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Abstract: Meteorological disasters on highways can significantly reduce road traffic efficiency. Low
visibility caused by dense fog is a severe meteorological disaster that greatly increases the incidence
of traffic accidents on highways. Accurately predicting highway visibility and taking timely counter-
measures can mitigate the impact of meteorological disasters and enhance traffic safety. This paper
introduces the ATCNet model for highway visibility prediction. In ATCNet, we integrate Transformer,
Capsule Networks (CapsNet), and self-attention mechanisms to leverage their respective comple-
mentary strengths. The Transformer component effectively captures the temporal characteristics
of the data, while the Capsule Network efficiently decodes the spatial correlations and hierarchical
structures among multidimensional meteorological elements. The self-attention mechanism, serving
as the final decision-refining step, ensures that all key temporal and spatial hierarchical information
is fully considered, significantly enhancing the accuracy and reliability of the predictions. This
integrated approach is crucial in understanding highway visibility prediction tasks influenced by tem-
poral variations and spatial complexities. Additionally, this study provides a self-collected publicly
available dataset, WD13VIS, for meteorological research related to highway traffic in high-altitude
mountain areas. This study evaluates the model’s performance in terms of Mean Squared Error (MSE)
and Mean Absolute Error (MAE). Experimental results show that our ATCNet reduces the MSE and
MAE by 1.21% and 3.7% on the WD13VIS dataset compared to the latest time series prediction model
architecture. On the comparative dataset WDVigoVis, our ATCNet reduces the MSE and MAE by
2.05% and 5.4%, respectively. Our model’s predictions are accurate and effective, and our model
shows significant progress compared to competing models, demonstrating strong universality. This
model has been integrated into practical systems and has achieved positive results.

Keywords: traffic; meteorological disaster; atmospheric visibility; forecasting; deep learning; transformer
networks; capsule networks (CapsNet); attention mechanisms

1. Introduction

With the advancement of vehicles and the continuous development of transportation
infrastructure, the need for road safety has become more urgent. Typical meteorological
disasters along highways are a major cause of decreased road traffic efficiency [1]. In recent
years, there has been growing concern about the impact of traffic-related meteorological
disasters on road traffic. These disasters refer to traffic accidents and congestion caused
by sudden or adverse weather events, severely affecting road traffic efficiency [2]. For
example, severe meteorological disasters like dense fog and heavy snow can cause low
visibility and slippery road surfaces, increasing the likelihood of various traffic accidents [3].
Extreme weather conditions such as typhoons and heavy rain can lead to road damage
and traffic control, significantly impacting transportation efficiency [4]. Therefore, effective
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warning and control of traffic meteorological disaster events can reduce the incidence of
traffic accidents, thereby enhancing road traffic efficiency [5].

In traffic meteorological disasters, low visibility is a critical factor, especially when fog
suddenly envelops highways, increasing the risk of multiple-vehicle collisions. For instance,
according to data from the U.S. Federal Highway Administration, over 38,700 vehicle acci-
dents occur annually in fog, resulting in more than 600 deaths and over 16,300 injuries [6].
Yunnan Province in China, characterized by its plateau and mountainous terrain, com-
monly faces low-visibility issues. The province has an extensive road network, including
significant highways, which are particularly susceptible to risks associated with low visibil-
ity in high-altitude areas. Therefore, accurate visibility prediction is crucial for effective
traffic control in these regions.

Figure 1 shows real-scene photographs collected from the Yunnan Province Plateau
Mountain Area Traffic Meteorological Database, documenting the visibility changes at the
same spatial location over 36 min.
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Figure 1. Real-world scenario of highway visibility changes. (a) Visibility 3406 m (datetime: 
24.12.2023 14:40:04). (b) Visibility 528 m (datetime: 24.12.2023 14:52:04). (c) Visibility 166 m (date: 
24.12.2023 15:04:04). (d) Visibility 323 m (datetime: 24.12.2023 15:16:04). The image’s timestamp in 
the upper left is captured by the video surveillance, displayed in Chinese datetime format. The 
highway’s central electronic sign, in Mandarin, advises ‘Drive cautiously when entering tunnel’. 

Highway visibility prediction technology is based on analyzing meteorological and 
related data, utilizing computer models and algorithms to predict future visibility values 
under certain assessment criteria. Highway visibility prediction can be provided in re-
al-time to traffic management departments or drivers through means such as imple-
menting variable speed limits on roads, assisting them in taking appropriate control 
measures to prevent or reduce traffic accidents caused by adverse weather conditions. 

Traditional road visibility prediction methods primarily use statistical and regres-
sion approaches. However, these methods have lower prediction accuracy, longer com-
putation times, and cumbersome model structures, making them unsuitable for the de-
mand of fast and accurate visibility prediction on highways. 

In recent years, with the widespread application of deep learning technology in 
fields such as computer vision and natural language processing, progress has also been 
made in road visibility prediction. Road visibility prediction based on deep learning uti-

Figure 1. Real-world scenario of highway visibility changes. (a) Visibility 3406 m (datetime: 24.12.2023
14:40:04). (b) Visibility 528 m (datetime: 24.12.2023 14:52:04). (c) Visibility 166 m (date: 24.12.2023
15:04:04). (d) Visibility 323 m (datetime: 24.12.2023 15:16:04). The image’s timestamp in the upper left
is captured by the video surveillance, displayed in Chinese datetime format. The highway’s central
electronic sign, in Mandarin, advises ‘Drive cautiously when entering tunnel’.

Highway visibility prediction technology is based on analyzing meteorological and
related data, utilizing computer models and algorithms to predict future visibility values
under certain assessment criteria. Highway visibility prediction can be provided in real-
time to traffic management departments or drivers through means such as implementing
variable speed limits on roads, assisting them in taking appropriate control measures to
prevent or reduce traffic accidents caused by adverse weather conditions.

Traditional road visibility prediction methods primarily use statistical and regression
approaches. However, these methods have lower prediction accuracy, longer computation
times, and cumbersome model structures, making them unsuitable for the demand of fast
and accurate visibility prediction on highways.

In recent years, with the widespread application of deep learning technology in
fields such as computer vision and natural language processing, progress has also been
made in road visibility prediction. Road visibility prediction based on deep learning
utilizes neural networks’ adaptability and non-linear mapping capabilities. By learning
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and feature extraction from sample data, it achieves road visibility prediction results that
meet evaluation standards.

There are still challenges in applying deep learning methods in road visibility pre-
diction. For instance, current deep learning-based visibility prediction techniques mainly
rely on image data samples and require high-quality image samples for data collection.
However, image collection and transmission can be easily affected by factors unrelated to
meteorological conditions, such as network transmission issues, hardware limitations, and
environmental interference, which may degrade data quality or interrupt data transmis-
sion. Additionally, some prediction models are overly complex, and the meteorological
dimension of sample data is insufficient, affecting the accuracy and reliability of predictions.

Therefore, deep learning techniques for visibility prediction based on multidimen-
sional non-image data are urgently needed to improve the accuracy and robustness of
highway visibility prediction.

This paper constructs a dataset based on meteorological data collected from specialized
meteorological equipment on highways in the plateau mountain areas of Yunnan Province,
China, and proposes the ATCNet model. This model combines the Transformer, Capsule
Networks, and self-attention mechanisms, fully leveraging their complementary advan-
tages in capturing temporal features, understanding spatial relationships, and optimizing
the decision-making process. These are used to improve the accuracy and robustness of
highway visibility prediction under complex meteorological conditions. Comparative ex-
periments and ablation studies with competing models demonstrate that each component
of these three elements is indispensable. The model has achieved good results, effectively
meeting the practical needs of highway management in road visibility prediction, and
significantly reducing the probability of traffic accidents.

2. Related Work

At the outset of visibility prediction research, traditional methods primarily leveraged
statistical and regression approaches to model visibility under varying weather conditions.
These foundational techniques, while effective in their time, often faced limitations in
handling the complex, multifaceted nature of visibility prediction, especially under diverse
and dynamic meteorological conditions. Recent advancements, as explored in this section,
have significantly extended beyond these traditional frameworks, employing numerical
simulations, advanced machine learning models, and multimodality approaches to offer
enhanced accuracy, adaptability, and comprehensive understanding of visibility factors.
This evolution reflects the field’s progression towards more sophisticated, data-driven
methodologies capable of addressing the nuanced challenges of visibility prediction.

2.1. Numerical Simulation-Based Methods

Numerical simulation methods can model the occurrence, development, and dissi-
pation of low-visibility weather, providing a theoretical basis for prediction. Fernández-
González et al. [7] conducted numerical prediction research on radiation and CBL fog
events in Iran using the WRF model, a globally used numerical weather forecasting model
suitable for simulating low-visibility weather. Pahlavan et al. [8] focused on different model
configurations and visibility predictions using the WRF model, exploring the impact of
different configurations on visibility prediction accuracy, and offering new perspectives for
enhancing accuracy. He et al. [9] combined data and video to quantitatively analyze the
evolution of dense fog. Kim et al. [10] used ground observation data from the Automated
Surface Observing System (ASOS) and air pollutant data from the ECMWF Copernicus
Atmospheric Monitoring Service (CAMS) model to predict visibility in Korea using the Ran-
dom Forest (RF) model (VISRF). Their method showed smaller biases below 2 km than other
visibility parameterization schemes. Qian et al. [11] investigated the application of anomaly-
based weather analysis for low-visibility prediction in coastal fog at Ningbo Zhoushan Port in
East China, enhancing prediction accuracy with anomaly weather analysis.



Electronics 2024, 13, 920 4 of 27

2.2. Machine Learning-Based Approach

Machine learning methods based on single-modal data, such as deep learning and
support vector machines, have significantly progressed in low-visibility prediction. Min
et al. [12] proposed a deep learning framework with an attention mechanism for visibility
prediction, achieving state-of-the-art accuracy (68.9%) in runway visual range prediction
using a custom dataset collected from airport observation stations. Cornejo-Bueno et al. [13]
developed polynomial regression and deep neural network (DNN) models for visibility
prediction. While the polynomial regression model is simple to use, its prediction accuracy
is limited. The DNN model, with stronger learning capabilities, requires extensive data for
training. Peláez-Rodríguez et al. [14] focused on applying machine learning-based fusion
models for visibility prediction, improving prediction accuracy by combining multiple
machine learning models. Zang et al. [15] developed a recurrent neural network (RNN)
prediction model named SwiftRNN, which outperformed ConvLSTM and PredRNN mod-
els in visibility prediction skill scores. The RNN model, suitable for processing time series
data, is effective in predicting future visibility. Han et al. [16] explored using the Long
Short-Term Memory (LSTM) model for visibility prediction. The LSTM, a special type of
RNN, has memory capabilities, making it better suited for handling long-time series data.
Peláez-Rodríguez et al. [17] proposed a hybrid model for visibility prediction, improving
accuracy by fusing multiple machine learning models.

2.3. Multimodality-Based Approach

Unlike machine learning methods using single-modal data, multimodal-based ap-
proaches integrate multi-source data such as ground observations, satellite remote sensing,
and numerical forecast data, enhancing visibility prediction accuracy. Gavahi et al. [18]
proposed a deep learning model based on multi-source data for precipitation prediction,
outperforming traditional machine learning models in various datasets. Bai et al. [19]
introduced a multimodal fusion technique, integrating ground observation, satellite re-
mote sensing, and numerical forecast data for weather visibility prediction. This method
leverages the strengths of different data sources to improve prediction accuracy. Kim
et al. [20] used data from an automatic visibility observation network for data assimila-
tion to enhance visibility forecast accuracy. Data assimilation corrects numerical forecast
results with observation data, improving prediction accuracy. Qin et al. [21] proposed a
deep learning-based fog visibility prediction method using diverse data sources, including
ground observations, satellite remote sensing, and numerical forecasts, showing superior
performance over traditional machine learning-based methods.

Additionally, studies like Guijo-Rubio et al. [22] on the influence of meteorological
factors on visibility duration and Zhang et al. [23] comparing different machine learning
methods in visibility prediction are noteworthy.

Our analysis identified the following issues or shortcomings in the related work:

• Although many studies have utilized datasets from airports or ports, these often
represent conditions specific to certain plain areas. There is a gap in visibility prediction
for roads in different terrains, especially in mountainous areas with significant terrain
differences. Moreover, the training sample datasets used in most studies are not
self-collected, which may compromise the reliability of model performance due to
uncertain quality.

• Drawbacks in the architectural design of related work, such as limited spatial-temporal
dynamics understanding, inefficiency in handling long-term dependencies, and inade-
quate integration of features, significantly restrict these models’ potential for further
enhancing visibility prediction accuracy.

• The methods’ universality is limited, with almost all studies not performing compara-
tive performance tests on multiple datasets. They are typically optimized for specific
regions or climatic conditions, limiting their applicability in different geographical areas.

• While we have datasets from structured environments like airports and ports, there is a
significant gap in validating prediction models in existing highway systems. Ensuring
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the effectiveness of models in the real world is crucial, requiring reliance on real data
under diverse and dynamically changing traffic conditions, especially in complex
terrain environments.

This paper proposes a comprehensive highway visibility prediction method that
utilizes deep learning models and multidimensional meteorological data. Specifically, we
introduce the Transformer–CapsNet network (ATCNet) with an attention mechanism, a
leading prediction model designed to provide accurate and timely short-term visibility
predictions for highways. Our method has the following advantages:

• We have proposed a validated complex mountainous area road scenario visibility pre-
diction model by integrating various meteorological sample data (including visibility,
wind speed, air temperature, humidity, precipitation, and road surface temperature).
This is detailed in Section 4, Methodology.

• Our model demonstrates strong universality, with tests on our self-established and
public datasets showing its general applicability to various visibility prediction scenar-
ios. This is detailed in Section 5, Experiments.

• The accuracy of our predictions has been verified through precise application data.
Over the past four years, our model has been integrated into an actual “Highway
Traffic Meteorological Intelligent Monitoring and Active Control System” and has
been validated for its accuracy by frontline users. Details are provided in Section 5.7.

3. Dataset
3.1. Data Collection

The National Engineering Laboratory for Surface Transportation Weather Impacts
Prevention in China is a leading research institution in transportation meteorology. It holds
a significant position in the study of highway traffic meteorology. Figure 2 displays the
meteorological data collection equipment set up by the laboratory, which is crucial for the
collection of traffic meteorological data and the creation of proprietary datasets in this study.
These devices are equipped with a local data buffering feature, crucial for ensuring data
quality. This functionality enables the devices to temporarily store data during network
disruptions, safeguarding against data loss and ensuring the continuity and integrity of the
dataset for our analysis.
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The Zhao Hui, Dai Gong, and Qu Sheng highways are three typical mountainous
highways in the northeastern region of Yunnan Province, China. These highways are
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characterized by complex climatic conditions and dramatic visibility changes, making them
highly suitable for our road visibility prediction research. According to the construction
technical standards of the highway meteorological station network [24], by the end of 2023,
our team had installed a total of 13 sets of multi-element traffic meteorological stations
on these three highways. Each data record collected by these meteorological devices
includes nearly 20 meteorological elements, such as air temperature, precipitation, visibility,
relative humidity, road surface temperature, road conditions, wind speed, wind direction,
air pressure, roadbed temperature, water film thickness, freezing point temperature, ice
layer thickness, snow layer thickness, and slipperiness coefficient. Figure 3 displays the
geographical locations of these 13 meteorological stations. Tables 1 and 2 show database
snapshots of the original real-time and historical meteorological data collected.
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Based on the data from these 13 meteorological stations, we constructed a road meteo-
rological element dataset named WD13VIS [25], which can be used for visibility prediction
tasks. This dataset encompasses meteorological sample data collected from October 2023 to
January 2024, characterized by its multidimensionality, high precision, high integrity, and
high quality. Data are recorded every minute, resulting in a total of 563,715 data entries.
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Table 1. Collected real-time raw meteorological data.

Id DeviceId Name Description Unit Quality Value MinValue MaxValue Precision Factor TimeStamp

1 1 AMA minute visibility m 1 30,000 10 80,000 0 0 20240101231900000
2 1 AMB ten minutes of visibility m 1 30,000 10 80,000 0 0 20240101231900000
3 1 ABA temperature ◦C 1 53 −40 50 1 1 20240101231900000
4 1 ACA humidity %RH 1 697 0 100 1 1 20240101231900000
5 1 AEA instantaneous wind speed m/s 1 20 0 50 1 1 20240101231900000
6 1 ADA instantaneous wind direction ◦ 1 76 0 359 0 0 20240101231900000
7 1 AEAEX maximum wind speed in minute m/s 1 20 0 60 1 1 20240101231900000
8 1 ADAEX maximum wind direction in minute ◦ 1 76 0 359 0 0 20240101231900000
9 1 AEC 2 min average wind speed m/s 1 10 0 60 1 1 20240101231900000
10 1 ADC 2 min mean wind direction ◦ 1 58 0 359 0 0 20240101231900000
11 1 AED 10 min average wind speed m/s 1 16 0 60 1 1 20240101231900000
12 1 ADD 10 min mean wind direction ◦ 1 63 0 359 0 0 20240101231900000
13 1 AGA atmospheric pressure hPa 1 7637 500 1100 1 1 20240101231900000
14 1 AFA minute of rainfall mm 1 0 0 400 1 1 20240101231900000
15 1 AFB hours of rainfall mm 1 0 0 400 1 1 20240101231900000
16 1 APA pavement temperature ◦C 1 46 −50 80 1 1 20240101231900000
17 1 APH pavement conditions 1 1 0 254 0 0 20240101231900000
18 1 APD water film thickness mm 1 0 0 25.4 1 1 20240101231900000
19 1 APE ice thickness mm 1 0 0 25.4 1 1 20240101231900000
20 1 APF snow layer thickness mm 1 0 0 25.4 1 1 20240101231900000
21 1 AQA slip factor 1 82 0 1 2 2 20240101231900000

Table 2. Collected historical raw meteorological data.

Stationnum Date_time Visibility Temperature Humidity Precipitation Meterological_
Phenomenon Dmwindspeed Dmwind

Direction INWINDSPEED_max Inwind
Direction_max Temperaturea

G85_1920_00340 2023-12-16
18:22:00.000 153 0.1 97.6 0 0 0.6 232 1 226 3.4

G85_1920_00340 2023-12-16
18:23:00.000 170 0.2 97.6 0 0 0.4 235 0.5 233 3.4

G85_1920_00340 2023-12-16
18:24:00.000 145 0.2 97.6 0 0 0.3 252 0.8 237 3.5

G85_1920_00340 2023-12-16
18:25:00.000 158 0.2 97.6 0 0 0.5 244 1 243 3.5
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Table 2. Cont.

Stationnum Date_time Visibility Temperature Humidity Precipitation Meterological_
Phenomenon Dmwindspeed Dmwind

Direction INWINDSPEED_max Inwind
Direction_max Temperaturea

G85_1920_00340 2023-12-16
18:26:00.000 184 0.2 97.7 0 0 0.3 229 0.6 274 3.5

G85_1920_00340 2023-12-16
18:27:00.000 226 0.2 98.1 0 0 0.2 137 0.9 25 3.4

G85_1920_00340 2023-12-16
18:28:00.000 256 0.2 98 0 0 0.3 84 0.9 5 3.4

G85_1920_00340 2023-12-16
18:29:00.000 223 0.2 98 0 0 0.4 165 1.4 147 3.4

G85_1920_00340 2023-12-16
18:30:00.000 148 0.2 98.1 0 0 0.6 201 1.1 222 3.3

G85_1920_00340 2023-12-16
18:31:00.000 149 0.1 97.9 0 0 0.6 240 1.2 237 3.4

G85_1920_00340 2023-12-16
18:32:00.000 251 0.2 97.9 0 0 0.5 214 1.1 128 3.4

G85_1920_00340 2023-12-16
18:33:00.000 185 0.2 98 0 0 0.4 132 0.9 156 3.3

G85_1920_00340 2023-12-16
18:34:00.000 246 0.2 98 0 0 0.4 123 1 123 3.4

G85_1920_00340 2023-12-16
18:35:00.000 335 0.2 98.1 0 0 0.3 60 0.6 144 3.4

G85_1920_00340 2023-12-16
18:36:00.000 170 0.2 98.1 0 0 0.2 132 0.5 122 3.4

G85_1920_00340 2023-12-16
18:37:00.000 179 0.2 98.1 0 0 0.3 184 0.7 230 3.4

G85_1920_00340 2023-12-16
18:38:00.000 189 0.2 98 0 0 0.2 164 0.7 109 3.4

G85_1920_00340 2023-12-16
18:39:00.000 207 0.2 98 0 0 0.2 120 0.8 114 3.4

G85_1920_00340 2023-12-16
18:40:00.000 286 0.2 98 0 0 0.2 127 0.7 4 3.4

G85_1920_00340 2023-12-16
18:41:00.000 257 0.2 98 0 0 0.4 221 0.8 233 3.4

G85_1920_00340 2023-12-16
18:42:00.000 382 0.1 98 0 0 0.4 255 0.7 230 3.4

G85_1920_00340 2023-12-16
18:43:00.000 790 0.2 98 0 0 0.4 353 1.2 85 3.5

G85_1920_00340 2023-12-16
18:44:00.000 582 0.3 98.1 0 0 0.5 60 1.3 98 3.4

G85_1920_00340 2023-12-16
18:45:00.000 481 0.3 98.1 0 0 0.5 81 1.5 82 3.6

G85_1920_00340 2023-12-16
18:46:00.000 443 0.3 98.1 0 0 0.5 353 1.1 96 3.4

G85_1920_00340 2023-12-16
18:47:00.000 279 0.3 98.1 0 0 0.6 301 0.9 294 3.4

G85_1920_00340 2023-12-16
18:48:00.000 393 0.3 98.1 0 0 0.5 259 0.6 279 3.4
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3.2. Dataset Preprocessing

The meteorological elements collected by the stations along the highway include
nearly 20 different factors such as air temperature, precipitation, visibility, humidity, road
surface temperature, road conditions, wind speed, wind direction, air pressure, roadbed
temperature, water film thickness, freezing point temperature, ice layer thickness, snow
layer thickness, and slipperiness coefficient. However, some of these elements may be
irrelevant to visibility prediction or redundant, which can limit the training and predictive
performance of the model.

Based on meteorological theoretical knowledge [26,27] and previous studies in our
field [23], we understand that only about five meteorological elements are likely to be
closely related to visibility prediction. Therefore, we use the cosine similarity method to
filter out features with low relevance to visibility prediction. By reducing the dimensionality
of the data, we aim to enhance the model’s predictive capability. The formula for calculating
cosine similarity is as follows (Equation (1)).

Similarity(A, B) =
A · B

||A||×||B|| =

n
∑

i=1
(Ai × Bi)√

n
∑

i=1
A2

i ×
√

n
∑

i=1
B2

i

(1)

In this context, A and B represent two different meteorological factors. A higher value
of Similarity (A, B) indicates a higher similarity between these two features. By eliminating
redundant features with extremely high similarity (greater than 0.9), we ultimately chose
to retain six meteorological elements (visibility, wind speed, temperature, humidity, precip-
itation, and road surface temperature) for our study. Table 3 below displays the format of
the dataset.

Table 3. Format of dataset WD13VIS after feature dimensionality reduction.

Date Time Visibility
/m

Temperature
/◦C

Humidity
/%

Precipitation
/mm

Wind Speed
/m/s

Pavement Temperature
/◦C

24.12.2023 14:40:00 3406 −0.4 99.2 0.0 1.0 2.4
24.12.2023 14:50:00 1747 −0.4 98.8 0.0 0.5 2.3
24.12.2023 15:00:00 228 −0.5 98.8 0.0 1.1 2.2
24.12.2023 15:10:00 216 −0.4 99.1 0.0 0.8 2.1

... ... ... ... ... ... ...

3.3. Comparative Experimental Datasets

To validate the universality of our model in visibility prediction tasks, we also utilized
the public visibility dataset WDVigoVis [28] from the Vigo Airport Meteorological Station in
Spain. This dataset spans from 2008 to 2020, with meteorological elements recorded every
30 min. It comprises 219,439 data entries, including elements such as visibility, temperature,
humidity, wind direction, wind speed, and air pressure. Table 4 below displays the format
of the dataset.

Table 4. Format of dataset WDVigoVis.

Date Time Visibility
/m

Temperature
/◦C

Humidity
/%

Wind
Direction

/◦
Wind Speed

/m/s
Atmospheric Pressure

/Pa

23.12.2020 02:00:00 499 12.0 99.9 200 5.7 1020
23.12.2020 02:30:00 692 12.1 99.8 210 3.6 1020
23.12.2020 03:00:00 2494 12.0 99.9 220 4.6 1020
23.12.2020 03:30:00 193 11.9 99.8 180 3.1 1021

... ... ... ... ... ... ...
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It is important to note that while the selected features across the two datasets may
vary due to the distinct characteristics and availability of meteorological elements at dif-
ferent collection location with different collecting devices, we have ensured a consistent
dimensionality of six for the multivariate meteorological data used in our analysis. This
standardization is crucial for maintaining the integrity and comparability of our predictive
model’s performance across diverse data environments. The adaptability of our proposed
model to efficiently handle variations in feature sets underscores its robustness and appli-
cability to real-world visibility prediction scenarios.

4. Methods

Inspired by the successful experiences of sequence data processing techniques in
fields such as speech and natural language processing, we proposed the ATCNet model,
a method for highway visibility prediction characterized by the integrated application of
Transformer, CapsNet, and attention mechanisms. ATCNet is primarily composed of a
time-series Transformer module and a Capsule Network module, with an attention module
integrated before the output. Its process mainly includes the following steps. Initially,
a multivariate time series of meteorological elements with a fixed time window size is
input into a time-series Transformer module consisting of multiple layers of encoders and
decoders. The Transformer module is used to capture long-term dependencies in time
series data. Next, the processed meteorological element features are input into a Capsule
Network module. The Capsule module captures both local and global features of the matrix
composed of meteorological elements and the dynamic features arising from the temporal
changes in meteorological elements. It further extracts and utilizes features associated
with visibility values. Finally, an attention mechanism module is used to automatically
learn the weights of different outputs, adaptively adjusting the representation of features to
obtain the final output features. These features are then passed through a fully connected
layer to output short-term road visibility predictions. The overall architecture of this
model is illustrated in Figure 4. Please notice that in the figure, colors represent different
elements across three sections. In the ‘T’ area, colors correspond to various meteorological
elements. In the ‘Time Series Transformer’, colors denote distinct functional modules.
Lastly, in the ‘Capsule module’, colors illustrate different weather data features learned by
the Transformer module.

In ATCNet, integrating Transformers, Capsule Networks, and self-attention lever-
ages their complementary strengths. The Transformer efficiently captures the temporal
characteristics of data, the Capsule Network effectively understands the spatial relation-
ships and hierarchical structures among multidimensional meteorological elements, and
self-attention, as the final decision refinement step, ensures that all relevant time-series
and spatial hierarchical information is fully utilized. This enhances the accuracy and
reliability of the final predictions. This triple approach is crucial for comprehensively
understanding highway visibility prediction tasks influenced by temporal changes and
complex spatial factors.

This integration aligns with our architectural design, ensuring robust and accurate
predictions essential for traffic management and safety. The design of ATCNet accounts for
the complexity of different weather conditions and environmental changes, enabling it to
adapt and provide reliable visibility forecasts even in extreme weather scenarios like heavy
rain and severe haze.

4.1. Problem Formulation

In our research, the time series data of meteorological elements collected by the
meteorological devices on the highways are divided by a time window of length n.
The data sequence within a time window is represented as T = {T1, T2, . . . , Tn}, where
Ti ∈ Rd(i = 1, 2, . . . , n) represents a multidimensional vector of meteorological elements
corresponding to the sequence at the ith moment. Ti includes values of several meteorologi-
cal elements such as temperature, precipitation, wind speed, humidity, and road surface
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conditions. The input to the Transformer is a data matrix of a time window T ∈ N × D,
where N is the size of the window and D is the dimension of each sequence in the window.
F represents the feature representation of the multivariate time series learned through the
Transformer module. This feature representation is then input into the Capsule module
and further processed through an attention module to produce the output of the model.
Given a fixed-length time series of meteorological elements T, the task of the model is to
predict the value of road visibility for the next period.
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4.2. Time Series Transformer

In this study, the core role of the time series Transformer is to capture the temporal
dynamics of meteorological elements closely related to highway visibility. The input to the
model is a multivariate time series dataset that includes temperature, precipitation, wind
speed, humidity, and road surface conditions. Each meteorological element is encoded as
a part of the time series data and processed through the Transformer to reveal how these
elements change over time and how they interact with each other to influence visibility.
The following Figure 5 illustrates the module composition of the Time Series Transformer
part in the ATCNet architecture.

The Transformer network’s architecture is specifically designed to mitigate infor-
mation loss during feature extraction, distinguished by its unique configuration of two
encoders and two decoders. This design choice is pivotal in preserving critical information
throughout the feature extraction process.

The dual-encoder and decoder setup allows for a more nuanced processing of the
input data, ensuring that both global and local dependencies are captured and retained. The
first encoder focuses on extracting broad, contextual information, while the second encoder
refines this output, focusing on preserving detail-rich features. Similarly, the decoders work
in tandem to reconstruct and predict the output, leveraging the comprehensive feature set
preserved by the encoders.
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In Time Series Transformer, the output of the encoder module is used as the input
for the decoder module. In the encoder, each meteorological element’s time series is first
transformed into a high-dimensional space to capture deep temporal features. Position
encoding ensures that the model can understand the timing in the sequence, which is
crucial for predicting future visibility. The multi-head self-attention mechanism allows the
model to focus not only on the current meteorological condition at each time step but also
consider conditions at other times, thus facilitating a comprehensive understanding of the
factors influencing visibility.

The decoder part uses the deep temporal features provided by the encoder to generate
predictions for future visibility. The introduction of masking ensures that predictions are
based only on known historical information, preventing the model from “cheating” by
seeing future data.

The encoder module takes historical traffic meteorological time series data as input. It
consists of an input layer, a position encoding layer, and a stack of two identical encoder
layers. The input layer maps the input time series data to vectors of a certain dimension
through a fully connected network, crucial for the model to use multi-head attention
mechanisms. Positional encoding with sine and cosine functions is used to encode the
order information in the time series data by adding the positional encoding vectors to the
elements of the input vectors.

Positional encoding (Position Encoding Layer): Firstly, the input layer projects the
encoded feature representation into a matrix of hidden dimensions of length d. Positional
encoding encodes this matrix to produce a vector of length d, uniquely representing an
index in the token sequence. Positional encoding uses sine and cosine functions, as shown
in Equation (2).  PEpos ,2i = sin

(
pos /10,0002i/d

)
PEpos ,2i+1 = cos

(
pos /10,0002i/d

) (2)

In this formula, d represents the dimension of the input matrix, pos denotes the index
of each meteorological element, and i indicates the index within the matrix. The term 2i
corresponds to even positions (used in the sine function), and 2i + 1 corresponds to odd
positions (used in the cosine function).

The vectors generated by the positional encoding layer are fed into two consecutive
encoder layers. Each encoder consists of a self-attention sublayer and a fully connected
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feed-forward sublayer. Each sublayer is followed by a normalization layer. The encoder
generates vectors of a certain dimension that are provided to the decoder.

The detailed structure of the encoder and decoder is depicted in Figure 6.
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The decoder module predicts future values in an autoregressive manner, consisting of
an input layer, a stack of two identical decoder layers, and an output layer. The decoder
input starts from the last data point outputted by the encoder. The input layer maps the
decoder input to vectors of a certain dimension. In addition to the two sublayers in each
encoder, the decoder also inserts a third sublayer to apply self-attention mechanisms on
the encoder output. Finally, the output layer maps the output of the last decoder layer to
the target time series. The decoder can only rely on the previously generated parts when
producing the output for each position. The Transformer uses attention masking to shield
information from future positions to ensure the model does not utilize future information.

Add and Normalize (residual connection) is a critical module in both the encoder
and decoder. After each sublayer, the Transformer uses residual connections and layer
normalization to stabilize the training process. This helps to avoid the problem of gradient
vanishing or exploding in deep neural networks. The network can focus only on the current
differences by applying elements from the lower layer outputs to the higher layers. ‘Add’
involves adding the data before self-attention to the data after self-attention. ‘Normalize’
uses layer-normalization, which mainly includes two steps:

Step 1: Normalize each value (i.e., subtract the mean and divide by the standard
deviation).

Step 2: Perform an affine transformation on the values obtained in the first step using
two learned scalars, γ and β, as shown in Equation (3):

yi = γx̂i + β (3)

In the formula, yi represents the final normalized value, and x̂i is the value normalized
in the first step.

The feed-forward layer in the Transformer architecture consists of two fully connected
layers. The first layer uses the ReLU activation function, and the second layer does not use
an activation function, as shown in Equation (4).

FFN(x) = max(0, xW1 + b1)W2 + b2 (4)

In the formula, x is the output from the previous layer, W1 and b1 are the weight and
bias of the first layer, and W2 and b2 are the weight and bias of the second layer, respectively.
These parameters are typically initialized with random values and then adjusted through
the backpropagation algorithm during model training.
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The contributions of Transformer in the ATCNet model are as follows:

• Powerful time series data processing capability: The ability of the Transformer to
process serialized data is crucial for highway visibility prediction. Thanks to its
self-attention mechanism, the Transformer excels at understanding the temporal de-
pendencies present in such data. For instance, the Transformer can analyze several
days or even weeks of meteorological data to identify complex patterns that might lead
to sudden changes in visibility. This is vital for accurately predicting highway visibility.

• Fine feature extraction and multivariate data fusion: The Transformer accurately
processes multidimensional data. It can extract details from each meteorological factor
and also fuse these factors to provide a more comprehensive visibility prediction. For
example, the Transformer can provide a comprehensive visibility prediction analysis
of the combined effects of temperature, humidity, and wind speed. This integration is
necessary for a thorough understanding of the conditions that affect visibility.

• Efficient data parallel processing capability: The Transformer model can process the
entire data sequence simultaneously, making it more efficient when dealing with large
volumes of time series data, such as minute-level highway meteorological data. This
is particularly important for real-time prediction capabilities, as it allows the model to
quickly adapt to and respond to the latest changes in meteorological conditions.

4.3. Capsule Network

In ATCNet, CapsNet is introduced to further process the features extracted by the Time
Series Transformer, extracting spatial features from the matrix composed of time series.
This allows for a more detailed understanding of the spatial aspects of meteorological
data. By incorporating a Capsule Network after the Transformer module, the model can
learn the complex spatial hierarchies among these meteorological elements and utilize
this information during the prediction process. The dynamic routing mechanism further
strengthens the correct combination of features, making the predictions more accurate.
Figure 7 illustrates the module composition of the Capsule Network part in the ATCNet
architecture. The assorted colors reflect a spectrum of meteorological data characteristics
that have been extracted by the Transformer module, highlighting the nuanced feature
mapping capabilities of the capsule network.
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The output of the Transformer module is then passed to the Capsule Network. In this
module, a convolutional layer first transforms the output of the Transformer into a series of
convolutional feature maps. These maps are passed to the Primary Capsule layer, which
consists of a set of capsules, each capturing a local combination of a group of features.

The feature matrix outputted by the Time Series Transformer module is first considered
as a single-channel image and processed by a convolutional kernel to produce an output
tensor. This tensor serves as the input to the primary capsule layer. Each capsule in the
primary capsule layer encodes specific features detected in the matrix and their instance
parameters (such as position, size, orientation, etc.). Then, a routing algorithm is used to
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compute the optimal feature combinations. These combinations, as the features ultimately
extracted by the capsules, are processed by a Capsule Linear layer, which transforms the
spatial relationship representations of these feature vectors.

The core idea of CapsNet is to use “capsules” to represent hierarchical features, which
can better capture the spatial relationships and pose information of targets. Compared to
traditional pooling layers and fully connected layers, capsule networks represent features
in a vector form and introduce a dynamic routing mechanism, allowing the network to
automatically learn the hierarchical relationships between different parts. Suppose we have
a layer containing N capsules, each represented by a vector. The direction and length of the
vector typically represent the probability of the existence of a specific type of feature and
some of its attributes. Each capsule is represented by a d-dimensional vector, denoted as
vj =

(
vj1, vj2, . . . , vjd

)
, where vj represents the output vector of the jth capsule.

The operation of a single capsule in a capsule network is illustrated in Figure 8:
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The operation of a single capsule in a capsule network involves the following four steps:

1. Multiplication of input vectors: The input vectors v1 and v2, which are outputs from
the previous capsules, are each multiplied by their respective weights W1 and W2

within a single capsule. This results in new vectors u1 and u2.
2. Scalar weighting of input vectors: The input vectors u1 and u2 are scalar weighted

by multiplying them with routing coefficients c1 and c2 respectively. These routing
coefficients are scalars and satisfy the condition c1 + c2 = 1.

3. Summation of vectors: The vectors obtained are summed to produce s, which is
calculated as s = c1u1 + c2u2.

4. Vector-to-vector non-linearity: The resultant vector s is transformed to produce the
vector v. This transformation involves compressing the vector such that its length lies
between 0 and 1 while maintaining its direction. This non-linear transformation is
represented by the following Equation (5):

v = Squash(s) =
||s||2

1+||s||2
s
||s|| (5)

v as the output of this capsule can be used as input to the next capsule.
The outputs of these primary capsules are then passed to higher-level capsules through

a dynamic routing process. The dynamic routing algorithm enables the model to learn the
spatial hierarchies in the input data, achieved by iteratively adjusting the connection weights
between capsules. The routing process can be described using the following algorithm:

1. For all primary capsule i and all secondary capsule j, initialize connection weight bij = 0;
2. For each i and j, calculate cij = softmax(bij) where cij is the contribution weight of

capsule i to capsule j;
3. The input for each secondary capsule sj is calculated as sj = ∑

i
cijuij, where uij is the

prediction vector of the primary capsule i;
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4. Apply a nonlinear activation function vj = squash(sj), where vj is the output vector
of capsule j.

5. Update bij, passed bij ← bij + uij · vj .

The contributions of the Capsule Network in ATCNet are as follows:

• Spatial hierarchies of multiple meteorological elements: Thanks to its unique hier-
archical structure, the Capsule Network is particularly effective in understanding
the spatial relationships between different meteorological elements. It processes not
only individual element data but also automatically recognizes the combinations and
interactions of these elements. This capability is crucial for considering how differ-
ent weather elements interact to affect visibility, such as how a combination of high
humidity and low temperature might impact visibility.

• Contextual understanding through dynamic routing: The Capsule Network uses a
dynamic routing mechanism to understand the context and significance of different
features in multidimensional meteorological data. For visibility prediction, this means
the model can prioritize the most relevant weather features under varying conditions,
enhancing prediction accuracy.

• Robustness to changes: Equivariance in Capsule Networks, where subtle changes in
the input lead to predictable changes in the output, is highly beneficial for highway
visibility prediction tasks. Highways may experience various visibility conditions
due to different weather situations. The equivariance property in Capsule Networks
significantly enhances the model’s robustness, enabling it to effectively process and
predict visibility under diverse meteorological conditions.

4.4. Attention

After the Capsule Network, an attention layer is applied to further refine the feature
representation. This attention mechanism focuses on the most informative features based
on the requirements of the prediction task.

The role of the attention mechanism [29] in this model is crucial. When processing
features outputted by the Transformer and Capsule Network, the attention layer identifies
which features are most important for predicting visibility. Given that different meteo-
rological conditions have varying impacts on visibility, the attention layer reflects these
differences by allocating different weights to the features. For instance, in foggy weather
conditions, humidity and road surface conditions might be more critical than temperature.
The attention mechanism, by weighting these features, ensures that the prediction model
focuses on the most critical factors under the current environmental conditions.

It is important to note that while the Transformer itself includes an attention mecha-
nism, adding an additional attention mechanism before the output can still be valuable.
This additional layer can provide a more refined, targeted feature weighting method specif-
ically for visibility prediction tasks. It might enable the model to adaptively adjust the final
feature representation of the output, thereby potentially increasing the accuracy and robust-
ness of the predictions. The results of the ablation experiments in Section 5.5 demonstrate
that this attention module is indispensable.

In implementation, we opted to use self-attention rather than standard attention.
Standard attention is typically used in sequence transformation tasks, where one sequence’s
information is used to guide the generation of another sequence. Self-attention, by design,
allows the model to weigh and prioritize different parts of the input meteorological data
based on their relevance to the task at hand. This is particularly advantageous in tasks
like visibility prediction, where not all input features contribute equally to the outcome.
Theoretically, self-attention mechanisms offer a more dynamic and flexible approach to
understanding data relationships compared to traditional methods. They enable the model
to focus on the most informative features without being constrained by the sequential
nature of the data. This adaptability results in a more nuanced and accurate representation
of the data, leading to improved prediction outcomes.
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The attention mechanism can score each dimension of the input data, then weigh
the features based on these scores to highlight essential characteristics. The attention
mechanism may influence downstream models or modules. The attention mechanism can
be described by Equation (6).

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (6)

In the formula, Q represents the query vector, K is the key vector, and V is the value
vector. Q, K, and V are all weight matrices that are initially random and then optimized
during the gradient descent process of training data. The use of the attention mechanism
typically involves the following steps:

1. Mapping inputs: Each element of the input sequence (such as different meteorological
elements) is mapped to a high-dimensional vector space, forming a matrix X, where
each row represents a vector representation of an element.

2. Computing attention weights: For each element in the matrix X, calculate the similarity
(or relevance) to all other elements using Q, K, and V. These similarities are used as
weights for a weighted sum.

3. Weighted sum: Based on the calculated attention weights, perform a weighted sum of
the vectors V to produce the final output.

The contribution of the Attention module in ATCNet is as follows:

• Feature Integration: In the final stage of the model, the Attention module is used to
integrate all hierarchical features extracted by the Transformer and Capsule Network.
This assists in further refining the model’s global understanding of the input data
before making the final prediction.

• Importance Weighting: Although earlier layers have already assessed the importance
of features, self-attention evaluates these features’ contributions to the final output at a
higher level. This weighting is based on a deep understanding of the entire data flow,
optimizing the model’s decision-making process.

• Output Refinement: In the final stage of the model, Attention is responsible for
mapping more abstract feature relationships, which might not have been as apparent
in earlier processing stages. The placement of Attention just before the output indicates
that it is used for refining and adjusting the final predictions, ensuring that all relevant
features and their interactions are considered.

4.5. Output

The output structure of the ATCNet model is a predicted time series, succinctly
expressed as Ŷ = {ŷt+1, ŷt+2, · · · , ŷt+m}. In this notation, the symbol ŷt+k represents the
visibility prediction value at the future time point t + k, where m represents the time step
from the current time point in t. This sequence format provides a clear and continuous
representation of the forecast, extending from the immediate future to the specified forecast
time step. Each element in the series reflects a discrete point in time, providing a continuous
and detailed view of the predicted values over the forecast period.

The output stage of the model encapsulates the collaborative processing results of
the entire ATCNet architecture. This includes the temporal dependencies captured by
the Transformer module, the spatial features optimized by the CapsNet module, and the
final feature representation outputted after adaptive weight adjustment by the Attention
module. This output demonstrates the effective integration of advanced feature extraction
with sequential analysis.

5. Experiments and Analysis
5.1. Dataset Division

In our experiments, we applied the N Fold technique to both the WD13VIS and
WDVigoVis datasets to ensure a robust evaluation of our model’s performance. Specifically,
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we utilized a 5-Fold cross-validation approach, where each dataset was divided into five
equal parts. In each iteration, four parts were used for training, and the remaining part
was used for testing. This process was repeated five times, with each part serving as the
test set once, ensuring that every data entry contributed to both the training and testing
phases. This method allowed us to comprehensively assess the model’s performance across
different subsets of data, enhancing the reliability of our findings.

The experimental results presented in Sections 5.4–5.6 are based on the averages
obtained from the N Fold technique.

5.2. Experimental Environment Configuration and Model Parameter Settings

The experiments were conducted on a server running Windows Server 2019, equipped
with an Intel(R) Xeon(R) Silver 4210R CPU, 256 GB of memory, a 6-TB hard drive, and
6 NVIDIA GeForce GTX 3090 GPUs. Python 3.9 was used as the programming language,
and TensorFlow 2.10.1 was employed as the machine learning software development
library.

Below are the relevant parameters of the ATCNet model used in this paper (Table 5):

Table 5. Parameter settings for ATCNet model.

Parameter Description Value

Lr learning rate 0.001
Bs batch size 256

Activation activate the function Sigmoid
Ts time step (min) 15/30/60/120
Tw time Window (h) 0.25/0.5/1/2/3/4/5/6/10

Epoch training iterations 100
Dropout dropout rate 0.01

head_size size of each head in multi-head attention 128
num_heads number of heads in multi-head attention 4

ff_dim dimensions of the feedforward network 4
num_transformer_blocks number of Transformer codecs 4

total_params total number of model parameters 2,113,809

5.3. Evaluation Metric

In this study, we utilized five evaluation metrics: MSE, MAE, MAPE, R-squared
(R2) and NMBD to comprehensively assess the model’s performance. MSE reflects the
model’s performance under extreme conditions by assigning higher penalties to larger
errors, crucial for predicting highway visibility in extreme weather, where significant
prediction deviations can lead to severe safety issues. In contrast, MAE offers an intuitive
understanding of the magnitude of prediction errors, representing a more stable error metric
that helps evaluate the model’s average performance under normal conditions. Meanwhile,
MAPE measures the percentage of the model’s prediction error relative to the actual values,
allowing us to assess the accuracy of the model’s predictions irrespective of the scale
of the actual data. This is particularly important for highway visibility data of varying
scales and ranges, as it ensures consistency in model evaluation. R-squared evaluates the
proportion of variance in highway visibility data captured by our model, offering insight
into the predictive accuracy and effectiveness in various weather conditions. Lastly, NMBD
quantifies the model’s systematic bias in visibility forecasts, ensuring balanced accuracy
across different visibility levels.

Here are the definitions of these metrics:

• Mean Squared Error Loss (MSE): The average of the absolute squared error between
the predicted value and the actual value. The smaller the MSE value, the better the
predictive power of the model.

• Mean Absolute Error Loss (MAE): Measure the average absolute error between the
predicted and actual values. It is used to evaluate the model’s prediction accuracy. A
smaller MAE value indicates that the model performs better.
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• Mean Absolute Percentage Error (MAPE): A normalized version of MAE that is more
sensitive to relative error and is not affected by the absolute value of the target variable.
A smaller MAPE value indicates that the model has higher prediction accuracy.

• R-squared (R2): Measures the proportion of variance in the dependent variable ex-
plained by the independent variables, indicating model fit quality. Higher R2 signifies
better predictive accuracy.

• Normalized Mean Bias Deviation (NMBD): Assesses model accuracy by calculating
the mean prediction bias, normalized by observed values’ mean. NMBD close to
0 means minimal bias.

These metrics are used to evaluate the model’s performance in a time series forecasting
task. The five indicators are defined in Equations (7)–(11) below:

MAE(y, ỹ) =
1

nsamples

nsamples−1

∑
i=0

|yi − ỹi| (7)

MSE(y, ỹ) =
1

nsamples

nsamples−1

∑
i=0

(yi − ỹi)
2 (8)

MAPE(y, ỹ) =
1

nsamples

nsamples−1

∑
i=0

|yi − ỹi|
|yi|

× 100% (9)

R2 = 1−

nsamples

∑
i=1

(yi − ŷi)
2

nsamples

∑
i=1

(yi − y)2
(10)

NMBD =

1
nsamples

nsamples

∑
i=1

(yi − ŷi)

1
nsamples

nsamples

∑
i=1

yi

(11)

where nsamples represents the number of samples, yi is the actual value, ỹi is the predicted
value, and y is the average value of the actual value.

5.4. Performance Comparison with Different Window Sizes and Time Steps

In time series prediction tasks, the size of the time window and the length of the
prediction time step are key parameters. The time window size indicates the length of the
historical data used, while the prediction time step determines the length of the forecast
sequence output by the model.

To study the performance of the ATCNet model in short-term road visibility prediction
under different combinations of time window sizes and prediction time step lengths, we
set the following time window sizes: 15 min, 30 min, 1 h, 2 h, 3 h, 4 h, 5 h, 6 h, and 10 h.
Additionally, we set the prediction time step lengths to 15 min, 30 min, 1 h, and 2 h.

We conducted experiments on the WD13VIS dataset and evaluated the model’s perfor-
mance under different configurations using the MSE and MAE metrics. The specific results
are presented in Tables 6 and 7.

Single-step forecasting predicts the next observation in time series prediction tasks.
The previous tables show that multi-step forecasting methods depend a lot on the time
window size and the prediction time step length. A fixed window size leads to higher error
as the prediction time step grows. A fixed prediction time step has an optimal window size
that maximizes performance. Larger window sizes can have redundant features that lower
performance. This optimal window size is wider for longer prediction time steps because
they need more feature information from a longer input time series.
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Table 6. Model’s MAE under different time window and forecast time step combinations. For a fixed
prediction time step, the optimal window size that maximizes performance is indicated in bold.

Window Size
Forecast Time Step

15 min 30 min 1 h 2 h

15 min 0.411 1.021 2.112 3.212
30 min 0.323 0.733 1.122 1.617

1 h 0.113 0.419 0.944 1.323
2 h 0.035 0.065 0.325 0.902
3 h 0.021 0.033 0.314 0.811
4 h 0.024 0.027 0.265 0.732
5 h 0.025 0.034 0.263 0.680
6 h 0.026 0.045 0.268 0.665

10 h 0.033 0.062 0.272 0.673

Table 7. Model’s MSE under different time window and forecast time step combinations. For a fixed
prediction time step, the optimal window size that maximizes performance is indicated in bold.

Window Size
Forecast Time Step

15 min 30 min 1 h 2 h

15 min 0.1051 0.2121 0.3465 0.6013
30 min 0.0851 0.1021 0.2173 0.3911

1 h 0.0502 0.0702 0.1039 0.3480
2 h 0.0120 0.0113 0.0796 0.1375
3 h 0.0027 0.0031 0.0128 0.0311
4 h 0.0029 0.0024 0.0095 0.0112
5 h 0.0032 0.0041 0.0088 0.0101
6 h 0.0039 0.0058 0.0069 0.0087

10 h 0.0044 0.0063 0.0074 0.0098

In practical applications of highway visibility forecasting, short prediction time steps,
such as 15 min, or longer ones, like over 1 h, do not significantly benefit highway manage-
ment. The most suitable prediction time step is 30 min. Therefore, combining practical
needs and experimental results, this paper ultimately selected a 4 h time window size and
a 30 min prediction time step as the optimal parameters for ATCNet.

5.5. Ablation Experiment

To validate the rationale and superiority of our proposed model architecture, and to
better demonstrate the contributions of different modules in the ATCNet architecture, we
conducted ablation experiments on the WD13VIS dataset. We removed the CapsNet and
Attention modules from ATCNet and compared the changes in model performance. Based
on the experimental results in Section 5.3, we set the time window to 4 h and the prediction
time step to 30 min.

Table 8 shows the performance metrics MSE, MAE, MAPE, R2, and NMBD of each
module in our model in the individual ablation experiments.

Table 8. Ablation experiments of the ATCNet model on WD13VIS datasets.

Model MSE MAE MAPE R2 NMBD

Transformer 0.0207 0.060 0.2806 0.853 0.024
Transformer + CapsNet 0.0124 0.048 0.1528 0.948 0.015
Transform + Attention 0.0131 0.042 0.1445 0.942 0.019

Transformer + CapsNet + Attention(Ours) 0.0024 0.027 0.0414 0.987 0.005

The following Table 9 provides a detailed analysis of the results for each step of the
ablation experiment:
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Table 9. Analysis of the results for each step of the ablation experiment.

Model Combination Analysis

Transformer Only

Using only the Transformer module, the model focuses on capturing long-term dependencies in
time series data. The results at this stage indicate that although the Transformer can effectively
process time series data, it has limitations in dealing with the complexity of visibility prediction.
This reflects the inadequacy of a single module in capturing the spatial features and subtle changes
in multidimensional meteorological data.

Transformer + CapsNet

The introduction of CapsNet significantly improved model performance. CapsNet helps capture
the spatial relationships and hierarchical structures between meteorological elements, which is
crucial for accurate visibility prediction. The performance improvement highlights the Capsule
Network’s strong ability to understand complex interactions in multidimensional data.

Transformer + Attention

The addition of the attention mechanism led to an improvement in model performance. The
attention mechanism enables the model to better focus on the most critical parts of the time series
data, thus enhancing prediction accuracy. This improvement demonstrates the importance of
adaptively focusing on significant features when processing time series data.

Transform + CapsNet +
Attention(ours)

The complete model exhibited the best performance on all metrics, proving the integration of
Transformer, CapsNet, and attention mechanisms is crucial for enhancing the model’s accuracy and
robustness in predicting visibility. This combination effectively merges the strengths of each
module, providing a more comprehensive understanding of input features, thus enabling the
model to generalize better to new data and offer more accurate predictions.

Through the above analysis, it is clear how each component uniquely contributes to
the model’s performance and how they work together to enhance overall efficiency. The
ablation study results not only reveal the importance of each module but also demonstrate
how they complement each other in the entire prediction task. Particularly in the complex
task of visibility prediction, the model needs to simultaneously understand the long-term
dependencies of time series, the spatial relationships of multidimensional meteorological
data, and the dynamic changes of important features. This integrated approach precisely
meets these requirements.

The results validate the significant advantage of the ATCNet model, which combines
these technologies to predict highway visibility accurately. It provides an effective solution
to enhance traffic safety and efficiency, showcasing the potential of such sophisticated
models in real-world applications, especially in critical areas like transportation.

5.6. Performance Comparison with Competitive Models

We conducted experiments to validate the performance of our proposed ATCNet
model in highway visibility prediction tasks. We compared it with several of the most
competitive time series prediction methods, using the WD13VIS and WDVigoVis datasets.
Based on the results from Section 5.3, for the WD13VIS dataset, we set the time window to
4 h and the time step to 30 min. For the WDVigoVis dataset, both the time window and
time step were also set to 4 h and 30 min.

We used several of the most competitive time series prediction methods for comparison
with ATCNet, including the traditional ARIMA model, the machine learning decision
tree ensemble algorithm XGBoost, various LSTM deep learning models, and the latest
time series prediction model, Informer. We prepared corresponding datasets for each
competitive model and performed customized preprocessing steps according to their
specific requirements. For example, for the ARIMA model, we performed differencing
operations to stabilize the mean of the time series. Each model (including ARIMA, XGBoost,
LSTM variants, and Informer) underwent a rigorous configuration process, using grid
search methods to adjust hyperparameters and determine the best settings.

Here is a brief description of these models:

• ARIMA [30]: A differential autoregressive moving average model for predicting
non-stationary time series.
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• XGBoost [31]: An efficient gradient-boosting decision tree algorithm that combines
multiple weak learners into a single strong learner by forward addition.

• LSTM [32]: A variant of RNN [33] that is commonly used to deal with nonlinear
features in time series.

• LSTM + CNN [34]: Combining CNN and LSTM networks to extract spatial and
temporal features, respectively.

• GRU + Attention [35]: An LSTM-based model variant that merges the forgetting gate
and the input gate into an update gate, and emphasizes the importance of the output
of each hidden layer through the attention mechanism.

• Informer [36]: Employing a new attention mechanism that automatically adjusts
the attention range according to the sequence length, effectively processing long
sequences. It also employs a multi-scale time encoder/decoder structure that considers
information at different time scales.

Tables 10 and 11 showcase the performance metrics MSE, MAE, MAPE, R2 and NMBD
for visibility prediction across the WD13VIS and WDVigoVis datasets, respectively. It is
important to highlight that the observed differences in these metrics can be attributed
to the distinct sampling frequencies of the datasets: WD13VIS with a 1 min granularity
provides a more detailed temporal resolution compared to WDVigoVis’s 30 min sampling
rate, influencing the absolute values of the evaluation metrics. This discrepancy should
not be interpreted as a bias towards the WD13VIS dataset; rather, it highlights the model’s
adaptability and consistent performance across varying data environments, affirming its
general applicability.

Table 10. MSE, MAE, and MAPE for various models on WD13VIS datasets.

Model MSE MAE MAPE R2 NMBD

ARIMA [30] 0.0667 0.657 0.2726 0.612 0.102
XGBoost [31] 0.0371 0.343 0.2383 0.695 0.088

LSTM [32] 0.0254 0.132 0.1853 0.764 0.079
LSTM + CNN [34] 0.0223 0.086 0.1027 0.825 0.043

GRU + Attention [35] 0.0192 0.078 0.0895 0.874 0.024
Informer [36] 0.0145 0.064 0.0733 0.933 0.018

ATCNet (ours) 0.0024 0.027 0.0414 0.987 0.005

Table 11. MSE, MAE, and MAPE for various models on the WDVigoVis dataset.

Model MSE MAE MAPE R2 NMBD

ARIMA [30] 0.1233 0.295 0.4100 0.644 0.135
XGBoost [31] 0.0971 0.262 0.3822 0.687 0.092

LSTM [32] 0.0874 0.246 0.3703 0.732 0.083
LSTM + CNN [34] 0.0822 0.227 0.3612 0.810 0.047

GRU + Attention [35] 0.0628 0.193 0.3146 0.858 0.030
Informer [36] 0.0517 0.174 0.2213 0.914 0.014

ATCNet (ours) 0.0312 0.120 0.1450 0.967 0.008

The above tables show that neural network models significantly outperform the
machine learning model XGBoost and the traditional time series prediction model ARIMA
in visibility prediction on these two datasets. The performance of LSTM and its variants
is comparable.

The ATCNet model proposed in this paper, which combines Transformer, Attention,
and CapsNet modules, can effectively extract multivariate time series and spatial feature
information, and adaptively assign weights to each feature. It significantly outperforms
other models.

On the WD13VIS dataset, compared to the latest time series prediction model architec-
ture, Informer [36], ATCNet reduced the Mean Squared Error (MSE) by 1.21% and the Mean
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Absolute Error (MAE) by 3.7%. Similarly, on the WDVigoVis dataset, ATCNet reduced
MSE and MAE by 2.05% and 5.4%, respectively. This demonstrates ATCNet’s outstand-
ing performance in visibility prediction tasks in various scenarios, such as highways and
airports, showcasing its strong universality.

Figure 9 clearly illustrates the performance advantage of the ATCNet model, providing
an intuitive comparison of various model evaluation metrics.
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Experiments were conducted on the WD13VIS dataset, comparing actual and predicted
visibility values. Figure 10 illustrates the comparison results across four different time
intervals. Specifically, the y-axis represents the normalized predicted and actual visibility
values, with each unit on the x-axis corresponding to a real-time minute. For instance, a
significant increase in visibility values can be observed in the upper left subplot of Figure 10
during the 100 to 200 min interval, while the upper right subplot shows a marked decrease
in visibility within the same interval. These results demonstrate that the ATCNet model
can accurately predict sudden low-visibility events, with the trends in the predicted values
consistent with actual changes, thereby confirming the model’s effective performance.

In summary, through comparative analysis on the WD13VIS and WDVigoVis datasets,
we have demonstrated that our proposed model exhibits robustness and adaptability in dif-
ferent data environments. The model shows good performance and predictive ability under
various conditions, underscoring its potential for wide-ranging applications, particularly
in scenarios where accurate visibility prediction is crucial. This versatility and effectiveness
reinforce the model’s suitability for practical deployment in diverse meteorological and
traffic conditions.

5.7. Practical Application System Validation

Currently, the model has been successfully integrated into the “Highway Traffic
Meteorological Intelligent Monitoring and Proactive Control System” [37] independently
developed by our research team for the Yunnan Province Transportation Investment and
Construction Group Co., Ltd which is located in Kunming City, China. This system has
been deployed on three highways managed by the Qujing Management Office—ZhaoHui,
DaiGong, and QuSheng—for the verification of accuracy in visibility prediction tasks. The
practical verification results aligned with anticipated standards, allowing the system to aid
local traffic management authorities in real traffic control.
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We have included detailed screenshots that showcase the system’s interface in Figure 11,
including the future visibility trend predictions over a 3 h window. These screenshots are
intended to provide a clear view of how our model’s predictions are presented within the
system. Furthermore, the system’s backend automatically compares the predicted visibility
values against the actual ground truth values collected during the same intervals. This
process, based on the algorithm depicted in Figure 11, assesses the model’s prediction
accuracy. If significant discrepancies are noted, the system triggers alerts to indicate the
potential need for recalibrating meteorological data collection devices or to verify that the
visibility prediction program is functioning correctly.

Two challenges encountered and resolved in actual applications were: firstly, the
real-time processing of incomplete or inaccurate meteorological data. We maintained
the model’s accuracy and reliability in scenarios of data loss or sensor malfunction by
employing data interpolation and anomaly detection techniques. Secondly, optimization of
the algorithm’s computational efficiency and data processing workflow was undertaken
to minimize prediction delays. This was achieved by utilizing parallel computing and
data caching mechanisms, ensuring timely updates of predictions under rapidly changing
weather conditions.
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6. Conclusions

This study presents a novel highway visibility prediction model, ATCNet, which
combines Transformer, Capsule Networks (CapsNet), and self-attention mechanisms. Our
experimental results demonstrate that ATCNet excels in handling complex and varied
meteorological data, significantly surpassing current advanced time series prediction
methods. Through detailed ablation experiments, we have confirmed the contributions
of Transformer, CapsNet, and self-attention mechanisms individually and in combination
to enhance model performance. Particularly under extreme meteorological conditions,
ATCNet shows excellent robustness and high accuracy.

We also explored the potential of ATCNet in practical application scenarios. The
model has been successfully integrated into the Highway Traffic Meteorological Intelligent
Monitoring and Proactive Control System and has been practically deployed on multiple
highways in Yunnan Province. Preliminary application results indicate that ATCNet
can effectively assist traffic management authorities in real-time prediction and decision-
making, thereby improving traffic safety and efficiency. However, we also recognize the
challenges in actual deployment, including the need for real-time data processing, data
quality assurance, and continual model optimization.

Future work will focus on further enhancing the model’s computational efficiency,
optimizing its performance in a broader range of application scenarios, and expanding the
model to handle more types of meteorological data. The success of ATCNet demonstrates
the potential of deep learning in the field of traffic meteorology, paving new pathways for
future research and applications.
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