, in our previous work regard-
ing the development of the A-WEAR bracelet [25], the device had several limitations, i.e.,
no wireless data transmission, no continuous monitoring and battery life changes.

In summary, although efforts have been made to develop wearable devices for aid-
ing in PD management, their practical application in clinical practice for diagnosis and
management remains challenging. Key challenges include battery life limitations, device
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size and weight concerns, privacy and security considerations, communication capabilities,
and real-time monitoring requirements. Implementing ML and DL algorithms in medical
applications also presents challenges, such as data distribution issues and lack of clinical
validation. Moreover, previous studies often overlook all tremor levels, focus on specific
tasks rather than daily life activities, and neglect wearable device efficiency and cloud
framework robustness. Additionally, the time-consuming nature of UPDRS assessments
and their impracticality in routine clinical settings hinder efficient PD management.

To overcome these shortfalls, it has been shown that motion signals recorded using
inertial sensors come with specific patterns both in the time and frequency domain. Features
that are extracted with continuous wavelet transform (CWT) [26] can discriminate well
between PD symptoms. So, a time–frequency (TF) approach is proposed in the present
work. The inertial signals recorded from 17 PD patients are converted to TF mapping using
CWT which provides sufficiently detailed information to distinguish complex sub-levels
of motor symptoms and further classified using the DL approach. Indeed, the tremor
and bradykinesia severity in PwPD can be decoded from the TF representations better
than the features extracted using statistical methods. The proposed bracelet is capable
of recording all the physical movements of a patient in the home environment (such as
walking, turning around, hand resting tremor, or opening and closing of the bottle cap)
for consecutive 6 h without recharging needs; this has been tested and validated and
the setting can even be altered to make it work for 12 to 20 h. The device is capable of
efficiently and timely storing the collected information. As whole-day home monitoring
data from the inertial sensors is huge and not manageable by a single computer, in order to
solve this issue and provide efficient data storage and fast computing, we also designed
and implemented a cloud computing environment where the great amount of data is
stored and analyzed very fast by ad hoc DL algorithm. The output of the computation
is transferred to the end users on demand in the most secure way. Thus, in this research
study, a small form factor device developed as a smart bracelet is proposed. It consumes
little power and automatically connects to a smartphone using Wi-Fi, storing data on a
cloud platform continuously from where the computation, analysis, and processing of
movements are performed. The bracelet’ses an MT3620 microcontroller which has built-in
inertial sensors, a Wi-Fi subsystem and can connect to the Microsoft Azure platform for
efficient data storage. Using Azure Cloud, the stored data are automatically sent for a
processing stage in which the PD patients’ data are differentiated in the form of severity
level for effective management of L-dopa dose. The proposed model maintains the users’
privacy and data security, and all data transmitted and received from the ServiceNow
platform (a cloud-based IT service management platform) [27] are encrypted and accessed
via defined Azure Sphere APIs (Application Programming Interfaces). In this way, the
whole novel PD evaluation system can be seen as a cloud-based solution combined with
a dedicated acquisition device (the A-WEAR bracelet). To sum up, this paper offers the
following contributions:

• Development of a comprehensive system tailored for autonomous tracking of PD
symptoms, involving continuous monitoring and analysis of everyday movements.

• Creation of a sophisticated framework utilizing a wearable bracelet integrated with
wireless inertial sensors and cloud connectivity to assess the severity of tremor and
bradykinesia symptoms. This framework enables remote monitoring by medical
professionals, fostering enhanced patient care.

• The primary focus is on the development of a cutting-edge DL model aimed at
predicting the response of PD patients to L-dopa medication. The derived insights are
poised to elevate patient well-being by empowering clinicians with valuable tools to
optimize medication dosage and mitigate associated risks.

3. System Overview

The overall system architecture and communication flow are illustrated in Figure 1. An
individual wears the A-WEAR device and executes movements using their most affected
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limb. This device wirelessly connects to the MS Azure cloud, which hosts the ServiceNow
platform as a web application. Here, motion data from the A-WEAR bracelet are transmitted
and stored in a database for monitoring and assessing PD patient symptoms. The process
involves converting inertial sensor data into scalograms using CWT, followed by analysis
using the AlexNet transfer learning module to determine symptom severity. Results
are then updated in the ServiceNow platform, accessible to both patients and authorized
medical practitioners via cloud services. The system is structured into three phases: bracelet
creation, Platform as a Service (PaaS) platform development, and implementation of
cloud-based data processing tools. It involves four primary components: sensor devices,
smartphones, cloud services, and end users. The bracelet incorporates a 3D accelerometer
for ambulatory patient monitoring, enabling prediction of tremor and bradykinesia severity
during various activities. Time-series data collected by the sensor via Wi-Fi are transmitted
to the ServiceNow platform acting as a cloud server. The cloud-based web application
stores and preprocesses the data, converting it into images through CWT, which are then
analyzed using the AlexNet transfer learning model for severity estimation. Results are
stored in the cloud database and communicated to both PD patients and clinicians as a
report, while ensuring patient privacy by limiting data access to authorized personnel with
cloud platform access.

Figure 1. The block diagram of the proposed PD monitoring system.

4. A-WEAR PD Bracelet

Lately, there has been a proliferation of fitness wearable gadgets equipped with IMUs,
such as the Apple Watch (Apple Inc., Cupertino, San Francisco, CA, USA), Samsung Gear S
(Samsung, Seoul, Republic of Korea), and Mio Alpha (MioLabs Inc., Santa Clara, CA, USA),
among others. These devices have the capability to monitor various metrics including daily
step count, oxygen saturation (SpO2), skin temperature, breathing rate, resting heart rate,
sleep activity, and heart rate variability. According to [28], these commercially available
motion-tracking wearables offer convenience in observing the natural behavior of clinical
patients. However, the pertinent question remains: are these wearable devices appropriate
for assessing PD patients? All these smart devices can count steps and determine stride
lengths, which is suitable for fitness tracking or managing the daily routine of PD patients.
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However, the variability of PD patients is different from the rest of the patients. There-
fore, these commercially available smart wearables lack the capacity to offer an unbiased
evaluation for PD patients. They primarily offer feedback on activity levels, which can be
beneficial for their rehabilitation but may not provide comprehensive objective assessments.
Some other commercially available prototypes such as Fitbit, Garmin, Actigraph, and Xsens
are more comfortable to patients in a home environment, used by subjects without any
assessment with long battery lifetime and regarded as an extended duration monitoring
system for individuals with PD. In a cross-sectional study conducted by the authors in [29],
the Fitbit Zip demonstrated the highest accuracy among all tasks. The study evaluated the
accuracy of four consumer-grade activity trackers (including the Fitbit Zip, Fitbit Surge,
Jawbone Up 2, and Jawbone Up Move) among individuals with PD while they engaged
in continuous and intermittent walking within a simulated environment. Similarly, the
researchers in [30] compared the results of Fitbit Charge HR and Garmin Vivosmart HR
with ActivPAL3 and concluded that Garmin gives less error than Fitbit. However, all
these prototypes and systems mentioned in Table 2 lack a specific cloud-based assessment
environment. In essence, there is a requirement for a system that not only quantifies the
severity of the illness but also aids in the rehabilitation of PD patients in their everyday
environment. This system should allow patients to utilize it independently, even during
their ON/OFF stage, without requiring constant supervision. Other proposed wrist-worn
wearable solutions for PD patients are reported in Table 2. As can be seen, each of them
has a drawback associated with them and is not easily affordable in terms of cost, but our
proposed device costs around 400 euros which is a low price, but offer robust results due to
the innovation of our proposed architecture.

Table 2. Wearable devices worn on the wrist that are available to individuals with PD.

Ref. Wearable Device
Continuous
Monitoring
Availability

Unsupervised
Method
Implementation

Online
Monitoring
Support

Home
Monitoring Application Scenario

[31] Smartwatch3 (SW3) Sony ✖ ✖ ✖ ✖
Quantification rest tremor
using wrist sensors

[32]

MOX5 wearables
(Maastricht Instruments,
Maastricht, The
Netherlands)

✓ ✓ ✖ ✓
Tremor detection using
wrist sensors in DLAs

[33]
One motion sensor (Great
Lakes NeuroTechnologies
Inc., Cleveland, OH, USA)

✓ ✖ ✖ ✓
Investigated tremor severity
in free body movements

[34] Two KinetiSense motion
sensors ✓ ✓ ✖ ✖

Effect of medication on the
severity of symptoms.

[35] Wrist-worn wearable
accelerometer ✓ ✓ ✖ ✓

Evaluation of disease
advancement and treatment
impacts.

[36]
ActiGraph GT3X+,
ActiGraph, Penascola, FL
USA

✓ ✓ ✖ ✓

Comparison of activity
monitor from wrist and
waist

[37] Shimmer3 ✓ ✓ ✖ ✓

Estimates motor state using
wearable sensor data,
self-reports, and L-dopa
timing.

[38]

MT9 inertial sensors (3-D
accelerometers and 3-D
gyroscopes, Xsens
Technologies BV, Enschede,
The Netherlands)

✓ ✓ ✖ ✓
Monitoring of motor
activities ans symptoms
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To overcome these limitations, we present an updated version of the A-WEAR
bracelet [25], as depicted in Figure 2. This version now supports direct uploading of
accelerometer sensor data to the cloud platform, offering several enhancements over its
initial iteration shown in Figure 3. In the past, the functionality of the bracelet was con-
fined to conducting standard motor tests lasting 1 min or 45 s for diagnosing tremor and
bradykinesia. However, significant advancements have transformed its capabilities, al-
lowing seamless data transmission directly to the cloud platform. This enables real-time
data retrieval by neural networks or DL algorithms, facilitating features such as sending
predictions directly to medical staff or back to patients, thereby introducing automation
and intelligence.

Figure 2. A-WEAR bracelet (new version).

Figure 3. A-WEAR bracelet (first version).

With the emergence of microcontrollers featuring IoT capabilities, the connectivity
of wearable devices to the Internet has become feasible. Leveraging REST API methods
through the libcurl [39] library cURL, which enables data transfer to and from servers, the
wearable device can utilize POST and GET operations to interact with the cloud platform.
For this purpose, we opted for the MediaTek MT3620 [40] microcontroller, renowned for its
high integration, performance, and robust security, essential for modern Internet-connected
devices. The MT3620 is specifically designed for a wide range of IoT applications, including
but not limited to smart home automation, industrial monitoring, and healthcare devices,
offering extensive I/O peripheral subsystems for enhanced design flexibility. Additionally,
being the first Microsoft Azure Sphere solution [40], the MT3620 seamlessly integrates
with the Azure [41] platform for database storage, further enhancing its utility across
various domains.
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Currently, ServiceNow [42] is chosen as the support cloud platform. ServiceNow
represents a PaaS platform, and it gives all the necessary infrastructure (network and
database) that satisfies our application. It also provides the possibility to write applications
directly on top of it, so it makes sense to use it to integrate the neural network or DL in it
and makes it possible for the microcontroller to interact with it through cURL and thus
transfer data using different network protocols.

4.1. The MT3620 Microcontroller

We chose the Avnet Azure Sphere MY3620 Starter Kit [43] for prototyping due to
its integration of a MediaTek microcontroller, USB interface, power circuits, and MEMs
sensors into a compact package ideal for placement on a patient’s arm during data test-
ing and training. The MT3620 comprises a tri-core package: (i) an Arm Cortex-A7 [44]
application processor, and (ii) two Arm Cortex-M4 [45] processors dedicated to real-time
applications. The incorporated MEMs sensors have accelerometer, gyroscope, barometric
and temperature sensors that can communicate through I2C (inter-integrated circuit) with
any of the three processors inside the microcontroller. I2C is a communication protocol by
which devices communicate with each other directly.

The MT3620 also features a Wi-Fi subsystem, making it well suited for IoT applications
like the A-WEAR bracelet [25]. It supports various low-power operation modes, enabling
users to adjust the processor’s power profiles for optimal performance or energy conser-
vation. Furthermore, it offers sleep mode functionality when no measurements are being
taken. In terms of security, the MT3620 provides a high level of protection for connected
devices, with its security features and Wi-Fi networking operating independently from
end-client applications. Access to security features and Wi-Fi capabilities is restricted to
defined Azure Sphere APIs, ensuring enhanced security measures.

4.2. Wireless Connectivity-Wi-Fi

Advancements in technology have facilitated the integration of wireless communi-
cation into healthcare wearables, enabling the development of point-of-care diagnostic
and monitoring devices. Most of these devices prefer short-range wireless communication
technology, e.g., BLE (Bluetooth low energy), Zigbee, or Wi-Fi. The choice of the communi-
cation technology profoundly depends on the architecture of the application [46], e.g., if the
designated application depends on a high data rate, then Wi-Fi is an optimal choice, which
is the reason why this research study prefer Wi-Fi over other wireless communication
technologies. The other reason for employing Wi-Fi is the collected data are encrypted,
stored, displayed, processed, and synchronized to the cloud platform. The user thus has
full control of the device and the data provide a real-time or historical view of the collected
sensor readings in numerical representation or diagrams within the cloud, which allows
multiple authorized users to access them.

4.3. Power Consumption

MT3620 offers a couple of options to save power in an energy constrained system. The
first option represents a power profile scheme [47] available for the Cortex-A7 processor
as this one is running at a rate of 500 MHz and utilizes significant energy. There are three
power profiles called high performance, balanced and power saver. As the Cortex-A7 is
not performing any demanding computation, it is set to the power saver mode during
data measurement, as it is sufficient for watching the mailbox through interruptions and
uploading data to the cloud from time to time. For instance, considering a 10 ms data
sample and accounting for accelerometer data on three axes, a single row of data consists of
six numeric values, occupying approximately 25 to 30 bytes of data represented as strings in
the CSV file. With this rate, the 100 KB limit is reached within approximately 30 s, allowing
sufficient time for the Cortex-A7 to execute its task. Additionally, in power saver mode, the
frequency is halved.
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Currently, two buttons are accessible to the user: one initiates the sampling and
transmission of data, while the other halts this process. During periods of inactivity, the
bracelet transitions into sleep mode to conserve battery life [48]. According to [40], the
MT3620 is expected to consume approximately 0.01 to 0.02 mA in sleep mode, but this may
rise to 520 mA under extreme conditions, such as when all three processors are operational
and Wi-Fi transmission is at maximum capacity on the 5 GHz band (although such a
scenario is unlikely). In a study conducted by [49], measurements indicated that the Starter
Kit typically consumes around 100–110 mA under normal Wi-Fi usage. However, the
power consumption with different Wi-Fi configurations is detailed in Table 3 and shown
in graphs in Figure 4. Table 3 details our device’s power consumption under different
Wi-Fi configurations, crucial for ensuring its practicality for continuous PD monitoring.
This analysis reveals the device’s energy efficiency, highlighting its capability to operate
for extended periods essential for real-time symptom tracking without frequent recharges.
Specifically, the comparison between 2.4 GHz and 5 GHz Wi-Fi setups, with and without
Azure cloud connectivity, informs our design decisions towards optimizing battery life.
These findings align with our study’s aim to develop a wearable PD monitor that balances
performance with user convenience, setting the stage for future enhancements in wearable
PD technology. It is clear that enabling Wi-Fi results in a rise in current from around
≈115 mA to roughly ≈130 mA. This change is noticeable particularly when the application
connects to Azure. At the beginning of the power-up cycle, there is a phase where the device
processes cryptographic algorithms, keeping Wi-Fi inactive, and then the current surges.
The graphs illustrate that during the power down state, the board draws around ≈40 mA
of current. It is observed that ideally, the MT3620 should only consume approximately
0.01 mA, implying that the majority of the 40 mA is utilized by the Starter Kit hardware.
However, in the future we want to extend the working hours of the device without charging
it the limitations of typical current consumption and hardware wakeup latency must be
kept in mind for this the worst-case scenarios are also added in Table 4. Incorporated
within this discussion on wireless connectivity and demonstrated through Table 3, we have
conducted a comprehensive analysis of the device’s power consumption across different
Wi-Fi configurations to assess its battery life and durability. These insights are crucial for
ensuring the device’s viability for continuous, reliable monitoring of PD symptoms without
necessitating frequent recharging or replacement. The detailed examination of power usage
under various operational scenarios underscores our commitment to optimizing the device
for extended use in real-world conditions, ensuring that patients can rely on this technology
for continuous symptom monitoring with minimal interruption.

Table 3. Power consumption.

Test Configuration Average Voltage (V) Average Current (mA) Average Current Over
50 mA (mA)

No Wi-Fi configured 5.1 100.4 114.2
2.4 GHz Wi-Fi set up but not linked to Azure. 5.1 110.9 127.8

2.4 GHz Wi-Fi configured linked to azure 5.1 113.7 125.5
5 GHz Wi-Fi configured not linked to azure 5.1 114.8 132.3

5 GHz Wi-Fi configured linked to azure 5.1 119.7 132.0

Table 4. Average current consumption and hardware wakeup latency characteristics of the system.

Power Mode Description Average Current
Consumption Hardware Wakeup Latency

Worst-case power
consumption without Wi-Fi

All subsystems, excluding
Wi-Fi, operating at
maximum capacity

220 mA (Worst Case), 380 mA
(Maximum)

Not Applicable, 650 µs Wi-Fi
subsystem resume latency

Worst-case power
consumption with Wi-Fi

All subsystems operating at
maximum capacity, with

Wi-Fi highly active

520 mA (Worst Case), 750 mA
(Maximum) Not Applicable
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(a) (b)

(c) (d)

(e)

Figure 4. Power consumption graphs in different configurations: (a) without Wi-Fi configuration;
(b) 2.4 GHz Wi-Fi configuration not connected to Azure; (c) 2.4 GHz Wi-Fi configuration connected
to Azure; (d) 5 GHz Wi-Fi configuration not connected to Azure; (e) 5 GHz Wi-Fi configuration
connected to Azure.
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5. Cloud Service
5.1. The ServiceNow Platform

ServiceNow offers PaaS, delivering comprehensive technical management support,
including IT service management, to large corporate IT operations, encompassing essen-
tial help desk functionalities. While primarily designed to cater to the IT workflows of
businesses, it provides a robust infrastructure for cloud applications, complete with pre-
configured databases for rapid deployment. Moreover, it facilitates the development of
JavaScript applications with seamless integration of REST API methods for third-party
tools (such as the bracelet in our case). Additionally, it supports various other types of
applications, including Java and PowerShell, enabling local execution with seamless data
transfer to the cloud. Furthermore, it offers free instances to developers keen on exploring
and experimenting with the platform.

Given these benefits, it is evident that this platform can serve as a conduit between
the wearable device and the DL computation method. By utilizing ServiceNow, we have
the capability to establish a POST method (or utilize pre-existing ones) for transferring the
gathered data to a specified database table. Subsequently, a script can retrieve this data via
a GET method and input it into the DL algorithm. The algorithm can be developed directly
in JavaScript on the platform or executed locally on a computer using Python or MATLAB
scripts. Finally, the results can be transmitted back to the platform for further processing.

5.2. The Application Design

This section outlines the data measurement and transmission process to the Servi-
ceNow platform for storage, aimed at future training purposes. Figure 5 provides an
abstract overview of the bracelet application design.

Figure 5. This block diagram offers a concise abstract overview of the application design running on
the MT3620 Microcontroller, encapsulating its intricate functionality.

To meet the requirements of real-time data sampling and cloud data transmission,
two out of the three microprocessors are utilized. The Wi-Fi subsystem constraint dictates
that only the Cortex-A7 processor can interact with the cloud. However, experimental
testing revealed that using the A7 for both real-time sampling and data transmission
within the sample period is impractical. To address this, a system with two processors is
employed: the Cortex-M4 performs real-time data sampling and sends each new sample to
the Cortex-A7 for temporary storage in a 100 KB buffer.

Communication between the two processors is facilitated via a mailbox, functioning
as a ring buffer to allow independent operation in the producer-consumer paradigm. The
Cortex-A7, equipped with a 4 MB system memory, can adequately store 100 KB data
chunks supported by libcurl. Once the buffer reaches capacity, data chunks are sent to the
ServiceNow platform. Meanwhile, the Cortex-M4 continues sampling and storing new
data in the mailbox buffer for future transmission.
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In version 2.0, CSV files are sent to the ServiceNow platform, with each file being
100 KB in continuous sampling. Users have the option to stop sampling, prompting the
Cortex-A7 to transmit the remaining data (potentially less than 100 KB). Data on the
ServiceNow platform are stored in CSV format and parsed into data tables accessible for
querying by third-party tools, including scripts for feeding data to the neural network.

6. Enhancing PD Severity Scoring through a Proposed DL Model

The data processing and analysis flowchart is depicted in Figure 1. Accelerometer data
are gathered from PwPD in both ON and OFF states, pre-processed, and labeled according
to UPDRS scoring by neurologists. Subsequently, the time series data undergo conversion
into scalograms using CWT. Finally, the sorted and analyzed database is utilized with the
transfer learning AlexNet model.

6.1. Comparison of Data Collected from the Proposed Bracelet and from Shimmer Device

We performed a comparative analysis by utilizing data gathered from both the Shim-
mer device and our proposed bracelet. The accelerometer-equipped Shimmer device
provided readings similar to those obtained from our device. To validate our results, we
collected comparative data from a single patient using both our bracelet (with adherence to
COVID-19 precautions) and the Shimmer device. Notably, both sets of recordings exhibited
nearly identical six-digit numeric values and sampling rates. The sampling rate for the
Shimmer device was configured at 100 Hz, a setting also applicable to our A-WEAR bracelet.
Importantly, minimal accelerometer noise was observed in both devices, exerting negligible
influence on the datasets. This validation underscores the suitability of datasets obtained
from the Michael J. Fox Foundation using Shimmer wearable sensors for validating our
proposed computational algorithm. To ensure the accuracy and reliability of the data
collected from the A-WEAR PD bracelet, we employed a rigorous verification process
against the established Shimmer device, known for its precision in capturing movement
data. This comparative analysis involved several key steps:

1. Sampling rate alignment: We first ensured that both devices operated at equivalent
sampling rates. This alignment was critical for a fair comparison of the temporal
characteristics of the data.

2. Data synchronization: We meticulously synchronized the start and end times of
data collection for both devices. This synchronization was achieved through manual
initiation and termination of the recording sessions, ensuring temporal congruence.

3. Feature extraction consistency: Both devices extracted identical features from the raw
data, including amplitude, frequency, and variability measures of movement. This
step ensured that comparisons were made on a like-for-like basis.

4. Statistical correlation analysis: We conducted correlation analyses to assess the degree
of similarity between the datasets. High correlation coefficients indicated strong agree-
ment between the devices, reinforcing the validity of the A-WEAR PD bracelet’s data.

5. Error margin evaluation: We acknowledged the inherent measurement error in any
device and established acceptable error margins based on literature precedents. Com-
parative data that fell within these margins were considered verified.

6. Expert review: Finally, movement disorder specialists reviewed random samples
of the data visualizations from both devices, providing qualitative validation of the
A-WEAR PD bracelet’s performance.

This verification process not only validated the accuracy of the A-WEAR PD bracelet
but also reinforced its potential as a reliable tool for continuous monitoring of Parkinson’s
disease patients.

6.2. Data Description

The data utilized in this study originate from the MJFF Levodopa Wearable Sensors
Dataset, which is backed by the Michael J. Fox Foundation [50]. This dataset can be
accessed at the following link: https://www.michaeljfox.org/news/Levodopa-response-

https://www.michaeljfox.org/news/Levodopa-response-study
https://www.michaeljfox.org/news/Levodopa-response-study
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study (accessed on 3 March 2024). Participants underwent monitoring both in-clinic,
engaging in a sequence of standard activities, and at home while performing DLAs. Further
details regarding the patients are provided in Table 5.

Table 5. Demographic characteristics of patients with PD.

Patient ID Gender Age Dominant Hand Most Affected Side

3BOS Female 86 Right Right
4BOS Female 52 Right Right
5BOS Male 74 Right Right
6BOS Male 62 Right Left
7BOS Male 74 Right Right
8BOS Male 64 Right Right
9BOS Female 69 Right Left

10BOS Male 83 Right Right
11BOS Male 61 Right Right
12BOS Female 82 Right Right
13BOS Male 68 Right Right
14BOS Male 65 Right Right
15BOS Female 70 Right Right
16BOS Male 70 Right Bilateral
17BOS Female 60 Left Bilateral
18BOS Male 65 Right Right
19BOS Male 77 Right Right

The cohort that was chosen for this study’s data collection wore Shimmer3 on both
upper limbs. However, the data analyzed in this study originate from the most impaired
upper limb of the patients. The participants wore these wearables for four days.

• On the first day of data collection, participants were in the ON state (after medication
intake) in the laboratory. They answered demographic and medical history questions,
completed sections I, II, and IV of the MDS-UPDRS, and wore wearable devices. They
then performed section III of the MDS-UPDRS and various ADL tasks, including
standing, walking, finger-to-nose maneuvers, drawing, typing, bottle opening, orga-
nizing sheets, assembling nuts and bolts, towel folding, and sitting. Clinical observers
rated symptoms such as tremors, bradykinesia, and dyskinesia on a scale of 0–4 during
each task.

• On days 2 and 3, participants engaged in their regular daily activities while wearing all
the sensors. Shimmer subjects were additionally instructed to perform specific tasks
corresponding to section III of MDS-UPDRS, including alternating hand movements
for 30 s (once per arm), finger-to-nose maneuvers for 30 s, and sitting quietly for 30 s,
repeated every 30 min, seven times each day, at home.

• On day 4, participants arrived at the laboratory in an OFF state after abstaining from
medication for approximately 12 h. The procedure from day 1 was repeated, starting
with motor tasks performed in the OFF state. Participants then took their morning
medication dose and repeated the motor tasks 5 to 7 times at the same intervals as day
1 (every 30 min). Severity scores and symptom presence were reassessed, followed by
the removal of sensors.

For each task instance, clinicians provided severity labels and/or noted symptom
presence. Tremor severity scores (0–4) and bradykinesia severity scores (0–4), along with
symptom presence, were recorded for both day 1 and day 4. We analyzed data solely from
these two days to estimate tremor and bradykinesia severity.

6.3. Continuous Wavelet Transform

In previous research, various applications of the continuous wavelet transform (CWT)
have been explored in biomedical contexts. For instance, Narin et al. [51] utilized CWT
to identify epileptic seizure areas in EEG signals, while He et al. [52] employed CWT

https://www.michaeljfox.org/news/Levodopa-response-study
https://www.michaeljfox.org/news/Levodopa-response-study
https://www.michaeljfox.org/news/Levodopa-response-study
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for atrial fibrillation detection from ECG signals. Similarly, Rezvanian et al. [53] utilized
CWT for real-time detection of freezing of gait (FOG) and gait analysis, achieving a sen-
sitivity and specificity of 82.1% and 77.1%, respectively. Alafeef et al. [54] applied CWT
to measure gait abnormalities in Parkinson’s patients compared to healthy subjects. Ad-
ditionally, Pham et al. [55] developed a CWT-based algorithm for step detection using
sensors attached to participants’ lower backs. These studies collectively demonstrate the
effectiveness of CWT in detecting various motor symptoms of Parkinson’s disease (PD).

Traditionally, Fourier transform or short-time Fourier transform methods were com-
monly employed to extract features from PD motor symptom signals, particularly from
the lower body or upper limb motion signals [56]. However, these methods often lack
precise event localization, leading to the extraction of a large number of features. This
increase in feature count can impact various aspects such as energy consumption, latency,
and data storage and processing efficiency. To overcome these limitations, we adopted the
continuous wavelet transform (CWT) method in our study, which provides both time and
frequency domain features.

In our research, we applied the CWT method to accelerometer signals obtained during
standard hand movement exercises and DL assessments (DLAs) of PD with varying severity
scores. Prior to CWT implementation, the data were organized and labeled according to
severity scores in the ON/OFF state. The CWT representation of a signal is expressed in
Equation (1), where ψ represents the wavelet mother function, a and b signify the dilatation
(or scale) and shifting (or translation) variables, respectively, and CWT(a, b) denotes the
wavelet coefficients.

CWT(a, b) =
〈

f , Ψa,b
〉
= 1/

√
a
∫ ∞

−∞
f (t) · Ψ ∗ (t − b/a)dt (1)

The choice of wavelet type is crucial, as it defines the scale-to-frequency relationship.
In our study, we adopted the Morlet wavelet mother. The range of scales for CWT analysis
[1,smax] was determined using the frequency scale relationship indicated in Equation (2),
where smax is determined based on the mother wavelet us core frequency (Fc), the sampling
frequency (Fs), and the tremor or bradykinesia frequency ( f ).

smax =
Fc × Fs

f
(2)

With the selected wavelet and parameters, we calculated the CWT by tracing the
frequency range relevant to bradykinesia and tremor occurrences. Subsequently, using
MATLAB scripts with a 3 s temporal window before motion initiation, the raw signals were
projected to the time–frequency (TF) domain by the CWT and segmented into individual
procession events. The accelerometer data yielded a total of 7263 scalograms, comprising
637 bradykinesia scalograms and 6763 tremor scalograms, as displayed in Table 6. Scalo-
grams provide a clear, three-dimensional representation of the wavelet coefficients at a
given time and frequency, as depicted in Figure 6, where we employed a modified jet
colormap for visualization.

As a tremor is trembling or shaking of the limb, the most common type of tremor
faced by PD patients is resting tremors, which occur when the upper limb is resting but
continues to tremble. In Figure 6, the scalograms represent the TF mapping of inertial
signals. Considering tremor scalograms, it is observed that at lower scales, the waves are
seen to be compressed and at higher scales they are stretched. This is because of the fast-
changing details of movement signals, i.e., tremor while in bradykinesia; the scalograms
are less condensed at lower scales compared to tremor, and this compression lessens
further with higher severity scores. Bradykinesia is characterized by very low-frequency
movements and sluggish shifts in movement signals. Apart from this, it can also be seen
that as the severity scores increase, color variations also increase. Likewise, bradykinesia is
a dull movement during an action, which resembles a decrease in movement amplitude.
From bradykinesia’s scalograms, as depicted in Figure 6, it is evident that as the severity
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score increases, the navy blue tone is more dominant. Hence, each epoch calculated
by CWT acts as the input for the matrix, with all cases showing similar severity levels.
Motor-related disorders, i.e., tremors and bradykinesia, are typically not recorded with
accurate severity scores, especially at such low frequency, and most of the features are lost
in hand-crafted feature extraction methods. On the other hand, the complete spectrum
of movement is produced by this CWT approach, allowing one to see the variations at
every level. Additionally, a MATLAB script is used to stratify these scalograms according
to severity score in a different folder before a DL classifier is used to classify them.

Table 6. Number of samples per class.

Class Samples

Tremor Score 0 2094
Tremor Score 1 2091
Tremor Score 2 1360
Tremor Score 3 1095
Tremor Score 4 123

Bradykinesia Score 0 148
Bradykinesia Score 1 186
Bradykinesia Score 2 113
Bradykinesia Score 3 110
Bradykinesia Score 4 80

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. The tremor and bradykinesia scores undergo analysis via CWT. Each subplot displays
the scalograms corresponding to the severity scores of tremor and bradykinesia. The x-axis of
each subplot denotes time, while the y-axis represents the scale. The analysis centers on a 3 s
temporal window before the onset of motion. (a) Tremor Score 0. (b) Tremor Score 1. (c) Tremor
Score 2. (d) Tremor Score 3. (e) Tremor Score 4. (f) Bradykinesia Score 0. (g) Bradykinesia Score 1.
(h) Bradykinesia Score 2. (i) Bradykinesia Score 3. (j) Bradykinesia Score 4.

6.4. Deep Learning-Based Model for Classification

In recent years, DL has garnered significant attention across various computer vision
domains, including the detection of PD. Studies now aim to identify varying severity
levels of diseases, such as PD. For instance, researchers in [57] detected PD and its severity
from gait abnormalities using data from the Physionet database. They processed vertical
ground reaction force (VGRF) signals within a deep neural network (DNN) composed
of convolutional and max-pooling layers, achieving superior results compared to hand-
crafted feature extraction methods. Similarly, ref. [58] assessed disease severity using
speech signals, employing a DNN architecture with input, hidden, and output layers.

In our study, we utilize the AlexNet deep convolutional neural network (CNN) archi-
tecture for image classification. As far as we are aware, this study represents the inaugural
endeavor to utilize image-based accelerometer data from a significant cohort to assess
the severity of bradykinesia and tremors in both ON and OFF modes among patients.
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Furthermore, our proposed method outputs severity scores ranging from 0 to 4, providing
richer diagnostic information compared to a binary “severe/non-severe” output.

6.4.1. AlexNet Transfer Learning Model

Transfer learning represents an advanced strategy for addressing pattern recognition
challenges. It leverages knowledge acquired from one or more source tasks, such as the
ImageNet database [59], to enhance generalization in a related target task. Compared to
conventional DL methods, transfer learning offers several advantages: (1) it employs a
pre-trained model as a foundation, and (2) fine-tuning a pre-trained network is considerably
simpler and faster when knowing which layers to reuse and how many to retrain for the
specific problem, as opposed to training a random deep neural network (DNN) model from
scratch. Fundamentally, transfer learning involves adopting a sufficiently complex and
effective pre-trained model, typically trained on datasets like ImageNet, a comprehensive
database developed for visual object recognition, containing over 20,000 categories. Many
pre-trained models are trained on a subset of ImageNet with 1000 categories, and then they
transfer the acquired knowledge to simpler tasks that involve limited confidential data.
The aim of this research is to effectively classify the scalograms generated using continuous
wavelet transform (CWT) into different stages of PD patients’ ON and OFF states. With the
increasing prevalence of PD cases, there is a pressing need to swiftly categorize patients
into distinct disease phases, spanning from mild to severe. The utilization of AlexNet
architecture in this study involves experimenting with its weights to attain optimal results.
As depicted in Figure 7, modifications have been made to the architecture with the objective
of enhancing classification accuracy for assessing severity levels, thereby facilitating more
precise medical evaluations. Table 7, provides details on the hyperparameters. The dataset
is divided into training and testing sets at a ratio of 70/30. This investigation employs
a score-based approach, where each subject is assigned a severity score considering the
varying degrees of severity observed in the patient data. The severity-score-based data are
partitioned for training, testing, and validation purposes.

Figure 7. AlexNet architecture.

Table 7. Parameters utilized for transfer learning model optimization.

Momentum Initial Learning
Rate Decay Factor

Learning Rate Decay
Factor Per Epoch

Moving
Average Decay

Number of
Epochs Per Decay

Weight
Decay Batch Size

0.9 0.01 0.01 0.999 150 0.0005 128
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The operational framework of our proposed AlexNet architecture is delineated in
Figure 7, and is initiated by resizing the input scalograms to dimensions of 227 × 227 × 3,
denoting the width, height, and RGB channels, corresponding to the data flow sequentially
through convolutional layers, max-pooling layers, and additional convolutional layers,
followed by subsequent max-pooling layers. This cascading process is defined by specific
mathematical operations detailed by formula (3), where parameters such as ‘n’ represent
the image dimensions, ‘s’ indicate the stride, ‘f’ denote the filter size, and ‘p’ signify
the padding.

In Figure 7, the convolutional operations commence with ‘n’ set to 227, utilizing 11 × 11
filters with a stride of 2, resulting in image dimensions of 55 × 55 with 96 kernels. Following
this, the data undergo max-pooling, maintaining the kernel count, before proceeding to
another convolutional layer with padding set to 2 and a stride of 1, preserving the image
size at 27 × 27. This pattern continues through the subsequent convolutional layers, where
padding remains at 1, maintaining the image size at 13 × 13 while kernel configurations
vary. Finally, in the last max-pooling layer, a stride of 2 reduces the image size to 6 × 6.

The convolutional layer computes the scalar product of image portions with corre-
sponding weights to generate neuron outputs. The Rectified Linear Unit (RELU) layer
applies an element-wise activation function, while the pooling layer executes spatial deci-
mation, decreasing sample size along with spatial coordinates. The Fully Connected (FC)
layer assigns class scores for each sample and delivers predictions. Predicted classes are
determined based on maximum probability scores.

Modifications to the last Fully Connected Layer (FCL) entail outputting five classes,
diverging from the original 1000-class setup. Training utilizes 70% of the dataset, with
the remaining 30% reserved for testing. Performance evaluation employs k-fold cross-
validation with k = 10, reporting results as average values ± standard deviation. The
model achieves 86.4% ± 0.07 accuracy for bradykinesia severity analysis and 90.9% ± 0.03
accuracy for tremor severity analysis.

n + 2p − f
s

+ 1 (3)

6.4.2. Performance Metrics

The confusion matrices that are produced when the model is separately trained and
tested for bradykinesia and tremor are shown in Figure 8. The green box represents accurate
forecasts, whereas the red boxes indicate the quantity of incorrect guesses. Every score
is regarded as a distinct class. The algorithm’s performance metrics are presented for
each class as sensitivity and specificity. As indicated in Equations (4) and (5), we used the
mathematical method to determine the sensitivity and specificity. True positive rates are
represented by TPR, false negative rates by FNR, true negative rates by TNR, and false
positive rates by FPR. The overall produced results are elaborated in Table 8. The cases
where the error is large are because of the lower number of samples in that class.

Sensitivity =
TPR

TPR + FNR
(4)

Speci f icity =
TNR

TNR + FPR
(5)



Electronics 2024, 13, 1002 19 of 26

(a)

(b)

Figure 8. Confusion matrices for assessing tremor and bradykinesia severity. (a) Confusion matrix
for tremor severity. (b) Confusion matrix for bradykinesia severity.
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Table 8. Sensitivity and specificity of each class.

Class Sensitivity Specificity

Tremor Score 0 0.97 0.95
Tremor Score 1 0.93 0.97
Tremor Score 2 0.88 0.96
Tremor Score 3 0.88 0.97
Tremor Score 4 0.36 0.99

Bradykinesia Score 0 0.90 0.94
Bradykinesia Score 1 0.87 0.94
Bradykinesia Score 2 0.87 0.96
Bradykinesia Score 3 0.77 0.98
Bradykinesia Score 4 0.90 0.97

7. Results and Discussion

The suggested web-based system serves as a solution for PD patients requiring con-
tinuous home assessment and monitoring, alongside accurate diagnosis and severity
estimation. To achieve precise labeling and L-dopa dosage determination, accelerometer
data from PwPD were utilized and collected using a Shimmer device under the auspices of
the Michael J. Fox Foundation. The data description and the motor activities explanation
are provided in Section 6.2. The data are classified into two stages: the ON state, which
occurs when patients take their medication on schedule, and the OFF state, which occurs
when patients miss their medication and engage in activities. We removed the hand-crafted
feature extraction and feature selection procedure from this proposed model in compar-
ison to earlier research studies and systems. In lieu of that, the time-series data of the
accelerometer are converted into scalograms through CWT, over-passing the hefty amount
of work conducted prior to the classifier as it was performed in several research studies.
The use and implementation of CWT for creating various levels of severity is explained in
Section 6.3 and some of the tremor and bradykinesia scalograms are shown in Figure 6. For
severity estimation, we employed the DL-based model, which is AlexNet transfer learning.
The architecture and the work progress of the model are well explained in Section 6.4.

The model undergoes separate training and testing phases for the analysis of tremor
and bradykinesia severity scores. The AlexNet model demonstrates highly encouraging
outcomes, achieving an accuracy of 86.4% for bradykinesia estimation and 90.9% for tremor,
alongside commendable sensitivity and specificity across each scoring category, as detailed
in Table 8. The severity estimated on day 1 and day 4 for each subject is shown in the
bar graphs Figure 9. In Figure 9b, it can be seen that there is a variation in all patients’
severity in the ON/OFF state. Mostly the severity level is increased. In cases when the
severity is not increased or stays the same, there may be a variation in terms of consistency
or frequency of tremors. However, if the level is decreased, this is a hint for clinicians to
change the amount of Levodopa shot. Figure 9b depicts patients’ bradykinesia scoring
level. Mostly, there is no change in its level. Further clinicians can provide the best medical
and neurological analysis considering the required medicine and treatment.

Table 9 displays the comprehensive findings and contrasts them with the current
state-of-the-art. The table outlines the observed cardinal motor symptoms, the associated
sensors, the ML or DL methods utilized for analysis, the evaluation metrics, and the
recorded severities. In [60], high classification performance was attained; however, this
study was not effective at all severity levels. Similar to this, the research [60–62] extracted a
large number of features and carried out the feature selection stage, wherein a significant
number of features could be missed. The study [63] was the only one to use a CNN
classification model and 2D image representation of inertial data; nonetheless, the accuracy
was only 85%. Therefore, measuring tremors in addition to bradykinesia and all degrees or
kinds of severities was not taken into account in the majority of the research. Furthermore,
none of the prior studies examined TF mapping using the CWT method for classification, a
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novel approach that our research adopted. Our study yielded promising results, achieving
an accuracy of 86.5% for bradykinesia and 90.9% for tremor classification.

(a)

(b)
Figure 9. Severity estimation of patients’ symptoms during day 1 and day 4. (a) Patients’ tremor
severity level during day 1 and day 4. (b) Patients’ bradykinesia severity level during day 1 and
day 4.

Table 9. Comparison with the current leading-edge technologies.

Reference Year of
Study

Observed
Symptoms Sensor Utilized Methodology Employed Outcomes Severity

Score(s)

[61] 2017 Tremor Accelerometer
MMG

Time and frequency domain
features are extracted and

classified using KNN model.
Accuracy 0.87% 0, 1, 3

[62] 2021 Tremor Accelerometer

290 hand-crafted features
extracted representing (Time and

Frequency characteristics) and
classified using AdaBoost model

Specificity = 86%,
Sensitivity = 86%,

AUC = 93%
0, 1, 2

[60] 2020 Tremor
Gyroscope,

magnetometer,
accelerometer

Features extracted representing
(Time and Frequency

characteristics) and classified
using SVM model

Accuracy = 96%,
Specificity = 100%,
Sensitivity = 97%

-
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Table 9. Cont.

Reference Year of
Study

Observed
Symptoms Sensor Utilized Methodology Employed Outcomes Severity

Score(s)

[63] 2018 Tremor Gyroscope,
accelerometer

Two-dimensional (2D) image
representation of sensor signals

for CNN model

Accuracy = 85%,
sensitivity = 79%,
precision = 81%,

kappa coefficient =
85%, Correlation
coefficient = 93%

0, 1, 2, (3, 4)
together

This work 2022 Tremor and
bradykinesia Accelerometer

Raw data to TF mapping using
CWT and classifies using

Alexnet model

Tremor: Accuracy
= 90.9%, Gmean =
0.94, IBAα = 0.93

Bradykinesia;
Accuracy = 86.4%,

Gmean = 0.916,
IBAα = 0.91

0, 1, 2, 3, 4

8. Conclusions

This study presents an innovative approach through an eHealth platform designed to
assess and monitor PwPD. A smart wristband that is always connected to the cloud is the
centerpiece of this platform. The wrist of the upper limb that is most impacted is where
the bracelet records motion data and transfers it via Wi-Fi to a cloud-based PaaS. Here, the
data undergo automatic processing and analysis to determine the severity of tremor and
bradykinesia in both ON and OFF states of patients, offering real-time feedback.

Furthermore, this study contributes to objective severity assessments, particularly fol-
lowing surgical interventions or rehabilitation exercises (physiotherapy). A key advantage
of our smart-bracelet-based solution is its infrastructure, which optimally balances power
consumption, network coverage, data transmission rate, and cost. This robust solution
addresses the ongoing need for continuous and immediate data transmission from wear-
able sensors, ensuring effective monitoring of PD patients in both home and unfamiliar
environments. This needs huge data storage, bandwidth, and data processing capability to
run learning algorithms, all elements that a cloud-based approach has proven to fit best.
Benefits can also be derived from any other healthcare system wherein the doctor can easily
assess the medication’s impact on the patient’s symptoms and assist them in choosing
different drug dosages.

9. Study Limitations and Future Directions

Our study confirms the wristband’s efficacy in monitoring PD symptoms under
standard conditions. However, it is important to recognize that extreme environmen-
tal conditions—like significant temperature shifts, high humidity, and electromagnetic
interference—can impact data accuracy. Preliminary testing under varied conditions has
shown that while the device is highly accurate in moderate environments, extreme condi-
tions may affect sensor sensitivity and data processing, leading to potential inaccuracies in
symptom detection. Additionally, factors like intense physical activity and sweat could in-
troduce noise, complicating the differentiation between PD symptoms and non-PD-related
movements. One limitation of this study is that to increase the availability of data to be
used in our experiments, we proceeded with the acquisition of initial data through our
bracelet and the recorded signals were verified and compared to the available largest data
set acquired using a Shimmer device. Once the coherence between the acquired data was
verified, a large amount of data from Shimmer was also used to test our signal processing
and DL proposed algorithm. In the future, the bracelet will be improved with more input
inertial sensors like a gyroscope, magnetometer, and EMG sensor, and the data will be
collected from PwPD using this bracelet. With more sensor diversity, the data are expected
to give more validation in assessing the PD motor symptoms from hand movements.
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Also, edge/fog-based solutions, alternatives to those based on the cloud, will be taken
into account to enhance the overall system performance. Future iterations of the device
will also focus on enhancing its robustness against environmental extremes and reducing
susceptibility to interference from external factors.
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