
Citation: Li, L.; Chen, W. ConGraph:

Advanced Persistent Threat Detection

Method Based on Provenance Graph

Combined with Process Context in

Cyber-Physical System Environment.

Electronics 2024, 13, 945. https://

doi.org/10.3390/electronics13050945

Academic Editor: Cheonshik Kim

Received: 31 January 2024

Revised: 27 February 2024

Accepted: 28 February 2024

Published: 29 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

ConGraph: Advanced Persistent Threat Detection Method Based
on Provenance Graph Combined with Process Context in
Cyber-Physical System Environment
Linrui Li and Wen Chen *

School of Cyber Science and Engineering, Sichuan University, Chengdu 610065, China;
2021226245054@stu.scu.edu.cn
* Correspondence: wenchen@scu.edu.cn

Abstract: With the wide use of Cyber-Physical Systems (CPS) in many applications, targets of
advanced persistent threats (APTs) have been extended to the IoT and industrial control systems.
Provenance graph analysis based on system audit logs has become a promising way for APT detection
and investigation. However, we cannot afford to ignore that existing provenance-based APT detection
systems lack the process–context information at system runtime, which seriously limits detection
performance. In this paper, we proposed ConGraph, an approach for detecting APT attacks using
provenance graphs combined with process context; we presented a module for collecting process
context to detect APT attacks. This module collects file access behavior, network access behavior,
and interactive relationship features of processes to enrich semantic information of the provenance
graph. It was the first time that the provenance graph was combined with multiple process–context
information to improve the detection performance of APT attacks. ConGraph extracts process activity
features from the provenance graphs and submits the features to a CNN-BiLSTM model to detect
underlying APT activities. Compared to some state-of-the-art models, our model raised the average
precision rate, recall rate, and F-1 score by 13.12%, 25.61%, and 24.28%, respectively.

Keywords: APT; CPS; attack detection; process context

1. Introduction

Cyber-Physical Systems (CPS) integrate sensing, computing, control, and networking
technologies to support monitoring and feedback loops of cyber systems and continuously
improve the performance of physical processes [1]. In recent years, CPS technologies have
been applied in a variety of scenarios such as smart homes, power grids, the Internet of
Vehicles, and healthcare. However, such systems, like traditional network information
systems, have become the targets of advanced persistent threats (APTs) [2–5]. According
to ENISA [6] and NIST [7] guidelines, a recent trend in the IoT domain concerns the
certification of security features of IoT devices [8,9]. Therefore, it is important to study APT
attack-detection methods in CPS environments.

APT attacks are long-term and complex cyberattacks carried out by highly skilled
and organized attackers. Government agencies, large corporations, research institutes,
and other important organizations are typically the targets of such attacks. APT attackers
meticulously design attack steps and customize attack methods to steal sensitive data or
disrupt systems while ensuring stealth. APT attacks can pose a significant security threat
to various types of CPS systems. For instance, in 2010, the ‘Stuxnet’ worm attacked Iranian
nuclear facilities [2]. In 2015, the Ukrainian power grid was attacked by the ‘BlackEnergy’
malware [3]. In 2016, the ‘Mirai’ malware compromised a large number of IoT devices and
used them to launch large-scale distributed denial-of-service (DDoS) attacks, disrupting
numerous mainstream sites [4]. In 2018, the ‘VPNFilter’ malware affected 500,000 IoT
devices in at least 54 countries and regions, creating a massive botnet [5].

Electronics 2024, 13, 945. https://doi.org/10.3390/electronics13050945 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13050945
https://doi.org/10.3390/electronics13050945
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0566-2495
https://doi.org/10.3390/electronics13050945
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13050945?type=check_update&version=2

Electronics 2024, 13, 945 2 of 18

APT attacks are often difficult to detect due to their long term and stealth. Attackers
can remain undetected in the system for a long period of time and utilize a series of attack
techniques to damage the user systems [10]. Traditional intrusion detection techniques are
typically only able to detect single-point network intrusions, making it challenging to detect
the complex attack patterns of APT [11,12]. Existing methods for detecting APT attacks
include rule-based, anomaly-based, and provenance-based detection. While rule-based
detection can be efficient, it has limitations. For example, it is weak in detecting unknown
threats. Fixed rules can be bypassed when an adversary uses 0-day vulnerabilities for
an attack, so the method relies on a long-maintained rule database. Secondly, designing
rules requires the expertise of professionals in the fields of threat modeling, operating
systems, and computer networks, which can be a labor-intensive process. Anomaly-based
detection techniques alert processes within the system when their behavior deviates from
the normal pattern by learning the behavioral patterns within the system under normal
operating conditions [13]. This approach is capable of detecting unknown attacks such
as 0-day attacks, but due to the long-term character of APT attacks, the model may be
subject to poisoning attacks while learning normal behavior within the system, and the
detection results tend to have a high false alarm rate. Additionally, system evolution
can make it challenging to characterize normal behavior, which may degrade detection
performance [14]. Provenance-based detection methods utilize provenance data, such as
operating system audit logs, to detect APT attacks. To improve detection performance,
researchers extract key information from system logs and audit records and convert it into
a directed acyclic graph. Nodes in the graph represent system entities (e.g., processes,
files, and network connections) and edges represent causal relationships between them. A
simplified APT attack process is depicted in Figure 1, where the attacker gains access to the
user terminal by exploiting Firefox vulnerabilities and delivers the payload. Subsequently,
‘cmd’ process executes the malicious commands sent by the attacker and the ‘svchost’
process performs information gathering and sends it to the attack host. The provenance
graph provides a clear understanding of the interaction between system entities and can
connect causally related events, even if they are separated by a long period of time [15].

Electronics 2024, 13, 945 2 of 18

numerous mainstream sites [4]. In 2018, the ‘VPNFilter’ malware affected 500,000 IoT de-
vices in at least 54 countries and regions, creating a massive botnet [5].

APT attacks are often difficult to detect due to their long term and stealth. Attackers
can remain undetected in the system for a long period of time and utilize a series of attack
techniques to damage the user systems [10]. Traditional intrusion detection techniques are
typically only able to detect single-point network intrusions, making it challenging to de-
tect the complex attack patterns of APT [11,12]. Existing methods for detecting APT attacks
include rule-based, anomaly-based, and provenance-based detection. While rule-based
detection can be efficient, it has limitations. For example, it is weak in detecting unknown
threats. Fixed rules can be bypassed when an adversary uses 0-day vulnerabilities for an
attack, so the method relies on a long-maintained rule database. Secondly, designing rules
requires the expertise of professionals in the fields of threat modeling, operating systems,
and computer networks, which can be a labor-intensive process. Anomaly-based detec-
tion techniques alert processes within the system when their behavior deviates from the
normal pattern by learning the behavioral patterns within the system under normal oper-
ating conditions [13]. This approach is capable of detecting unknown attacks such as 0-
day attacks, but due to the long-term character of APT attacks, the model may be subject
to poisoning attacks while learning normal behavior within the system, and the detection
results tend to have a high false alarm rate. Additionally, system evolution can make it
challenging to characterize normal behavior, which may degrade detection performance
[14]. Provenance-based detection methods utilize provenance data, such as operating sys-
tem audit logs, to detect APT attacks. To improve detection performance, researchers ex-
tract key information from system logs and audit records and convert it into a directed
acyclic graph. Nodes in the graph represent system entities (e.g., processes, files, and net-
work connections) and edges represent causal relationships between them. A simplified
APT attack process is depicted in Figure 1, where the attacker gains access to the user
terminal by exploiting Firefox vulnerabilities and delivers the payload. Subsequently,
‘cmd’ process executes the malicious commands sent by the attacker and the ‘svchost’
process performs information gathering and sends it to the attack host. The provenance
graph provides a clear understanding of the interaction between system entities and can
connect causally related events, even if they are separated by a long period of time [15].

cmd.exe_744 werfault.exe_2964 searchprotocolhost.exe_ 2540 svchost.exe_892

payload.exe

plugin-container.exe_2012

192.168.X.X

192.168.X.X

firefox.exe_3148

counters.dat

connection

read read read read

read

read

read

connection

fork

write

write

fork

Figure 1. Example of provenance graph.

However, existing provenance-based APT detection systems face several challenges:
(a) The collection of provenance data for the system mainly focuses on audit logs and lacks
critical context information, such as the interactions between processes and the security
characteristics of the files in the runtime of the system. This limitation leads to a high false

Figure 1. Example of provenance graph.

However, existing provenance-based APT detection systems face several challenges:
(a) The collection of provenance data for the system mainly focuses on audit logs and

Electronics 2024, 13, 945 3 of 18

lacks critical context information, such as the interactions between processes and the
security characteristics of the files in the runtime of the system. This limitation leads
to a high false positive in detecting APT attacks; (b) The large size of the provenance
graph makes it difficult to extract the sequences characterizing process behavior from the
graph. In this paper, we propose ConGraph, an APT attack detection method based on a
provenance graph and process context in a CPS environment. To construct the provenance
graph, ConGraph collects provenance data, such as system audit logs. Furthermore, it
also collects process-behavioral records and file features related to process operations to
form the process–context information. The provenance graph is compressed using a graph-
compression algorithm and then fused with process–context information. Next, feature
sequences representing the node behaviors are extracted from the fused provenance graph.
Finally, the sequence-based model CNN-BiLSTM is used to detect APT attacks.

The main contributions of this paper are summarized below:

(1) A new APT attack detection method ConGraph is proposed. It incorporates rich
process–context information and file features at system runtime during the construc-
tion of a provenance graph to model fine-grained process behavior patterns.

(2) We present a module for collecting contextual information to detect APT attacks,
which collects features such as the file-access behavior of processes, network-access
behavior, and interactive relationships between processes to enrich the provenance-
graph structure. The detection efficiency is improved by using a graph-compression
algorithm to reduce the computational scale.

(3) We reproduced experiments based on a public dataset to collect process context during
system runtime and evaluated our method. The experimental results demonstrate the
effectiveness of our approach in detecting APT activities.

The rest of the paper is organized as follows. Section 2 summarizes the related
work. Section 3 describes the threat model and related definitions in the paper. Section 4
introduces the architecture of ConGraph in detail. The experiments and results of ConGraph
are described in Section 5. Section 6 summarizes our work and outlines future work.

2. Related Work

Provenance-based methodologies have emerged as a promising area of research in
detecting APT attacks. These methods aim to extract key information from audit logs to
distinguish APT attack behaviors from normal system activities and common system errors.
The methods employed in provenance-based APT attack detection are broadly classified
into three types: rule-based, statistical-based, and learning-based [16].

Rule-based approaches utilize a priori knowledge such as attack patterns of known
vulnerabilities to construct heuristic rules to detect APT attacks. SLEUTH [17] pioneered
the reconstruction of APT attacks using provenance graphs. It categorizes system audit
logs into four levels of confidentiality: public, private, sensitive, and secret. Labels and
policies are introduced to assign different weights to the dependency graphs and identify
system entities and events that are most likely involved in an APT attack. Poirot [18]
suggested combining threat intelligence with provenance graphs to detect APT attacks.
This involves collecting external IoC relationship information, extracting and constructing
a query graph of attack behaviors, matching and aligning the attack graph with the system
provenance graph through a graph-matching algorithm, and ultimately generating alerts
and forensic analysis results. Holmes [19] proposes a hierarchical framework for detecting
APT attacks. The key component of this framework is an intermediate layer called HSG.
HSG aligns low-level APT attacks with provenance graphs based on rules derived from
domain knowledge (e.g., ATT&CK framework). These rules map low-level audit data to
attack intent, bridging the semantic gap between low-level audit data and attack intent.
CONAN [20] presents a state-based framework that abstracts each system entity, such as
a process or a file, into a Finite State Automata (FSA)-like structure. The state is inferred
through predefined rules, and the state sequences are used for APT detection. Rule-based
detection methods are efficient and easy to deploy. However, designing effective rules

Electronics 2024, 13, 945 4 of 18

relies heavily on in-depth domain knowledge, and rules can easily fail if conditions change.
Therefore, rule-based methods have major limitations when facing unknown APT attacks.

Statistical-based approaches are utilized to detect anomalies in the provenance graph
by constructing statistical features of the system’s behavior. PrioTracker [21] proposes a
causal tracker that prioritizes anomalous dependencies in the tracking process. To distin-
guish anomalous system events, PrioTracker builds a reference model of daily activities
in the system as a way to quantify the scarcity of each event. After that, the priority score
of each event is calculated based on its scarcity and topological features in the prove-
nance graph, and finally, the information paths with high priority scores are searched.
Nodoze [22] generates a causal graph of alert events and assigns an anomaly score to each
edge in the dependency graph based on the frequency of occurrence of the relevant events.
However, since statistical analysis considers direct (causal) links in the provenance graph
and lacks the expression of semantic relationships between system entities, this leads to a
large number of false positives in the detection.

To overcome the limitations of the aforementioned approaches, researchers have begun
developing APT detection models using learning-based methods. Unicorn [15] proposed
constructing histograms and computing graph sketches using provenance graphs of normal
behaviors within the system to detect APT attacks in the absence of prior knowledge of
the attack. However, due to the limitations of graph–kernel methods, they have difficulty
detecting stealth threats. THREATRACE [23] utilizes GraphSAGE to learn the structural
information of different types of entities within the system in the provenance graph. It
identifies anomalous nodes within the system through semi-supervised learning and multi-
modeling frameworks to detect and track APT attacks. SHADEWATCHER [16] maps the
concept of system-entity interactions to user-item interactions in recommendations. It
detects cyber threats by predicting system entities’ preferences for their interacting entities
and utilizes graph neural networks to improve detection.

Furthermore, log-based anomaly detection has shown advancements in detecting APT
attacks. Log2Vec [24] transforms log entries into a heterogeneous graph and applies hetero-
geneous graph embedding techniques to represent each log entry as a low-dimensional
vector. This method distinguishes between malicious and benign log entries based on their
respective vectors. DeepLog [25] is a deep-learning-based log-anomaly detection method
that models system logs as natural language sequences and uses long short-term memory
(LSTM) neural networks to learn normal log patterns. DeepAG [26] utilizes the Transformer
model to map log sequences into vector form, thus reducing the loss of semantic informa-
tion. It proposes a bi-directional model that includes forward and backward LSTMs for the
detection of abnormal logs.

3. Preliminary
3.1. Threat Model

In this paper, our goal is to detect anomalous entities in a host caused by intrusion
activities. We assume that the adversary comes from outside the system and its goal is to
steal valuable information inside the system. The attacker has the following characteristics.

(1) Persistence. The attack activity lasts for a long time.
(2) Stealthy. The attacker will try to mix the malicious activity with a lot of normal activity

and try to disguise the malicious activity as normal activity.
(3) An attack pattern exists in the provenance graph. In order to accomplish a mali-

cious activity that is different from the benign activity, the attacker’s behavior should
have some attack patterns in the provenance graph. The malicious node has a dif-
ferent local structure or contextual information compared to benign nodes in the
provenance graph.

(4) C&C communication. The victim host needs to communicate with the attacker to
complete the attack commands and steal high-value information from the victim host.

For example, as shown in Figure 2, we provide a typical APT attack scenario which will
be used as an example in this paper. In a wireless sensor network (WSN), numerous sensor

Electronics 2024, 13, 945 5 of 18

nodes gather data from a monitoring area and form a self-organized network. The data
collected by multiple sensor nodes are transmitted and processed through an intermediate
node host to reach the sink node. Then, the sink node transmits the data to the control
server through the network. An attacker creates a malicious Office file from the Internet and
sends it to the target host via a phishing email. Personnel at the control center download
the email and open the malicious Office file without checking its security. The malicious file
exploits an Office vulnerability (e.g., CVE-2017-11882 [27]) to gain privileges on the target
system. The vulnerability was exploited by the attacker to send an executable program
to the target host. This program was used to perform a port scan and gather information
from the target network. The attacker then established a silent connection with the host
and moved laterally to attack the servers within the control center. Figure 2 depicts the
topology of the threat model. The control center comprises the wireless sensor network
control server and the corresponding database. It is responsible for controlling the sensor
nodes in the WSN and distributing relevant information to the Internet. The control center
operates in an intranet environment and communicates with the Internet through edge
machines and with the wireless sensor network through sink nodes.

Electronics 2024, 13, 945 5 of 18

For example, as shown in Figure 2, we provide a typical APT attack scenario which
will be used as an example in this paper. In a wireless sensor network (WSN), numerous
sensor nodes gather data from a monitoring area and form a self-organized network. The
data collected by multiple sensor nodes are transmitted and processed through an inter-
mediate node host to reach the sink node. Then, the sink node transmits the data to the
control server through the network. An attacker creates a malicious Office file from the
Internet and sends it to the target host via a phishing email. Personnel at the control center
download the email and open the malicious Office file without checking its security. The
malicious file exploits an Office vulnerability (e.g., CVE-2017-11882 [27]) to gain privileges
on the target system. The vulnerability was exploited by the attacker to send an executable
program to the target host. This program was used to perform a port scan and gather
information from the target network. The attacker then established a silent connection
with the host and moved laterally to attack the servers within the control center. Figure 2
depicts the topology of the threat model. The control center comprises the wireless sensor
network control server and the corresponding database. It is responsible for controlling
the sensor nodes in the WSN and distributing relevant information to the Internet. The
control center operates in an intranet environment and communicates with the Internet
through edge machines and with the wireless sensor network through sink nodes.

Sensor
Node

Control Center

Sink
Node

Control
Server

Database

InternetWSN

Attacker

Compromised
Host

Normal
Host

Normal
Host

Figure 2. Threat model.

Furthermore, it is assumed that ConGraph itself is not under attack, and the prove-
nance data has not been tampered with by attackers to obfuscate the model.

3.2. Definitions

Definition 1. Active node. Active nodes in the provenance graph are those with active behaviors
or are related to critical behaviors. There are two categories of active nodes: first, nodes with non-
zero out-degree, indicating active interactions with other nodes; and second, nodes that serve as the
destination nodes of critical behaviors, which may play a key role in the attacker’s intrusion and
attack propagation process.

Definition 2. Critical behaviors. Critical behaviors are a set of edge types in the provenance graph
that represent specific system activities. Examples of critical behaviors include file writes, file en-
cryption, and processes connecting to the network. Nodes associated with critical behaviors usually
involve file modifications or network access and may become crucial links in an attack path or ma-
licious activity.

Figure 2. Threat model.

Furthermore, it is assumed that ConGraph itself is not under attack, and the prove-
nance data has not been tampered with by attackers to obfuscate the model.

3.2. Definitions

Definition 1. Active node. Active nodes in the provenance graph are those with active behaviors or
are related to critical behaviors. There are two categories of active nodes: first, nodes with non-zero
out-degree, indicating active interactions with other nodes; and second, nodes that serve as the
destination nodes of critical behaviors, which may play a key role in the attacker’s intrusion and
attack propagation process.

Definition 2. Critical behaviors. Critical behaviors are a set of edge types in the provenance
graph that represent specific system activities. Examples of critical behaviors include file writes,
file encryption, and processes connecting to the network. Nodes associated with critical behaviors
usually involve file modifications or network access and may become crucial links in an attack path
or malicious activity.

Electronics 2024, 13, 945 6 of 18

Definition 3. Action subgraph. The action subgraph is a subgraph related to the active node
vi extracted from the provenance graph that fused with the process context. It can be denoted as
Ĝi =

(
V̂i

active, Ei
active, Ĉi

)
, where V̂i

active denotes the nodes that have interaction with the active
node vi, Ei

active denotes the action set of vi (Section 4.4), and Ĉi denotes the collection of the process
context of all the nodes within V̂i

active. The action subgraph contains the interactions of the active
node vi with other system entities. ConGraph constructs the action sequence of a node by parsing
the action subgraph of the active node.

Definition 4. Action sequence. The action sequence describes in textual form the interactive
behavior of the process within the system, as well as contextual information about the relevant
system entities. For process vi, its action sequence seqi can be represented as a set of ordered
sequences < seqi

1, seqi
2, seqi

3, · · · , seqi
j >, and each subsequence seqi

j can be represented as a
quintuple < vm, context(vm), action(e), vn, context(vn) >, where vm and vn denote the system
entities associated with process vi; e denotes the edge connecting vm and vn; action(·) denotes the
behavior represented by the edge; and context(·) denotes the process context (Section 4.3).

4. Proposed Model of APT Detection
4.1. System Overview of ConGraph

The architecture of ConGraph is illustrated in Figure 3, it consists of four components:
(1) Log Preprocessing, (2) Process–Context Collector, (3) Sequence Construction and Context
Fusion, and (4) Model Training and Detection.

(1) Log Preprocessing. The module involves the systematic collection and analysis of
system audit logs, browser history, and DNS traffic through an array of tools—system
audit tools (Windows ETW, Linux Auditd, etc.), user browsers (Google Chrome,
Firefox, etc.), and network analysis tools (Wireshark, etc.). These data are subsequently
structured into a provenance graph, arranged chronologically. In this graph, nodes
represent system entities, like processes and files, while edges correspond to system
events, exemplified by process creation.

(2) Process–Context Collector. ConGraph collects API calls of processes at system runtime
through an API call logging tool to obtain interaction characteristics, network charac-
teristics, and file access characteristics of the processes. This enriches the semantic
information of the nodes in the provenance graph. Furthermore, considering the
complexity of matching certain process behavioral characteristics through API calls,
we utilize rule matching to gather and collect these process behavioral features and
other file security features, such as the file sensitivity level.

(3) Sequence Construction and Context Fusion. The module will be divided into five parts:
a⃝ identify active nodes, b⃝ context fusion, c⃝ sequence construction, d⃝ sequence
sampling, and e⃝ sequence embedding. First, ConGraph constructs the active node
set by identifying the nodes with active behavior from the provenance graph. Next,
the process context is fused with the provenance graph generated in Step 1. This
is conducted using the node information from the active node set and the process-
context information gathered by the process–context collector. The process–context
information includes the behavioral characteristics of the process actions and the
accessed files’ features. ConGraph extracts the action sequence of the active node
from the fused provenance graph and completes the anonymized representation of
the information. In addition, due to the great imbalance between attack sequences
and benign sequences, over-sampling and under-sampling processes are performed
on attack and benign sequences, respectively, during the training phase. Finally, we
perform word embedding on the generated sequences to convert the anonymous
representations into numerical representations. This improves the model’s ability to
semantically distinguish between attack sequences and benign sequences.

(4) Model Training and Detection. Through the above module, we collect the action
sequences of attacking nodes and benign nodes. In the model training phase, we use

Electronics 2024, 13, 945 7 of 18

the CNN-BiLSTM model to learn the behavioral patterns of APT attack processes and
their corresponding process–context features. BiLSTM is capable of depicting the time-
based behavioral features of the active node and learning the correlations between
other system entities of the attack node. To capture the implicit features of APT attacks
in sequences, we introduce a CNN layer to the model. During the detection phase,
the contextual information is combined with the nodes’ feature sequences to classify
process behavior into normal access or attacks.

Electronics 2024, 13, 945 6 of 18

Definition 3. Action subgraph. The action subgraph is a subgraph related to the active node 𝑣௜
extracted from the provenance graph that fused with the process context. It can be denoted as 𝐺෠௜ =൫𝑉෠௔௖௧௜௩௘௜ , 𝐸௔௖௧௜௩௘௜ , 𝐶መ௜൯, where 𝑉෠௔௖௧௜௩௘௜ denotes the nodes that have interaction with the active node 𝑣௜, 𝐸௔௖௧௜௩௘௜ denotes the action set of 𝑣௜ (Section 4.4), and 𝐶መ௜ denotes the collection of the process con-
text of all the nodes within 𝑉෠௔௖௧௜௩௘௜ . The action subgraph contains the interactions of the active node 𝑣௜ with other system entities. ConGraph constructs the action sequence of a node by parsing the
action subgraph of the active node.

Definition 4. Action sequence. The action sequence describes in textual form the interactive be-
havior of the process within the system, as well as contextual information about the relevant system
entities. For process 𝑣௜, its action sequence 𝑠𝑒𝑞௜ can be represented as a set of ordered sequences < 𝑠𝑒𝑞ଵ௜ , 𝑠𝑒𝑞ଶ௜ , 𝑠𝑒𝑞ଷ௜ , ⋯ , 𝑠𝑒𝑞௝௜ >, and each subsequence 𝑠𝑒𝑞௝௜ can be represented as a quintuple <𝑣௠, context(𝑣௠), action(𝑒), 𝑣௡, context(𝑣௡) >, where 𝑣௠ and 𝑣௡ denote the system entities as-
sociated with process 𝑣௜; 𝑒 denotes the edge connecting 𝑣௠ and 𝑣௡; action(∙) denotes the behav-
ior represented by the edge; and context(∙) denotes the process context (Section 4.3).

4. Proposed Model of APT Detection
4.1. System Overview of ConGraph

The architecture of ConGraph is illustrated in Figure 3, it consists of four compo-
nents: (1) Log Preprocessing, (2) Process–Context Collector, (3) Sequence Construction
and Context Fusion, and (4) Model Training and Detection.

4) Model training
&Detection

1) Log Preprocessing

Audit Logs

DNS Traffic

Browser History

2) Process-Context Collector
Process-Context

Runtime Behavior

…

Network Behavior

3) Sequence Construction & Context Fusion

1

2

3

4
6

7

Provenance Graph

1

2

3

4

6

7

write

connect

Active
Node

4

Process-context
Runtime Behavior

…

Network Behavior

Process-context
Runtime Behavior

…

Network Behavior

File Features
From Internet

…

Has Valid Certificate

7

Subject Context Actions Object Context

… S C A O C S C A O C S C …

1 3

1 3 3 5 5 7

… S C A O C S C A O C S C …

S C A O C S …

S C A O C S …

S C A O C S …

S C A O C S …

…

S C A O C S …

S C A O C S …

S C A O C S …

S C A O C S …

…

Benign Sequence Attack Sequence

Sequence Sampling

Context Fusion

Identify active nodes

Sequence Construction

C
O
A
C
S

Sequence
EmbeddingRuntime Process

File

File Features

From Internet

…

Has Valid Certificate

API

rule
matching

CNN-BiLSTM

5 5

881

2

3

4
6

75

8

Benign Malicious

2

61
3

5

8

a

b

c

d e

Figure 3. Overall architecture of ConGraph.

(1) Log Preprocessing. The module involves the systematic collection and analysis of
system audit logs, browser history, and DNS traffic through an array of tools—sys-
tem audit tools (Windows ETW, Linux Auditd, etc.), user browsers (Google Chrome,
Firefox, etc.), and network analysis tools (Wireshark, etc.). These data are subse-
quently structured into a provenance graph, arranged chronologically. In this graph,
nodes represent system entities, like processes and files, while edges correspond to
system events, exemplified by process creation.

Figure 3. Overall architecture of ConGraph.

4.2. Log Preprocessing

ConGraph utilizes system audit tools (Windows ETW or Linux Auditd), user browsers
(Google Chrome or Mozilla Firefox), and a traffic analysis tool (Wireshark) to collect
system audit logs, user browsing history, and DNS resolving logs, respectively, to build
a provenance graph. In the graph, nodes represent system entities such as processes and
files, while edges represent system events like writing to files and receiving data from
IP addresses. The provenance graph contains rich causal relationships, such as derived
relationships between processes, files, and network accesses, which helps to model the
relationships of system entities with long time distance and adapts to the problem that APT
attacks are difficult to detect due to their long duration [28].

In addition, in order to reduce the storage and computational overhead of the system.
ConGraph further performs the following optimizations on the constructed provenance
graph to remove redundant and attack-irrelevant nodes and edges without losing the
attack information.

(1) Merge all edges between two nodes that have the same category (e.g., file reads
or writes) and retain only the edges with the earliest timestamps. Duplicate edges
between nodes indicate repeated operations of the nodes over a period of time.
Studies [17,29] have shown that these duplicate edges do not provide additional
valid information for analyzing attacks. The same preprocessing will be used in the
model training and detection phases, ensuring that the method does not affect the
identification of the behavior of the attacking entities.

Electronics 2024, 13, 945 8 of 18

(2) If some nodes and edges are involved in the same type of events, such nodes are
grouped together. For example, if there is communication between process P1 and
three network nodes N1, N2, and N3 over a period of time, there will exist a set of edges
{P1 → N1, P1 → N2, P1 → N3}. At this point, we combine the three edges between
N1, N2, and N3 to form {P1 → N1−2−3}, where N1−2−3 stands for the fused node.

(4) Remove all isolated points from the provenance graph. APT attacks usually re-
quire a set of processes and files to cooperate with each other in order to realize the
corresponding attack purpose; therefore, we consider isolated nodes irrelevant to
the attack.

4.3. Process–Context Collector

ConGraph further collects process and file node semantic information in the prove-
nance graph by collecting process context at system runtime. The process context includes
process API call sequences, network behavior, and features of accessed files. The process
context is enumerated in Table 1.

Table 1. Process context collected at system runtime.

Categories No. Description

Process Feature

Runtime Behavior

1 Keylogger
2 Recording microphone
3 Grab screen
4 Execute sensitive commands
5 Access sensitive files
6 the process has no GUI

Network Behavior
7 The ancestor process has network

connections
8 The process accesses the Internet
9 Download file from the Internet

File Feature
10 The file is downloaded from the Internet
11 The file does not contain a valid signature
12 The file is a system-sensitive file

Specifically, for process behaviors, such as screen recording and keyboard logging,
an API call collection tool is utilized (e.g., API Monitor in Windows) to capture API call
sequences from various processes during their operation. This enables a detailed recording
of each process’s behavioral patterns. By identifying the API calls linked to these specific
behaviors, profiles of API sequences corresponding to these behaviors can be constructed.
Subsequently, by matching these API call sequences with the pre-established API sequence
features during system runtime, we are able to obtain the process context.

In addition, to further analyze other behaviors of processes, including whether the
process has a graphical user interface (GUI), whether the process accesses sensitive files
and other process runtime characteristics, as well as file characteristics, ConGraph scans
the system’s runtime processes and uses the Windows SDK and a rule-based approach to
make judgments in order to determine whether the process has a user interface and other
specific features. In addition, it is noted that whether processes try to access sensitive files
can be discovered by checking the relevant attributes and paths of files.

In the CPS environment, ConGraph gathers node information from connected devices.
For instance, in a WSN, the sink node collects and processes data from sensor nodes before
transmitting it to the management computer. ConGraph collects statistical information,
such as sensor node resource occupancy, the number of packets received and sent by nodes,
node packet loss rate, and node energy consumption, in the management computer. These
features will serve as the process context for the WSN control process. They are used to
identify anomalies in WSN and detect potential attack activity in the system.

Electronics 2024, 13, 945 9 of 18

According to the process context shown in Table 1, the context of the process node vp
and the file node v f are defined in (1), (2):

context
(
vp

)
=< Pid, Timestamp, RuntimeBehavior, NetworkBehavior > (1)

context
(

v f

)
=< FilePath, Timestamp, FileFeature > (2)

In order to facilitate the fusion of context information and sequence construction,
ConGraph represents the process–context information and file characteristics as a text
sequence. For example, the process context context(P) of process P (Pid = 3698) at the
moment of t1 is denoted as < 3698, t1, grab_screen, access_Internet >, which indicates that
the runtime behavior of process P at the moment of t1 consists of grabbing the screen and
the network behavior consists of accessing the Internet.

The process–context collector module enables a more comprehensive depiction of
the behavioral patterns of the processes in the provenance graph. This includes their
associations with file nodes and details of network behavior. The resulting information
enhances ConGraph’s interpretability for APT attack detection and enables more effective
analysis and detection of such attacks.

4.4. Sequence Construction and Context Fusion

After obtaining the provenance graph and the corresponding process–context infor-
mation, they are fused to construct the corresponding sequence of provenance graphs for
model training and detection.

Identify Active Nodes. ConGraph identifies all nodes from the provenance graph that
are associated with critical behaviors and have active behaviors. For the provenance graph
G = (V, E), where V denotes the set of nodes in the provenance graph, and it is associated
with three types, namely processes node, file node, and network node, and E denotes
the set of edges in the provenance graph along with multiple edge types (e.g., process
creation, destruction, and file read, write operations, etc.), which are used to represent
the interactions of nodes within the system. The active node set Vactive = {Vout ∪ VWC} is
constructed by traversing the provenance graph G. This involves identifying all nodes from
G whose out-degree is bigger than 0.

Vout = {vi |vi ∈ V, out − degree(vi)> 0} (3)

and whose edge types are destination nodes in the set of critical behaviors ACT.

VWC = {vdst | vdst ∈ V, ∃e(vsrc, vdst) ∈ E, type(e(vsrc, vdst)) ∈ ACT} (4)

Here, ACT = {write, connect, encrypt, · · ·} denotes the set of critical behaviors;
e(vsrc, vdst) denotes the edge between the source node vsrc and the destination node vdst,
and type(·) represents the type of the edge. Nodes in VWC typically represent files or
network nodes that are actively modified or accessed by processes; such files or network
nodes are usually accessed by other nodes and may become critical links in the attack path.

Next, ConGraph constructs the corresponding action set Eactive for the nodes in Vactive.
For a given node vi∈ Vactive, its action set can be represented as

Ei
active = {e(vsrc, vdst)|i ∈ {src, dst}, e(vsrc, vdst) ∈ E, vsrc ∈ Vactive, vdst ∈ Vactive} (5)

where src and dst indicate that the node belongs to the source and destination nodes,
respectively, and e(vsrc, vdst) denotes the edge between vsrc and vdst.

Context Fusion. After identifying the active nodes in the provenance graph, the
collected process context is merged with the provenance-graph nodes. Based on the
timestamp of the collected process context, the pid of the process, and the path of the file
are matched with the set of active nodes Vactive in the provenance graph, the provenance

Electronics 2024, 13, 945 10 of 18

graph fused with the process context GC = (Vactive, Eactive, C) can be obtained, where C
denotes the set of process contexts of the active nodes.

The process of matching nodes from Vactive with the process context defined in Sec-
tion 4.3 involves sequentially taking out nodes and matching them based on their type in
the provenance graph. For a node vp of process type, the attributes in the process context
context

(
vp

)
(Equation (1)) are matched with the pid attribute of the process node, yielding

the set of contexts of the process node vp

Cp =
{

context
(
vp

)∣∣pid
(
vp

)
= pid

(
context

(
vp

))}
(6)

where pid(·) denotes the pid obtained from the process node or the process context. It is
possible for a process node to contain multiple process contexts with different timestamps.
The one that has the closest time stamp will be selected to construct the activity sequence
of the node.

Similarly, for the file node v f , the context set of the file node v f is obtained by match-

ing the path of the file with the path in the file node context information context
(

v f

)
(Equation (2))

C f =
{

context
(

v f

)∣∣∣path
(

v f

)
= path

(
context

(
v f

))}
(7)

where path(·) denotes the path to the file obtained from the file node or context information.
Sequence Construction. In the provenance graph GC that is fused with process context,

the action subgraph Ĝi corresponding to the active node vi is extracted from the provenance
graph fused with the process context GC in terms of node vi in the active node set Vactive.

Ĝi =
(

V̂i
active, Ei

active, Ĉi

)
(8)

where {
V̂i

active =
{

vj
∣∣e(vi, vj

)
or e

(
vj, vi

)
∈ Ei

active
}

Ĉi ⊆ C
(9)

V̂i
active denotes the set of all nodes connected by active node vi through edges within Ei

active,
and Ĉi denotes the set of context information of all nodes within V̂i

active. With the action sub-
graph Ĝi corresponding to the active node vi, we convert the relevant behavior of vi within
the system into its corresponding action sequence seqi =< seqi

1, seqi
2, seqi

3, · · · , seqi
j >.

Specifically, for the activity subgraph Ĝi corresponding to node vi, after sorting the edges
in Ei

active into
{

ei
1, ei

2, ei
3, · · · , ei

j

}
according to the timestamps, ConGraph takes out the edge

ei
j and the corresponding node pair < vi

m, vi
n > from Ei

active, and take out the corresponding

process context of the node pairs from Ĉi, and construct the action sequence of the edge ei
j

and the corresponding node according to Equation (10).

seqi
j =< vi

m, context
(

vi
m

)
, action

(
ei

j

)
, vi

n, context
(

vi
n

)
> (10)

where context(·) denotes the context information of the process, and action(·) denotes the
behavior represented by the edge.

It is worth noting that the construction of the action sequence is time-dependent. As
shown in Figure 4, at the moment of t1, process A forks process B; at the moment of t2,
process A writes the file F1 and process B reads the file F2, and process A does not access
the network before that; at the moment of t3, process A accesses the network, and process B
reads the file F1 and sends it over the network. Hence, the context of process B before t3 will
not record the network behavior of the “ancestor-process access network”. The time-based
sequence construction matches the nodes with the corresponding process context according
to the occurrence time of the event to accurately characterize the runtime behavior of the

Electronics 2024, 13, 945 11 of 18

process, thus improving the ability of the model to capture the association between the
attack behavior and the process context.

Electronics 2024, 13, 945 11 of 18

behavior of the process, thus improving the ability of the model to capture the association
between the attack behavior and the process context.

t1

fork
fork

fork
write read

write read

connect

read
sock_send

t2 t3

A B
A B

F1 F2

A

F1

F2

N1 N2

B

A fork B A fork B; A write F1

B read F2

A fork B; A write F1; A [access network] connect N1

B read F2; B [ancient-process access network] read F1;
B [access network & ancient-process access network]
sock_send N2

Sequence with Context
time

Figure 4. Time-based sequence construction.

After constructing the sequence, it is necessary to anonymize the node and edge repre-
sentations to retain the original semantics of the complete sequence and adapt the sequence-
based model learning. The specific conversion types are shown in Table 2. Taking file nodes
as an example, they will be mapped from low-level semantics to high-level semantics of file
nodes according to the node names and paths. Specifically, the file type is divided into three
categories: system_file for system-operation-related files, program_file for program direc-
tory files, and user_file for documents created or downloaded by the user.

Table 2. Anonymous representation of nodes and edges.

Type Representation

Node
File system_file, program_file, user_file

Process system_process, program_process, user_process
Network socket, web_object, domain, IP_address

Edges bind, sock_send, write, delete, fork, resolve, web_request,
refer, connect, read, executed

Sequence Sampling. Since APT attacks are stealthy, the attacker will conceal its be-
havior in a huge number of system operations, so the amount of attack data and normal
data is unbalanced. Training models on such datasets may result in a model that tends to
learn the features of normal sequences and has a weak recognition ability and low recall
in detecting attack sequences. Therefore, undersample benign samples and oversample
attack samples can be carried out to alleviate the sample imbalance problem. For a large
number of benign samples, we calculate sequence similarity using the Levenshtein dis-
tance [30]. If the similarity between the sequence in the sample and other sequences in
that sample exceeds a certain threshold, we remove it from the sample. For a smaller num-
ber of attack sequences, we oversampled the sequences using a mutation-based mecha-
nism [31] to include more attack sequences that were not triggered by the current scenario.
The oversampling mechanism based on mutation modifies the anonymous representation
of corresponding positions of the sequence to other representations of the same type in
order to cover similar sequences that may appear in other attacks. This preserves the orig-
inal sequence behavior and improves the model’s generalization ability. Specifically, for
an edge sequence 𝑠𝑒𝑞௝௜ (shown in Equation (10)) in the action sequence 𝑠𝑒𝑞௜, we replace
it with other anonymous representations under the same type based on the type of node 𝑣௠௜ and 𝑣௡௜ , as well as edge behavior action൫𝑒௝௜൯ after abstraction.

Sequence Embedding. Finally, the sequence is embedded to convert the anonymous
representation into a numerical one, which ensures that the model can better distinguish
differences between samples during the training process, thus improving the accurate
identification of potential attack behaviors. For the active sequence 𝑠𝑒𝑞௜ of active node

Figure 4. Time-based sequence construction.

After constructing the sequence, it is necessary to anonymize the node and edge
representations to retain the original semantics of the complete sequence and adapt the
sequence-based model learning. The specific conversion types are shown in Table 2. Taking
file nodes as an example, they will be mapped from low-level semantics to high-level
semantics of file nodes according to the node names and paths. Specifically, the file type is
divided into three categories: system_file for system-operation-related files, program_file
for program directory files, and user_file for documents created or downloaded by the user.

Table 2. Anonymous representation of nodes and edges.

Type Representation

Node
File system_file, program_file, user_file

Process system_process, program_process, user_process
Network socket, web_object, domain, IP_address

Edges bind, sock_send, write, delete, fork, resolve,
web_request, refer, connect, read, executed

Sequence Sampling. Since APT attacks are stealthy, the attacker will conceal its
behavior in a huge number of system operations, so the amount of attack data and normal
data is unbalanced. Training models on such datasets may result in a model that tends to
learn the features of normal sequences and has a weak recognition ability and low recall in
detecting attack sequences. Therefore, undersample benign samples and oversample attack
samples can be carried out to alleviate the sample imbalance problem. For a large number
of benign samples, we calculate sequence similarity using the Levenshtein distance [30].
If the similarity between the sequence in the sample and other sequences in that sample
exceeds a certain threshold, we remove it from the sample. For a smaller number of
attack sequences, we oversampled the sequences using a mutation-based mechanism [31]
to include more attack sequences that were not triggered by the current scenario. The
oversampling mechanism based on mutation modifies the anonymous representation of
corresponding positions of the sequence to other representations of the same type in order
to cover similar sequences that may appear in other attacks. This preserves the original
sequence behavior and improves the model’s generalization ability. Specifically, for an
edge sequence seqi

j (shown in Equation (10)) in the action sequence seqi, we replace it with

other anonymous representations under the same type based on the type of node vi
m and

vi
n, as well as edge behavior action

(
ei

j

)
after abstraction.

Electronics 2024, 13, 945 12 of 18

Sequence Embedding. Finally, the sequence is embedded to convert the anonymous
representation into a numerical one, which ensures that the model can better distinguish
differences between samples during the training process, thus improving the accurate
identification of potential attack behaviors. For the active sequence seqi of active node vi,
which contains the node’s contextual information and anonymous behavioral representa-
tion, we use the method described in [31] to map this textualized action sequence into a
vector representation.

4.5. Model Training and Detection

The sequences collected above contain all the activities of the system entities and
their contextual behavioral information, both normal and attack. To learn the activity
patterns of system entities over time, we use a CNN-BiLSTM model to model the process
behavior and learn APT attack behavioral features. This model combines the advantages of
a convolutional neural network (CNN) for extracting spatial features and the capability of
a bidirectional long short-term memory network (BiLSTM) for capturing long-term depen-
dencies to learn the interaction behaviors among system entities. The model architecture is
shown in Figure 5.

Electronics 2024, 13, 945 12 of 18

𝑣௜, which contains the node’s contextual information and anonymous behavioral repre-
sentation, we use the method described in [31] to map this textualized action sequence
into a vector representation.

4.5. Model Training and Detection
The sequences collected above contain all the activities of the system entities and their

contextual behavioral information, both normal and attack. To learn the activity patterns
of system entities over time, we use a CNN-BiLSTM model to model the process behavior
and learn APT attack behavioral features. This model combines the advantages of a con-
volutional neural network (CNN) for extracting spatial features and the capability of a
bidirectional long short-term memory network (BiLSTM) for capturing long-term de-
pendencies to learn the interaction behaviors among system entities. The model architec-
ture is shown in Figure 5.

Input
Layer Embedding Layer CNN Layer Max

Pooling

LSTM

LSTM

LSTM

…

LSTM

LSTM

LSTM

…

BiLSTM Layer
Forward Backward

Dense Layer

sigmoid

Output

…

CONCAT

CONCAT

CONCAT

Figure 5. The architecture of training and detection model.

The input layer receives the vector representation of action sequences as input. To
avoid the problem of gradient vanishing, the input layer requires fixed-length sequence
data. Therefore, we truncate the sequences that exceed the set maximum length. Addition-
ally, the sequences with insufficient length are filled with zero. The input process action
sequences are transformed into dense embedding vectors by the embedding layer to ef-
fectively capture the semantic relevance of process behaviors. A one-dimensional convo-
lutional layer (CNN) is used in conjunction with a MaxPooling layer to extract behavioral
patterns of processes in the action sequence and capture implicit features. This helps to
learn the correlation between the behaviors of the APT attacks in the sequences and the
process context. The bidirectional LSTM layer (BiLSTM) captures long-term associations
of system entities at runtime in long sequences to learn the interactions between attacking
nodes and other relevant system entities. The dense layer outputs the model’s predictions
for process activity sequences through the sigmoid activation function.

In order to learn the features of APT attacks effectively, ConGraph uses binary cross
entropy (BCE) as the loss function of the model, and BCE is defined as follows:

BCE = − 1𝑁 ෍  ே
௜ୀଵ 𝑦௜ ⋅ log൫𝑝(𝑦௜)൯ + (1 − 𝑦௜) ⋅ log൫1 − 𝑝(𝑦௜)൯ (11)

where 𝑁 denotes the number of samples, 𝑦௜ denotes the true label (0 or 1) of the 𝑖th sam-
ple; and 𝑝(𝑦௜) denotes the probability that the model predicts the 𝑖th sample to be a pos-
itive class. The binary cross entropy is adapted to the binary classification detection sce-
nario of APT attack detection and can provide an effective gradient to prevent the problem
of gradient vanishing during the training process, which improves the performance of the
model to learn APT attack behaviors.

Figure 5. The architecture of training and detection model.

The input layer receives the vector representation of action sequences as input. To
avoid the problem of gradient vanishing, the input layer requires fixed-length sequence data.
Therefore, we truncate the sequences that exceed the set maximum length. Additionally, the
sequences with insufficient length are filled with zero. The input process action sequences
are transformed into dense embedding vectors by the embedding layer to effectively
capture the semantic relevance of process behaviors. A one-dimensional convolutional
layer (CNN) is used in conjunction with a MaxPooling layer to extract behavioral patterns
of processes in the action sequence and capture implicit features. This helps to learn the
correlation between the behaviors of the APT attacks in the sequences and the process
context. The bidirectional LSTM layer (BiLSTM) captures long-term associations of system
entities at runtime in long sequences to learn the interactions between attacking nodes and
other relevant system entities. The dense layer outputs the model’s predictions for process
activity sequences through the sigmoid activation function.

In order to learn the features of APT attacks effectively, ConGraph uses binary cross
entropy (BCE) as the loss function of the model, and BCE is defined as follows:

BCE = − 1
N

N

∑
i=1

yi · log(p(yi)) + (1 − yi) · log(1 − p(yi)) (11)

where N denotes the number of samples, yi denotes the true label (0 or 1) of the ith sample;
and p(yi) denotes the probability that the model predicts the ith sample to be a positive
class. The binary cross entropy is adapted to the binary classification detection scenario

Electronics 2024, 13, 945 13 of 18

of APT attack detection and can provide an effective gradient to prevent the problem of
gradient vanishing during the training process, which improves the performance of the
model to learn APT attack behaviors.

5. Experiment
5.1. Dataset and Experimental Setup

During the experiment, we construct similar APT attack environments based on the
dataset provided by ATLAS [31], since the current publicly available dataset lacks process
context at system runtime. The dataset contains system audit logs of APTs in six multi-host
environments and many simulated user activities (e.g., browsing websites and reading
emails) in a Windows environment. Table 3 details the characteristics of the APTs in
the dataset.

Table 3. Overview of the ATLAS dataset.

ID APT Campaign Exploit CVE
Attack Features * Numberof Entity

PL PA INJ IG BD LM DE Attack Non-Attack

M-1 Strategic web compromise [32] 2015-5122 ✓ ✓ ✓ ✓ ✓ ✓ 28 17,565
M-2 Targeted GOV phishing [33] 2015-5199 ✓ ✓ ✓ ✓ ✓ ✓ 36 24,450
M-3 Malvertising dominate [34] 2015-3105 ✓ ✓ ✓ ✓ ✓ ✓ 36 24,424
M-4 Monero miner by Rig [35] 2018-8174 ✓ ✓ ✓ ✓ ✓ ✓ 28 15,378
M-5 Pony campaign [36] 2017-0199 ✓ ✓ ✓ ✓ ✓ ✓ 30 35,671
M-6 Spam campaign [27] 2017-11882 ✓ ✓ ✓ ✓ ✓ ✓ 42 19,580

* PL: Phishing link; PA: Phishing attachment; INJ: Injection; IG: Information gathering; BD: Backdoor; LM: Lateral
movement; DE: Data exfiltration.

The dataset comprises 4.4 GB of audit log data from 6 attack simulations generating
20,000 unique entities. Each attack scenario contains 24 h of audit logs and simulates a
variety of normal user activities. Among them, M-1 to M-6 represent APT attack scenarios
targeting six APTs across multiple hosts. The dataset includes multiple APT attack phases,
such as phishing email links, phishing email attachments, injections, and lateral movement.
In the provenance graph, the nodes associated with the attacks also account for less than
3% of the nodes in the provenance graph, which is similar to real-world scenarios.

To collect process context, we replicate the operational environment of this experiment
by simulating normal user behavior and executing attacks over a period of time, construct-
ing a dataset containing context information. We use this dataset to detect APT activities in
one attack scenario by training models on other attack scenarios. This allows us to evaluate
the effectiveness of ConGraph for APT attack detection in each scenario. For instance, if
the objective is to identify attacks in scenario M-1, a model will be trained using audit logs
from five other attack samples, excluding M-1. The performance of the trained model in
detecting attacks will be tested using the audit logs of attack scenario M-1 to ensure that the
training and testing data do not overlap. The model will be trained for each attack scenario
for detection, and the sequences associated with the nodes will be randomly divided into a
training set (75%) and a validation set (25%).

5.2. Comparison Experiment

We compare the proposed detection methods with the following existing models:
DeepLog [25], Deepro [37], and LogBert [38]. The comparison results are shown in Table 4,
where the bold data are the best results for the corresponding scenarios. DeepLog utilizes an
anomaly detection model of LSTM to model system logs as natural language sequences and
learns logging patterns from normal execution. Deepro designs provenance graphs with
three new meta-paths to extract causality in the provenance graph and uses a customized
MAGNN model for APT attack detection. LogBert is a self-supervised framework for log
anomaly detection based on Transformer’s Bidirectional Encoder Representation (BERT).

Electronics 2024, 13, 945 14 of 18

Table 4. Results of comparison experiment.

Scenario Methods
Metrics

Precision Recall F1-Score

M-1

DeepLog 0.8064 0.6854 0.6496
Deepro 0.8947 1 0.9444
LogBert 0.7512 0.5724 0.6497

ConGraph 0.9936 0.9935 0.9935

M-2

DeepLog 0.7806 0.6104 0.5408
Deepro 0.8824 0.9357 0.9091
LogBert 0.707 0.4725 0.5664

ConGraph 0.9922 0.992 0.992

M-3

DeepLog 0.7824 0.6158 0.5493
Deepro 0.85 0.9444 0.8947
LogBert 0.7329 0.4758 0.577

ConGraph 0.969 0.9684 0.9684

M-4

DeepLog 0.7843 0.6214 0.5582
Deepro 1 0.875 0.9333
LogBert 0.7753 0.5774 0.6619

ConGraph 0.9603 0.9591 0.9591

M-5

DeepLog 0.7878 0.6239 0.5758
Deepro 0.9529 0.8929 0.9091
LogBert 0.6996 0.4847 0.5727

ConGraph 0.916 0.9051 0.9095

M-6

DeepLog 0.7863 0.6274 0.5674
Deepro 1 0.7333 0.8462
LogBert 0.7312 0.5518 0.629

ConGraph 0.8592 0.8184 0.8131

Avg.

DeepLog 0.7879 0.6306 0.5735
Deepro 0.9255 0.8968 0.9061
LogBert 0.7329 0.5224 0.6094

ConGraph 0.9467 0.9394 0.9392

By comparing the experiments, it can be concluded that ConGraph achieves a precision
of 94.67% and a recall of 93.94% in six APT attack scenarios involving multiple hosts. In
scenario M1, the attacker exploits CVE-2015-5122 [32] by tricking the user into clicking
on a link that redirects to a malicious website. The attacker then uses this link to exploit
the CVE-2015-5122 vulnerability, causing the Firefox plugin to break and allowing the
attacker to write the payload program ‘payload.exe’ onto the compromised host. Then,
the payload program scans the host for files, establishes a connection with the attacker,
and uploads all PDF files. The low recall of DeepLog and LogBert in this scenario is
attributed to their reliance on log templates defined in advance. These models only extract
log keys from log entries and submit them into the detection model. Furthermore, Deepro
utilizes a heterogeneous graph neural network to detect APT attack activities within the
provenance graph. However, due to the absence of process–context information, Deepro
may misidentify certain benign activities as attacks, resulting in a decrease in precision.

Figure 6 shows the precision of ConGraph in classifying benign and malicious se-
quences for scenarios M1 to M6. Upon analyzing the false positives that arose during the
experiments, it was discovered that in the M-5 and M-6 attack scenarios, most of the false
positives were caused by benign IP addresses. These normal IP communications are similar
to the malicious IP addresses that perform command and control (C&C) behaviors, result-
ing in a degradation of the model’s performance in classifying such malicious IP addresses.
However, administrators can filter out false positives by examining traffic content and
domain registration information to identify the corresponding IP addresses.

Electronics 2024, 13, 945 15 of 18

Electronics 2024, 13, 945 15 of 18

addresses. However, administrators can filter out false positives by examining traffic con-
tent and domain registration information to identify the corresponding IP addresses.

Figure 6. Precision of benign and malicious sequences in scenarios M1 to M6.

5.3. Ablation Experiment
In this section, we explore the effectiveness of the proposed process context for APT

attack detection. To demonstrate that process–context information provides critical attack
semantic information in sequence model classification, the collected data is re-embedded
and the model is trained in a multi-host scenario after removing the process context.

Table 5 illustrates the results of our ablation experiments, and the bold data are the
best results for the corresponding scenarios. The baseline in the table indicates that the
process context has been removed from ConGraph. As can be summarized from the table,
in the M-1 multi-host attack scenario, our method improves the precision rate by 5.13%,
the recall rate by 6.74%, and the F-1 score by 6.74%. It implies that the introduction of
process context provides important contextual information to the sequence model, which
enables it to classify APT attack entities more accurately.

Table 5. Results of ablation experiment.

Metrics
Scenarios Precision Recall F1-Score

M-1 baseline 0.9323 0.9261 0.9261
+process context 0.9836 0.9935 0.9935

M-2 baseline 0.9892 0.9889 0.9889
+process context 0.9922 0.992 0.992

M-3 baseline 0.9466 0.9432 0.9431
+process context 0.969 0.9684 0.9684

M-4 baseline 0.9347 0.9282 0.9279
+process context 0.9603 0.9591 0.9591

M-5 baseline 0.8941 0.874 0.8724
+process context 0.9155 0.9051 0.9045

M-6 baseline 0.8415 0.7835 0.7739
+process context 0.8592 0.8184 0.8131

Figure 6. Precision of benign and malicious sequences in scenarios M1 to M6.

5.3. Ablation Experiment

In this section, we explore the effectiveness of the proposed process context for APT
attack detection. To demonstrate that process–context information provides critical attack
semantic information in sequence model classification, the collected data is re-embedded
and the model is trained in a multi-host scenario after removing the process context.

Table 5 illustrates the results of our ablation experiments, and the bold data are the
best results for the corresponding scenarios. The baseline in the table indicates that the
process context has been removed from ConGraph. As can be summarized from the table,
in the M-1 multi-host attack scenario, our method improves the precision rate by 5.13%, the
recall rate by 6.74%, and the F-1 score by 6.74%. It implies that the introduction of process
context provides important contextual information to the sequence model, which enables it
to classify APT attack entities more accurately.

Table 5. Results of ablation experiment.

Scenarios
Metrics

Precision Recall F1-Score

M-1
baseline 0.9323 0.9261 0.9261

+process context 0.9836 0.9935 0.9935

M-2
baseline 0.9892 0.9889 0.9889

+process context 0.9922 0.992 0.992

M-3
baseline 0.9466 0.9432 0.9431

+process context 0.969 0.9684 0.9684

M-4
baseline 0.9347 0.9282 0.9279

+process context 0.9603 0.9591 0.9591

M-5
baseline 0.8941 0.874 0.8724

+process context 0.9155 0.9051 0.9045

M-6
baseline 0.8415 0.7835 0.7739

+process context 0.8592 0.8184 0.8131

The M-6 scenario involves exploiting the CVE-2017-11882 vulnerability to launch an
attack on the target machine. The victim host downloads an email with a malicious payload,
which allows the attacker to gain privileges on the target host. The attacker then delivers
other payloads and steals files from the target system to gain higher control privileges and
maintain persistent control over the target. Upon the ablation experiment results, it was

Electronics 2024, 13, 945 16 of 18

discovered that the M-4 scenario, lacking support from the process context, resulted in
high false negatives. The reason for this is that the attacker accessed sensitive files on the
target system when stealing files. In this case, the attack sequence without process–context
information appears similar to the behavior sequence of a normal process accessing files,
making it difficult for the model to differentiate between normal and attack sequences.

6. Conclusions

In this paper, we proposed ConGraph, an APT detection method based on a prove-
nance graph combined with process context in CPS environments. ConGraph collects
provenance data from the system to construct the provenance graph. Additionally, we
present a module for collecting process context to detect APT attacks. The module col-
lects data on file-access behavior, network-access behavior, and interactive relationships
between processes to enhance the provenance-graph structure. This allows for a more
granular portrayal of process behavioral patterns. After reducing the provenance graph,
the active nodes are extracted, the process context is fused with the reduced graph, and the
textualized action sequences of the active nodes are extracted. Then, we detect APT attacks
using the sequence-based model after anonymizing and embedding the sequence. By
simulating APT attacks to collect process–context information, we constructed a simulated
attack dataset. Based on this dataset, we conducted a comparative analysis of ConGraph
with other machine learning (DeepLog) and deep learning (LogBert, Deepro) based APT
detection methods. In 6 experimental scenarios, ConGraph demonstrated an average im-
provement of 13.12%, 25.61%, and 24.28% in precision, recall, and F1 score, respectively,
compared to the aforementioned methods.

However, introducing a process–context information collector in a CPS environment
may add overhead to the system. Conversely, the absence of process context may degrade
the model’s classification performance for unknown threats. For instance, to identify partial
process runtime and file features through non-API calls, it is essential to obtain a list of
runtime processes in the system and evaluate them individually. The process context that
requires individual evaluation consumes system resources for detection purposes. In the
CPS environment, computational resources may be limited, and researchers need to dynam-
ically add or delete process context based on the actual system resource situation to balance
system performance and detection accuracy. In future work, researchers can improve the
process–context screening method by considering the following aspects: Analyzing APT
malware-related attack patterns to identify behavioral characteristics of malware and using
genetic algorithms to find combinations of process context that distinguish between attack
and benign behaviors.

Author Contributions: Conceptualization, W.C.; methodology, L.L.; software, L.L.; validation, L.L.;
formal analysis, L.L.; investigation, L.L.; resources, W.C.; data curation, L.L.; writing—original
draft preparation, L.L.; writing—review and editing, W.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the National Key Research and Development Program
of China (020YFB1805405, 2019QY0800) and the National Natural Science Foundation of China
(62372313, 62002248, U19A2068).

Data Availability Statement: The datasets used in this paper are publicly available.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Han, S.; Xie, M.; Chen, H.H.; Ling, Y. Intrusion detection in cyber-physical systems: Techniques and challenges. IEEE Syst. J. 2014,

8, 1052–1062.
2. Langner, R. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Secur. Priv. 2011, 9, 49–51. [CrossRef]
3. Kumar, R.; Kela, R.; Singh, S.; Trujillo-Rasua, R. APT attacks on industrial control systems: A tale of three incidents. Int. J. Crit.

Infrastruct. Prot. 2022, 37, 100521. [CrossRef]

https://doi.org/10.1109/MSP.2011.67
https://doi.org/10.1016/j.ijcip.2022.100521

Electronics 2024, 13, 945 17 of 18

4. Antonakakis, M.; April, T.; Bailey, M.; Bernhard, M.; Bursztein, E.; Cochran, J.; Durumeric, Z.; Halderman, J.A.; Invernizzi, L.;
Kallitsis, M.; et al. Understanding the mirai botnet. In Proceedings of the 26th USENIX Security Symposium (USENIX Security
17), Vancouver, BC, Canada, 16–18 August 2017; pp. 1093–1110.

5. Sicato, J.C.S.; Sharma, P.K.; Loia, V.; Park, J.H. VPNFilter malware analysis on cyber threat in smart home network. Appl. Sci.
2019, 9, 2763. [CrossRef]

6. European Union Agency for Cybersecurity (ENISA). Baseline Security Recommendations for IoT. Available online: https://www.
enisa.europa.eu/publications/baseline-security-recommendations-for-iot/@@download/fullReport (accessed on 8 October
2023).

7. NIST. Cybersecurity for IoT Program. Available online: https://www.nist.gov/itl/applied-cybersecurity/nist-cybersecurity-iot-
program/consumer-iot-cybersecurity (accessed on 8 October 2023).

8. Cirne, A.; Sousa, P.R.; Resende, J.S.; Antunes, L. IoT security certifications: Challenges and potential approaches. Comput. Secur.
2022, 116, 102669. [CrossRef]

9. Anselmi, G.; Mandalari, A.M.; Lazzaro, S.; De Angelis, V. COPSEC: Compliance-Oriented IoT Security and Privacy Evaluation
Framework. In Proceedings of the 29th Annual International Conference on Mobile Computing and Networking, Madrid, Spain,
2–6 October 2023; pp. 1–3.

10. Alshamrani, A.; Myneni, S.; Chowdhary, A.; Huang, D. A survey on advanced persistent threats: Techniques, solutions, challenges,
and research opportunities. IEEE Commun. Surv. Tutor. 2019, 21, 1851–1877. [CrossRef]

11. Bridges, R.A.; Glass-Vanderlan, T.R.; Iannacone, M.D.; Vincent, M.S.; Chen, Q. A survey of intrusion detection systems leveraging
host data. ACM Comput. Surv. CSUR 2019, 52, 1–35. [CrossRef]

12. Singla, A.; Bertino, E.; Verma, D. Preparing network intrusion detection deep learning models with minimal data using adversarial
domain adaptation. In Proceedings of the 15th ACM Asia Conference on Computer and Communications Security, Taipei, Taiwan,
5–9 October 2020; pp. 127–140.

13. Axelsson, S. Intrusion Detection Systems: A Survey and Taxonomy; Chalmers University of Technology: Goteborg, Sweden, 2000.
14. Han, X.; Pasquier, T.; Ranjan, T.; Goldstein, M.; Seltzer, M. {FRAPpuccino}: Fault-detection through Runtime Analysis of

Provenance. In Proceedings of the 9th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 17), Santa Clara, CA,
USA, 10–11 July 2017.

15. Han, X.; Pasquier, T.; Bates, A.; Mickens, J.; Seltzer, M. Unicorn: Runtime provenance-based detector for advanced persistent
threats. arXiv 2020, arXiv:2001.01525.

16. Zengy, J.; Wang, X.; Liu, J.; Chen, Y.; Liang, Z.; Chua, T.S.; Chua, Z.L. Shadewatcher: Recommendation-guided cyber threat
analysis using system audit records. In Proceedings of the 2022 IEEE Symposium on Security and Privacy (SP), San Francisco,
CA, USA, 22–26 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 489–506.

17. Hossain, M.N.; Milajerdi, S.M.; Wang, J.; Eshete, B.; Gjomemo, R.; Sekar, R.; Stoller, S.; Venkatakrishnan, V. {SLEUTH}: Real-time
attack scenario reconstruction from {COTS} audit data. In Proceedings of the 26th USENIX Security Symposium (USENIX Security
17), Vancouver, BC, Canada, 16–18 August 2017; pp. 487–504.

18. Yang, J.; Zhang, Q.; Jiang, X.; Chen, S.; Yang, F. Poirot: Causal correlation aided semantic analysis for advanced persistent threat
detection. IEEE Trans. Dependable Secur. Comput. 2021, 19, 3546–3563. [CrossRef]

19. Milajerdi, S.M.; Gjomemo, R.; Eshete, B.; Sekar, R.; Venkatakrishnan, V. Holmes: Real-time apt detection through correlation of
suspicious information flows. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA,
19–23 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1137–1152.

20. Xiong, C.; Zhu, T.; Dong, W.; Ruan, L.; Yang, R.; Cheng, Y.; Chen, Y.; Cheng, S.; Chen, X. CONAN: A practical real-time APT
detection system with high accuracy and efficiency. IEEE Trans. Dependable Secur. Comput. 2020, 19, 551–565. [CrossRef]

21. Liu, Y.; Zhang, M.; Li, D.; Jee, K.; Li, Z.; Wu, Z.; Rhee, J.; Mittal, P. Towards a Timely Causality Analysis for Enterprise Security. In
Proceedings of the Network and Distributed Systems Security (NDSS), San Diego, CA, USA, 18–21 February 2018.

22. Hassan, W.U.; Guo, S.; Li, D.; Chen, Z.; Jee, K.; Li, Z.; Bates, A. Nodoze: Combatting threat alert fatigue with automated
provenance triage. In Proceedings of the Network and Distributed Systems Security Symposium, San Diego, CA, USA, 24–27
February . 2019.

23. Wang, S.; Wang, Z.; Zhou, T.; Sun, H.; Yin, X.; Han, D.; Zhang, H.; Shi, X.; Yang, J. Threatrace: Detecting and tracing host based
threats in node level through provenance graph learning. IEEE Trans. Inf. Forensics Secur. 2022, 17, 3972–3987. [CrossRef]

24. Liu, F.; Wen, Y.; Zhang, D.; Jiang, X.; Xing, X.; Meng, D. Log2vec: A heterogeneous graph embedding based approach for detecting
cyber threats within enterprise. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
London, UK, 11–15 November 2019; pp. 1777–1794.

25. Du, M.; Li, F.; Zheng, G.; Srikumar, V. Deeplog: Anomaly detection and diagnosis from system logs through deep learning. In
Proceedings of the Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX,
USA, 30 October–3 November 2017; pp. 1285–1298.

26. Li, T.; Jiang, Y.; Lin, C.; Obaidat, M.S.; Shen, Y.; Ma, J. Deepag: Attack graph construction and threats prediction with bi-directional
deep learning. IEEE Trans. Dependable Secur. Comput. 2022, 20, 740–757. [CrossRef]

27. Ramos, C. Spam Campaigns with Malware Exploiting CVE-2017-11882 Spread in Australia and Japan. Available online:
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/spam/3655/spam-campaigns-with-malware-exploiting-cve2
01711882-spread-in-australia-and-japan (accessed on 6 June 2020).

https://doi.org/10.3390/app9132763
https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot/@@download/fullReport
https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot/@@download/fullReport
https://www.nist.gov/itl/applied-cybersecurity/nist-cybersecurity-iot-program/consumer-iot-cybersecurity
https://www.nist.gov/itl/applied-cybersecurity/nist-cybersecurity-iot-program/consumer-iot-cybersecurity
https://doi.org/10.1016/j.cose.2022.102669
https://doi.org/10.1109/COMST.2019.2891891
https://doi.org/10.1145/3344382
https://doi.org/10.1109/TDSC.2021.3101649
https://doi.org/10.1109/TDSC.2020.2971484
https://doi.org/10.1109/TIFS.2022.3208815
https://doi.org/10.1109/TDSC.2022.3143551
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/spam/3655/spam-campaigns-with-malware-exploiting-cve201711882-spread-in-australia-and-japan
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/spam/3655/spam-campaigns-with-malware-exploiting-cve201711882-spread-in-australia-and-japan

Electronics 2024, 13, 945 18 of 18

28. Chen, T.; Dong, C.; Lv, M.; Song, Q.; Liu, H.; Zhu, T.; Xu, K.; Chen, L.; Ji, S.; Fan, Y. APT-KGL: An Intelligent APT Detection
System Based on Threat Knowledge and Heterogeneous Provenance Graph Learning. IEEE Trans. Dependable Secur. Comput. 2022,
1–15. [CrossRef]

29. Xu, Z.; Wu, Z.; Li, Z.; Jee, K.; Rhee, J.; Xiao, X.; Xu, F.; Wang, H.; Jiang, G. High fidelity data reduction for big data security
dependency analyses. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, 24–28 October 2016; pp. 504–516.

30. Beijering, K.; Gooskens, C.; Heeringa, W. Predicting intelligibility and perceived linguistic distance by means of the Levenshtein
algorithm. Linguist. Neth. 2008, 25, 13–24. [CrossRef]

31. Alsaheel, A.; Nan, Y.; Ma, S.; Yu, L.; Walkup, G.; Celik, Z.B.; Zhang, X.; Xu, D. {ATLAS}: A sequence-based learning approach for
attack investigation. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Vancouver, BC, Canada,
11–13 August 2021; pp. 3005–3022.

32. FireEye Threat Intelligence. Second Adobe Flash Zeroday CVE-2015-5122 from Hackingteam Exploited in Strategic Web
Compromise Targeting Japanese Victims. Available online: https://www.fireeye.com/blog/threat-research/2015/07/second_
adobe_flashz0.html (accessed on 6 June 2020).

33. Paganini, P. Phishing Campaigns Target US Government Agencies Exploiting Hacking Team Flaw CVE-2015-5119. Available
online: https://securityaffairs.co/wordpress/38707/cyber-crime/phishing-cve-2015-5119.html (accessed on 6 June 2020).

34. Li, B.; Chen, J.C. Exploit Kits in 2015: Flash Bugs, Compromised Sites, Malvertising Dominate. Available online: https://blog.
trendmicro.com/trendlabs-security-intelligence/exploit-kits-2015-flash-bugs-compromised-sites-malvertising-dominate/ (ac-
cessed on 6 June 2020).

35. Trend Micro. Rig Exploit Kit Now Using CVE-2018-8174 to Deliver Monero Miner. Available online: https://blog.trendmicro.
com/trendlabs-security-intelligence/rig-exploit-kit-now-using-cve-2018-8174-to-deliver-monerominer/ (accessed on 6 June
2020).

36. Jiang, G.; Mohandas, R.; Leathery, J.; Berry, A.; Galang, L. CVE-2017-0199: In the Wild Attacks Leveraging HTA Handler. Available
online: https://www.fireeye.com/blog/threat-research/2017/04/cve-2017-0199-hta-handler.html (accessed on 6 June 2020).

37. Yan, N.; Wen, Y.; Chen, L.; Wu, Y.; Zhang, B.; Wang, Z.; Meng, D. Deepro: Provenance-based APT Campaigns Detection via GNN.
In Proceedings of the 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom), Wuhan, China, 9–11 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 747–758.

38. Guo, H.; Yuan, S.; Wu, X. Logbert: Log anomaly detection via bert. In Proceedings of the 2021 International Joint Conference on
Neural Networks (IJCNN), Shenzhen, China, 18-22 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–8.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TDSC.2022.3229472
https://doi.org/10.1075/avt.25.05bei
https://www.fireeye.com/blog/threat-research/2015/07/second_adobe_flashz0.html
https://www.fireeye.com/blog/threat-research/2015/07/second_adobe_flashz0.html
https://securityaffairs.co/wordpress/38707/cyber-crime/phishing-cve-2015-5119.html
https://blog.trendmicro.com/trendlabs-security-intelligence/exploit-kits-2015-flash-bugs-compromised-sites-malvertising-dominate/
https://blog.trendmicro.com/trendlabs-security-intelligence/exploit-kits-2015-flash-bugs-compromised-sites-malvertising-dominate/
https://blog.trendmicro.com/trendlabs-security-intelligence/rig-exploit-kit-now-using-cve-2018-8174-to-deliver-monerominer/
https://blog.trendmicro.com/trendlabs-security-intelligence/rig-exploit-kit-now-using-cve-2018-8174-to-deliver-monerominer/
https://www.fireeye.com/blog/threat-research/2017/04/cve-2017-0199-hta-handler.html

	Introduction
	Related Work
	Preliminary
	Threat Model
	Definitions

	Proposed Model of APT Detection
	System Overview of ConGraph
	Log Preprocessing
	Process–Context Collector
	Sequence Construction and Context Fusion
	Model Training and Detection

	Experiment
	Dataset and Experimental Setup
	Comparison Experiment
	Ablation Experiment

	Conclusions
	References

