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Abstract: The present manuscript introduces a method for evaluating and forecasting the quality
of vehicle-to-infrastructure (V2I) communication channels in urban settings. This method precisely
classifies and predicts channel quality levels in V2I scenarios based on long-range (LoRa) technology.
This approach aims to accurately classify and predict channel quality levels in V2I scenarios. The
concept of channel quality scoring was first introduced, offering a more precise description of
channel quality compared to traditional packet reception rate (PRR) assessments. In the channel
quality assessment model based on the gated recurrent unit (GRU) algorithm, the current channel
quality score of the vehicular terminal and the spatial channel parameters (SCP) of its location are
utilized as inputs to achieve the classification of channel quality levels with an accuracy of 97.5%.
Regarding prediction, the focus lies in forecasting the channel quality score, combined with the
calculation of SCP for the vehicle’s following temporal location, thereby achieving predictions of
channel quality levels from spatial and temporal perspectives. The prediction model employs the
Variational Mode Decomposition-Backoff-Bidirectional Long Short-Term Memory (VMD-BO-BiLSTM)
algorithm, which, while maintaining an acceptable training time, exhibits higher accuracy than other
prediction algorithms, with an R2 value reaching 0.9945. This model contributes to assessing and
predicting channel quality in V2I scenarios and holds significant implications for subsequent channel
resource allocation.

Keywords: channel quality levels; V2I; LoRa; GRU; VMD-BO-BiLSTM

1. Introduction

With the rapid advancement of electronic information technology, vehicle-to-everything
(V2X) technology has transformed automobiles from individual units into interconnected
and intelligent entities [1,2]. V2X technology facilitates the interconnection of vehicles
with the environment, encompassing vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communications [3]. V2V communication involves vehicle interactions, while V2I
encompasses communications between vehicles and roadside infrastructure (such as traffic
lights, control towers, or other facilities). Leveraging V2X technology enables collision
avoidance, reduced travel time, and autonomous driving, meeting the requirements for
future intelligent transportation, globalized traffic management, and ubiquitous informa-
tion services [4]. As the number of vehicles rapidly escalates, V2X communication critically
requires a new paradigm to satisfy its increasing connectivity demands, primarily address-
ing support for numerous devices, low deployment costs, extended coverage, low device
expenses, and prolonged battery life.

The Low-Power Wide Area Network (LPWAN) boasts long-range connectivity, low
power consumption, cost-effectiveness, and extensive network capacity. Within the realm
of LPWAN, LoRa technology primarily targets the Internet of Things (IoT) applications.
Its exceptionally high sensitivity ensures the reliability of network connections, while the
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deficient power consumption allows for prolonged terminal operation post-deployment [5].
LoRa employs linear frequency modulation spread spectrum modulation, which en-
hances communication distance while maintaining the low-power characteristics simi-
lar to frequency-shift keying (FSK) modulation. The use of spreading factors improves
network efficiency and eliminates interference. Building upon this foundation, concen-
trators/gateways are developed to receive and process data from multiple terminals con-
currently, significantly expanding system capacity. As an LPWAN wireless technology
operating in an unlicensed spectrum, LoRa demonstrates relatively faster progress in tech-
nology development and commercialization compared to other wireless technologies such
as Sigfox and NWave, making it more suitable for application in the context of vehicular
networking scenarios [6].

Some of the primary challenges in V2X communication include time-criticality, la-
tency tolerance, security, and privacy [7–9]. Furthermore, channel quality is susceptible
to multipath effects, loss attenuation, and adjacent channel interference in communica-
tion. These influences may lead to the loss of some business data, resulting in data packet
retransmission or terminal re-entry into the network. Low channel quality not only in-
creases communication delay but also undermines network stability. Effective channel
resource allocation can reduce retransmissions, save system power, increase network ca-
pacity, and ensure network robustness. Channel resource allocation relies on channel
quality assessment. A reliable channel quality assessment method can make channel re-
source allocation more effective. This paper investigates the channel quality assessment
of LoRa networks in V2I scenarios. In contrast to the need for more existing research
in evaluating channel quality, this study introduces a novel channel quality assessment
system (channel quality scoring) to provide a more detailed description of the variability of
channel quality. Building upon this framework, the assessment of channel quality levels in
various operational scenarios is achieved by integrating vehicle position information and
classification algorithms.

The remaining sections of this paper are organized as follows: Section 2 presents
related work. Section 3 introduces the fundamental principles of channel quality scoring
models, channel quality assessment, and prediction. Section 4 provides a detailed descrip-
tion of establishing the channel quality scoring model and the channel quality assessment
and prediction model. Section 5 validates the models through specific tests. Finally, Sec-
tion 6 outlines the conclusions of this paper and suggests avenues for future expansion.

2. Relevant Studies

Currently, there is a growing body of research on applying LoRa networks in the
context of vehicular communication. In [10], the authors compared the simulation and
empirical data of LoRa network communication metrics in V2X scenarios. The experimental
results demonstrated that the observed packet delivery ratio (PDR), packet reception time
(PIR), and received signal strength indicator (RSSI) were consistent with the simulation
results (excluding complex interference environments). In [11], simulation using the ns-3
module confirmed that the LoRa-based IoT network achieved a packet success reception
rate of over 95% for multiple end devices in typical urban scenarios. Furthermore, [6]
investigated the Doppler effect caused by rapid vehicular movement in LoRa networks
and proposed altering communication parameters to mitigate the fast fading induced by
the Doppler effect. Moreover, [12] presented a V2X communication architecture employing
LoRa wireless technology. This architecture enhances communication reliability by enabling
direct V2V and V2X communication, further improving communication latency.

In the context of vehicular communication, the assessment of channel quality is cru-
cial for various aspects, such as network resource scheduling management [13], access
schemes [14], and route selection [15]. Addressing the imbalance in wireless channel
samples, [16] proposes a channel quality estimation method that combines the K-means
Synthetic Minority Over-sampling Technique (K-means SMOTE) and weighted random
forests. This method utilizes the mean, variance, and asymmetry index of physical layer
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parameters as channel quality indicators. To overcome the limitations of relying solely on
physical layer parameters to characterize channel quality clearly, [17] introduces a novel
method, SeqLQE, which utilizes system metrics—such as radio link establishment time and
received packet count—rather than physical layer measurements to predict channel quality.
By designing and collecting runtime measurements during network operation and using
a Seq2Seq learning model to capture the correlation structure between channel quality
and system metrics, this approach aims to provide a more comprehensive representation
of channel quality. Furthermore, [18] proposes a deep-forest-based link quality estima-
tion model, starting from data preprocessing. An improved K-center points algorithm
based on stepwise increment and optimized centroids (INCK) is utilized in partitioning
channel quality levels to address the issue of noisy samples becoming cluster centroids.
By incorporating hierarchical sampling to alter the imbalanced distribution of channel
quality samples, the feature extraction performance of the deep forest model is enhanced.
Current research directions in channel quality evaluation and prediction mainly focus on
representing channel quality using different parameters and selecting suitable prediction
algorithms. However, there is limited research on the sensitivity of business requirements
to channel quality. This study investigates channel quality assessment and prediction by
integrating business characteristics based on existing research. Given the significant advan-
tages demonstrated by specific machine learning algorithms in predicting weather, traffic
flow, disease development, and object recognition and classification problems [19–22], these
algorithms are increasingly being applied to address communication issues [23]. This study
will utilize machine learning algorithms to investigate the assessment and prediction of
channel quality levels.

3. Theoretical Basis of Channel Quality Assessment and Prediction Model
3.1. Characteristics of Channel in Urban Mobility Scenarios

The term “path loss” (PL) refers to the average fading of the signal between the
transmitter and the receiver. It is typically logarithmically related to the frequency and
distance and can be expressed as:

PL(d, f ) = 32.45 + 20lg(d) + 20lg( f ) + Sσ (1)

Here, PL0 = 32.45 + 20lg(d) + 20lg( f ) represents the free space path loss, indicating
the signal attenuation when there is no obstruction between the transmitter and receiver.
Where f is the signal frequency in MHz, and d is the distance between the transmitter and
receiver in kilometers. Sσ represents the shadowing loss, which accounts for additional
propagation environment-induced losses beyond the distance factor, such as building
density and height. In the context of vehicular networks, the transmission path between the
receiver and the transmitter undergoes continuous changes with the movement of vehicles.
This paper will introduce the study of SCP to analyze the variation in channel environment
between the vehicular terminal and the gateway during vehicular movement.

3.1.1. The Phenomenon of Multipath Interference

The V2I communication environment is complex and diverse, with signals potentially
undergoing reflection, scattering, and diffraction to reach the receiver through multiple
transmission paths. The superposition and coherent interference of electromagnetic waves
from different paths at the receiving end can lead to changes in the amplitude and phase
of the received signal, known as multipath fading. Based on whether the electromagnetic
waves undergo scattering during propagation, all rays reaching the receiver are classified
into Line of Sight (LoS) and Non-Line of Sight (NLoS) rays. When a stable main signal
exists in the communication channel environment, its small-scale fading envelope follows
a Rice distribution, and the Rice factor K accurately describes this distribution. The Rice
factor K directly determines the power ratio between the LOS component and the NLOS
component, making it a key parameter for characterizing channel quality.
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3.1.2. Vehicular Traffic Density

Vehicular Traffic Density (VTD) is a unique concept in vehicular communication
employed to characterize the density of vehicles on a roadway. A higher VTD implies
lower spatiotemporal correlation properties, a more concentrated distribution of scatterers,
and increased spatiotemporal correlation.

3.2. Basic Theory of Channel Quality Scoring
3.2.1. Parameters for Evaluating Channel Quality

The assessment model of channel quality in V2I scenarios should objectively, accu-
rately, and comprehensively reflect the quality of the channel for vehicles in motion. More
than merely relying on the simple PRR is required for a comprehensive representation
of channel quality. PRR can only indicate the quality of the channel within a specific
period, and the channel is susceptible to interference due to its open nature. The variation
in channel quality is a dynamic process and can be represented based on the reception
conditions of multiple window messages. This dynamic process of representation can be
divided into the intensity of short-term channel quality changes and the long-term trend of
changes. The long-term trend of channel quality can be represented through PRR. In this
paper, the short-term changes in channel quality are characterized through the statistical
characteristics of signal strength and signal-to-noise ratio of uplink data from vehicular
terminals within a specific interval.

ri
RSSI and ri

SNR represent the short-term change increments of the signal-to-noise ratio
and signal strength at time i as the difference between the current value and the average
value within the statistical window N, as shown in Equations (2) and (3). Here, SNRi and
RSSIi, respectively, denote the signal-to-noise ratio and signal strength at time i. SNRN and
RSSIN represent the average values of the most recent N data frames for the signal-to-noise
ratio and signal strength. The stability of channel quality within the time window N is
represented by the variance of signal strength σ2

RSSI and the variance of signal-to-noise
ratio σ2

SNR, as shown in Equation (4).

SNRN =

i
∑

j=i−N+1
SNRj

N
, RSSIN =

i
∑

j=i−N+1
RSSIj

N
(2)

ri
SNR = SNRi − SNRN , ri

RSSI = RSSIi − RSSIN (3)

σ2
RSSI =

i
∑

j=i−N+1
(RSSIN − RSSIj)

2

N
, σ2

SNR =

i
∑

j=i−N+1
(SNRN − SNRi)

2

N
(4)

The evaluation of channel quality includes measuring the parameters that define chan-
nel quality and the composition of the weights associated with each parameter. The weights
for each parameter are computed through a method of combined weighting. The subjective
weights are initially calculated using the fuzzy analytic hierarchy process, while the objec-
tive weights are determined using the entropy weight method. Subsequently, the weights
for each parameter are obtained through a combined weighting process employing the
critic algorithm. The computation of the channel quality score is depicted in Equation (5).
In this Equation, (w1, w2, w3, w4, w5, w6, w7) represents the normalized values of the various
channel quality parameters, while (PRR, SNR, RSSI, ri

SNR, ri
RSSI , σ2

RSSI , σ2
SNR) denotes

the corresponding weights for each parameter. The channel quality score is derived by
normalizing the sum of the products of the weights and the normalized parameters and
then multiplying the result by 100.
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score =
[
w1 w2 w3 w4 w5 w6 w7

]


PRR
SNR
RSSI
ri

SNR
ri

RSSI
σ2

RSSI
σ2

SNR


× 100 (5)

3.2.2. Fuzzy Analytic Hierarchy Process

The Fuzzy Analytic Hierarchy Process (FAHP) is a widely employed method in the
field of decision analysis, integrating fuzzy mathematical theory with the analytic hierarchy
process to address complex decision problems [24,25]. Due to the inherent imprecision of
individual judgments not accounted for in the basic AHP, it has been enhanced through
the incorporation of fuzzy logic methods. In FAHP, linguistic variables are utilized for
pairwise comparisons of criteria and alternative solutions, represented by triangular fuzzy
numbers. Within assessments, triangular fuzzy numbers can be employed to characterize
the uncertainty, membership, and possibility of the impact on channel quality. This can be
expressed as follows:

A = (x, µA(x))|x ∈ X (6)

Here, A represents a triangular fuzzy number, X denotes the range of values for the
input variable x, and µA(x) signifies the membership of x, which can be expressed using a
membership function:

µA(x) =


x−a
b−a , a ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c
0, otherwise

(7)

In this context, µA(x) ∈ [0, 1], a, b, and c, respectively, denote the values of the left,
middle, and right vertices of the triangle on X. The value of b represents the highest degree
of truth; it is interpreted as a more appropriate estimate, while the values of a and c reflect
the expert’s reservations: the wider the base of the triangle, the greater the uncertainty
of the opinion. A narrower triangle indicates greater confidence in the decision made by
the expert. Assuming the following fuzzy numbers M̃1 and M̃2, specified by three digits
(a1, b1, c1) and (a2, b2, c2), the fundamental operations for triangular fuzzy numbers are
described as follows:

M̃1 ⊕ M̃2 = (a1, b1, c1)⊕ (a2, b2, c2) = (a1 + a2, b1 + b2, c1 + c2)

M̃1 ⊗ M̃2 = (a1, b1, c1)⊗ (a2, b2, c2) = (a1a2, b1b2, c1c2)

(a1, b1, c1)
−1 = ( 1

c1
, 1

b1
, 1

a1
)

M̃1
M̃2 ∼= (a1

a2 , b1
b2 , c1

c2)

(8)

The weights of the parameters at each level are determined using the concept of
geometric mean. The geometric mean of the corresponding row parameters’ crisp matrix,
denoted as GMi, can be determined using Equation (9), where bij in Equation (9) represents
the values in the crisp comparison matrix for the i-th row and j-th column. Here, M denotes
the number of parameters in the comparison matrix.

GMi =

[
M

∏
j=1

bij

] 1
M

(9)
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The weight of the variable can be determined using Equation (10).

wi = GMi/
M

∑
i=1

GM (10)

The relative importance scale in normal AHP is 1 to 9, whereas in FAHP, it is 1 to 9.
Table 1 presents the fuzzy relative importance table, where α denotes a fuzzification factor.

Table 1. Definition of fuzzy relative importance scale.

Relative Importance Fuzzy Scale Meaning

1 (1, 1, 1) Indicates that two factors are of equal importance.
3 (3 − α), 3, (3 + α) Suggests that the former factor is slightly more important than the latter.
5 (3 − α), 5, (3 + α) Denotes that the former factor is significantly more important than the latter.
7 (3 − α), 7, (3 + α) Highlights that the former factor is strongly more important than the latter.
9 (3 − α), 9, (3 + α) Emphasizes that the former factor is extremely more important than the latter.

2, 4, 6, 8 (x − α), x, (x + α) Intermediate values between two adjacent judgements.

3.2.3. Entropy Weight Method

The Entropy Weight Method is a multi-criteria decision analysis technique used to
determine criteria weights based on information entropy. Entropy reflects the diversity and
uncertainty of criteria, with higher entropy indicating a more significant disparity between
criteria and lower weights. In comparison, lower entropy signifies greater consistency
between criteria and higher weights. The total entropy of the criterion set can be obtained by
calculating the entropy of each criterion. Subsequently, the criteria weights are determined
based on their contributions to the total entropy. The Entropy Weight Method is widely
applied in problems involving multiple criteria decision-making, evaluation, and ranking,
as it considers the diversity and importance of criteria, providing an objective, quantitative
method for weight determination.

The specific calculation steps are as follows:
Step 1: Construct a decision matrix where each column represents a criterion, and

each row represents an alternative solution.

X =

 x11 · · · x1n
...

. . .
...

xm1 · · · xmn

 (11)

Step 2: Normalize the decision matrix.

Qij =
xij − min(xij)

max(xij)− min(xij)
(12)

Step 3: Calculate the entropy of each criterion, defining “entropy”. When there are m
evaluation factors and n evaluation objects in the evaluation index system, the entropy of
the index is defined as:

Hi = −k∑m
j=1 fij ln fij (13)

where fij =
Qij

∑m
j=1 Qij

, k = 1
ln n , and when fij = 0, let fij ln fij = 0.

Step 4: Define the entropy weight and calculate the contribution of each criterion to
the total entropy by dividing the entropy of each criterion by the total entropy to obtain the
weight of each criterion.

Wi =
1 − Hi

m − ∑m
j=1 Hi

(14)

where Wi ∈ [0, 1], ∑m
i=1 Wi = 1.
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3.2.4. Combining Weighting Algorithm

Diakoulaki proposed the criteria’s importance through inter-criteria correlation (CRITIC)
as a means to assign proportional weights objectively to different dimensions of indicators in
multi-attribute problems [26]. This method objectively assigns weights based on the contrast
of the same indicators for different evaluation objects and the conflict between different
indicators, characterizing the importance and influence of each indicator in the evaluation
process according to the assigned weight values. The specific steps are as follows.

Step 1: Consider n variables, each with n indicators, forming the original decision ma-
trix X = (xij)m×n. As the dimensions of each indicator are not identical, non-dimensional
processing should be performed separately for positive and inverse indicators to make the
decision matrix more standardized, resulting in a standardized matrix.

X′ = (x′ij)m×n
(15)

Step 2: Calculate the standard deviation of j indicators for i variables to characterize
the contrast of the indicators, denoted as σj, as shown in the following equation:

σj =

√√√√ 1
m − 1

m

∑
i=1

(
x′ij −

1
m

m

∑
i=1

X′
ij

)2

(16)

Step 3: Calculate the correlation ruj between the u-th and j-th indicators to represent
the conflict between indicators Rj, as shown in the following equation:

ruj =

n
∑

u,j=1
(xu − xu)(xj − xj)√

n
∑

u=1
(xu − xu)

2 n
∑

j=1
(xj − xj)

2
(17)

Rj =
n

∑
u=1

(1 −
∣∣ruj
∣∣) (18)

where u = 1, 2, · · ·, n; j = 1, 2, · · ·, n.
Step 4: Based on the contrast and conflict of the indicators, determine the information

content latent in the n indicators, denoted as Sj, as shown in the following equation:

Sj = σj · Rj (19)

Step 5: Calculate the objective weight wj, as shown in the following equation:

wj =
Sj

n
∑

j=1
Sj

(20)

3.3. Foundations of Channel Quality Level Assessment Theory
The Gated Recurrent Unit (GRU) Model

The GRU [27] is a computationally efficient, structurally simple recurrent neural net-
work classification algorithm adept at capturing long-term dependencies and exhibiting
strong modeling capabilities for sequential data. It excels in learning long-term mem-
ory while maintaining a low model complexity, achieving high predictive accuracy. The
schematic diagram of GRU is depicted in Figure 1, and its forward propagation formula is
articulated as follows:

rt = σ(Wr × [ht−1, xt] + br) (21)

zt = σ(Wz × [ht−1, xt] + bz) (22)
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h̃t = tanh(Wh × [rt ⊙ ht−1, xt] + bh) (23)

ht = (1 − zt)⊙ ht−1 + zt ⊙ h̃t (24)
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In the above equation, W and b denote the network parameters; xt represents the
sequential value at time t; h represents the hidden state at time t; σ(·) signifies the activation
function; tanh(·) denotes the hyperbolic tangent function; ⊙ represents the element-wise
product operator; rt denotes the vector controlling the resetting of the hidden state; zt

signifies the vector controlling the update of the hidden state; h̃t represents the candidate
hidden state at time t, and is a vector used for the computation of the hidden state.

3.4. The Fundamental Theory of Channel Quality Grading Evaluation
3.4.1. The VMD Algorithm

The Variational Mode Decomposition (VMD) algorithm is a fully non-recursive adap-
tive data processing method that determines the number of decompositions based on
the inherent characteristics of the data. It then transforms the data to obtain the optimal
solution, extracting practical separated components by updating central frequencies and
modal functions to derive intrinsic mode functions. The VMD algorithm comprises the
construction of variation and the resolution of variation [28].

The construction of variation involves decomposing the original data into several
modal components, minimizing the sum of the decomposition bandwidths for each mode.
This can be expressed as:

min

{
m

∑
m=1

∥∥∥∥∂t

{[
δ(t) +

j
πt

]
∗ um(t)

}
e−jωmt

∥∥∥∥2

2

}
, (25)

s.t.∑
m

um(t) = f (t) (26)

where δ(t) represents the Dirac function; j is the imaginary unit. f (t) represents the original
input signal. ∗ denotes the convolution operator; m signifies the number of decomposed
modes; {um} indicates the m-th modal component; and {ωm} illustrates the central frequency
of the m-th part. By introducing a quadratic penalty factor, α, and a Lagrange multiplier
operator, λ, an unconstrained variational problem can be formulated as:

L({um}, {ωm}, λ) = α∑
m

∥∥∥∥∂t

{[
δ(t) +

j
πt

]
∗ um(t)

}
e−jωmt

∥∥∥∥2

2
+
∥∥∥ f (t)− ∑m um(t)

∥∥∥2

2
+

〈
λ(t), f (t)− ∑

m
um(t)

〉
(27)
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Utilizing the alternating direction multiplier iteration algorithm facilitates the opti-
mization of the modal components and central frequencies while seeking the saddle point
of the augmented Lagrangian function. The solutions for ûm, ωm, and λ̂ post-iteration can
be obtained as follows:

ûn+1
m (ω) =

f̂ (ω)− ∑
i<m

ûn+1
m (ω) + λ̂n(ω)

2

1 + 2α(ω − ωn
m)

2 (28)

ωn+1
m =

∫ ∞
0 ω

∣∣ûn+1
m (ω)

∣∣2dω∫ ∞
0

∣∣∣ûn+1
m (ω)

∣∣∣2dω

(29)

λ̂n+1(ω) = λ̂n(ω) + τ( f̂ (ω)− ∑
m

∣∣∣ûn+1
m (ω)

∣∣∣) (30)

where τ serves as the noise tolerance to ensure the fidelity of the signal decomposition;
ûm(ω), f̂ (ω), and λ̂(ω) represent the Fourier transforms of um, ωm, and λ, respectively.

3.4.2. The BiLSTM Algorithm

The Long Short-Term Memory (LSTM) is an improvement over traditional recurrent
neural networks (RNNs). Its structure addresses excessive weight impact during RNN
training and gradient vanishing, exhibiting superior handling of long-time series. While
a unidirectional LSTM can yield favorable results when the critical information of input
features is fixed at a specific position, such as the middle or the end, it may fail to capture
crucial information if it resides at the beginning or is not fixed in place. Hence, the Bi-LSTM
was introduced [29]. To enable the output layer to assimilate past and future information,
the input time series is fed forward and backward into two LSTM modules, with their
outputs combined and transmitted to the output layer. This resolves the issue of the
temporal sequence of information and simultaneously considers the changing patterns of
past and future data, thereby demonstrating superior performance. The schematic of the
Bi-LSTM algorithm is depicted in Figure 2.
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1. The Forget Gate

At the outset, the forget gate determines the information to be discarded from the
current state input, utilizing an activation function to forget information selectively.

ft = σ
(

W f × [ht−1, xt] + b f

)
(31)

Here, the symbol σ represents the sigmoid activation function, which transforms
the input into the interval [0, 1], thus enabling partial input to be transformed into 0,
thereby serving the process of forgetting. The hyperbolic tangent (tanh) is also an activation
function, changing the information into the interval [−1, 1]. The characteristics of these
two activation functions are depicted in Figure 3.
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Where W f represents the weight parameter connecting the input to the hidden layer
neurons of the forget gate, with the input features being of dimension m1 and the number
of hidden layer neurons denoted as m2. Therefore, W f is an (m1 + m2)× m2 matrix. b f
signifies the bias of the forget gate’s hidden layer, with the same number of neurons as the
hidden layer. ht denotes the network output at the previous time step, while xt represents
the input to the network at time step t.

2. The Input Gate

The input gate primarily determines which information is adopted for updating.

it = σ(Wi × [ht−1, xt] + bi) (32)

C̃t = tanh(WC × [ht−1, xt] + bC) (33)

Tanh constrains the output to the range of [−1, 1], where Wi and Wc represent the
parameters connecting the input to the hidden layer neurons, and bi and bC represent
the biases.

The new state is obtained by adding the information passed through the forget gate to
the information newly introduced through the input gate.

Ct = Ct−1 ⊙ ft + C̃t ⊙ it (34)

3. The Output Gate

Utilizing the newly formed memory, Ct, in conjunction with the proportion calculated
by the final gate, yields the ultimate output. Here, Wo denotes the weight of the output
gate, while bo represents the bias of the output gate.
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Ot = σ(Wo × [ht−1, xt] + bo) (35)

ht = Ot ⊙ tanh(Ct) (36)

4. Establishment and Validation of Channel Quality Assessment and Prediction Models

This study investigates the channel quality evaluation model in V2I scenarios, thus
necessitating the consideration of the impact of different services and vehicle movements
on the assessment of channel quality. In the V2I scenario, services can be categorized based
on the frequency of business data reporting into fast services (sending one data packet
per second), slow services (sending one data packet per minute), and very slow services
(sending one data packet per hour). Furthermore, services can be classified according to
their importance into general, relatively significant, and highly important services. In the
V2I scenario, there are five primary types of services: obtaining weather data, obtaining
road conditions, obstacle avoidance reminders, emergency evasion, and vehicle information
reporting. These five services are classified based on their frequency and importance, as
depicted in Table 2.

Table 2. Classification of V2X service characteristics.

Business Name Frequency Importance

Obstacle Avoidance High Extremely Important
Emergency Evacuation High Extremely Important

Vehicle Information Reporting Low Moderately Important
Obtaining Road Condition Information Low Important

Obtaining Weather Data Very Low Moderately Important

The description of channel quality in most communication systems is typically based
on the classification of channel quality levels. In this paper, we delineate the classification of
channel quality levels based on the minimum requirements of PRR for different frequency
services and the minimum demodulated signal-to-noise ratio and signal strength required
for using other parameters in LoRa communication. This paper categorizes channel quality
into three classes: high channel quality, medium channel quality, and low channel quality.

4.1. Establishment of a Model for the Assessment of Channel Quality Grades

The comprehensive architecture for evaluating and predicting channel quality levels,
as illustrated in Figure 4, comprises five main modules: the data acquisition module, the
channel quality scoring module, the spatial channel information perception module, the
channel quality classification module, and the prediction module. The data acquisition
module conducts statistical recording of the RSSI, SNR, and PRR data uploaded by the
vehicle’s onboard terminals. It then calculates the evaluation parameters introduced in
this paper using relevant formulas, deriving the channel quality evaluation parameters.
The channel quality scoring module generates the quality score based on the input channel
quality evaluation parameters and their respective weighted values. The spatial channel in-
formation perception module outputs spatial channel quality evaluation parameters based
on the location information uploaded by the vehicles. The prediction module forecasts the
channel quality score and the spatial channel quality evaluation parameters for the next
time step of the onboard terminals. The channel quality classification module consists of a
neural network-based classifier. It takes the denoised and calibrated channel quality scores
and the spatial channel quality evaluation parameters as input for automatically extracting
features and classifying the channel quality levels.
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4.1.1. Development of a Channel Quality Scoring Model

In this study, various aspects of network performance were considered when con-
structing a channel assessment model for LoRa networks in V2I scenarios. Key performance
indicators were selected to propose a weight-based channel quality scoring algorithm. This
algorithm combines subjective and objective combinations of seven parameters to obtain
the final channel quality score. By converting the seven parameters into a single parameter
through weighting, the algorithm reduces the dimensionality of input data for subsequent
use of classification algorithms, thereby reducing algorithm complexity. Additionally,
considering the variation in channel quality with spatial changes during vehicle motion, a
transmission loss map was introduced to adjust channel quality. Ultimately, the channel
quality rating model addresses the multi-classification problem of determining channel
quality levels based on multiple factors.

The hierarchy of the FAHP model is designed based on different criteria and sub-
criteria. All identified criteria, sub-criteria, and alternative assessment options are arranged
at different levels of the hierarchy (as shown in Figure 5). The first level of the hierarchy
defines the objective of the decision problem, while the second and third levels, respectively,
define the criteria and parameters for measuring the quality of the communication channel.

Five experts scored the seven indicators, with higher scores indicating greater im-
portance in the channel quality assessment model. The specific scores are illustrated in
Table 3.

Table 3. Expert evaluation scores of the seven key indicators.

Category C1 C2 C3 C4 C5 C6 C7

Expert 1 5 5 9 3 5 5 7
Expert 2 3 5 9 5 5 7 7
Expert 3 3 5 7 3 5 5 5
Expert 4 5 5 1 5 5 5 5
Expert 5 3 5 9 5 7 5 7
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The weights of each parameter were calculated based on the fuzzy numbers corre-
sponding to the scores in Table 1, and a sensitivity analysis of the proposed decision model
was conducted by varying the fuzzification factor. As shown in Table 4, the model output
results were analyzed using six sets of fuzzification factor values (0, 0.2, 0.4, 0.6, 0.8, and 1).
The results revealed that although the weights of each communication channel parameter
changed with the variation in fuzzification factor, the ranking of the parameters remained
unchanged [24].

Table 4. Weights of seven parameters for different fuzzification factors (α).

Category α = 0 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1

C1 0.0275 0.0275 0.0275 0.0276 0.0276 0.0277
C2 0.0554 0.0554 0.0556 0.0559 0.0563 0.0568
C3 0.4218 0.4216 0.4211 0.4203 0.419 0.4173
C4 0.0275 0.0275 0.0275 0.0276 0.0276 0.0277
C5 0.1158 0.1158 0.1159 0.116 0.1162 0.1164
C6 0.1158 0.1158 0.1159 0.116 0.1162 0.1164
C7 0.2362 0.2363 0.2364 0.2367 0.2371 0.2376

By following the algorithmic steps outlined in Section 3.1.1, the subjective weights
were computed. Subsequently, the objective weights are computed using the requirements
of the entropy weight method in Section 3.1.2. Finally, the composite weights are deter-
mined through the CRITIC algorithm, yielding the ultimate weights as depicted in Table 5.
Upon obtaining the weights, the channel quality score can be computed based on the
seven parameters.

Table 5. Weighting results of each parameter.

Category C1 C2 C3 C4 C5 C6 C7

FAHP 0.0277 0.0568 0.4173 0.0277 0.1164 0.1164 0.0277
Entropy Weight 0.2095 0.1215 0.1618 0.0788 0.2766 0.0724 0.0794

Combination 0.0922 0.0798 0.3266 0.0458 0.1733 0.1008 0.1814

4.1.2. A Channel Information Perception Module Based on Spatial Location

As illustrated in Figure 6, the roadside unit can simultaneously serve vehicles A and B.
Compared to vehicle A, the building between vehicle B and the roadside unit renders the
spatial channel information more intricate. The spatial channel information of the moving
vehicles is investigated through the profile diagram between the transmitter and receiver, as
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depicted in Figure 7. The channel information about the moving vehicles’ spatial position
is based on 3D map data. Parameters such as the latitude and longitude values of the
vehicle’s location and the vertical height difference between the transmitter and receiver
facilitate the computation of the 3D distance between the transmitter and receiver, building
density, average building height, and scene type [30]. The specifics of these features are
defined as follows:
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(1) dtx, dty: Latitude and longitude of the transmitter;
(2) drx, dry: Latitude and longitude of the receiver;
(3) The 3D distance between the transmitter and the receiver, denoted as

dz =
√
(dtx − drx)

2 + (dty − dry)
2 + (ht − hr)

2;
(4) ρ: Building density between the transmitter and receiver, calculated as the sum of

the ground distances of all buildings in the profile diagram divided by the horizontal
distance between TX and RX, illustrated by test point ρ = n1+n2

d0
in Figure 7.

(5) h: Average building height, calculated as the total height of all buildings between
TX and RX in the profile diagram divided by the number of buildings, denoted as
h = h1+h2

2 .
(6) C: Scene type, evaluated based on the 3D map information of the current location of

the vehicle and the building scene between the vehicle and the roadside unit. The
classic values of K can be inferred from the characteristics of the current scene.

In summary, {dz, ρ, h, C} constitutes the spatial channel parameters (SCP).

4.1.3. Model for Assessing Channel Quality Levels Based on GRU

The GRU model used in this study primarily consists of the GRU network introduced
in Section 3.3, and the specific network model is illustrated in Figure 8. The first layer serves
as the sequential input layer, followed by the GRU input layer in the second layer. The
third layer, dropout, reduces data dimensionality and suppresses overfitting. Subsequently,
the fourth layer is the GRU layer, followed by another dropout layer in the fifth layer to
mitigate overfitting further. The sixth layer is fully connected, while the seventh layer
employs the Softmax function to obtain the ultimate classification results. Finally, the last
layer serves as the classification output layer.
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Step 1: Data preprocessing involves implementing the 3-sigma detection method
for identifying and removing outliers, employing the Z-score normalization method to
transform data of varying specifications and dimensions into commensurate numerical
values. The calculation formula for the Z-score is as follows [31]:

Commence by computing the mean of the original data.

µ =
1
N

N

∑
i=1

xi (37)

Subsequently, calculate the standard deviation of the data.

σ =

√√√√ 1
N

N

∑
i=1

(xi − µ)

2

(38)

Finally, obtain the data standardized through the Z-score method.

zi =
xi − µ

σ
(39)

Step 2: The processed sequences are input into the GRU network, wherein the gated
recurrent unit extracts the temporal dependency features of interference signals, and a
dropout layer is utilized to remove specific neurons from the network stochastically, thus
mitigating the occurrence of overfitting.

Step 3: The extracted features are fed into the Softmax layer to yield probability values,
which determine the interference signal category. Assuming there are n categories, denoted
as Sk, with numerical values, the calculation formula for Softmax is as follows:

P(Si) =
egi

∑n
k egk

(40)

wherein i represents a specific category within k, and gi signifies the value of that category.
Step 4: The classification results are generated, and the algorithm’s performance is

subsequently analyzed.

4.2. Construction of a Predictive Model for Channel Quality Classification

The present study has established a channel quality scoring prediction model based
on VMD-BO-BiLSTM. The BiLSTM network, capable of bidirectional learning of temporal
correlations between data, enhances the extraction of temporal sequence features. However,
the channel quality score exhibits complex non-linear characteristics with fluctuating
patterns. To address this, the VMD algorithm has been introduced to decompose the
channel quality score into intrinsic mode components, thereby enabling their intuitive
representation. Subsequently, different elements are incorporated into the BiLSTM model
for prediction.

The Bayesian optimization algorithm, requiring only a few objective function evalua-
tions, can obtain an optimal solution and continuously update hyperparameters [32]. This
makes it suitable for addressing problems with high computational costs, unknown deriva-
tives, and the need to determine global minima. Consequently, this study has employed the
Bayesian optimization algorithm to optimize the hyperparameters of the BiLSTM model
while the VMD algorithm processes the data. The VMD-BO-BiLSTM model algorithm
can be categorized explicitly into data preprocessing and initialization, the Bayesian opti-
mization phase, and the BiLSTM prediction phase, with the specific workflow of each step
illustrated in Figure 9.
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Algorithmic Steps.

1. Data Preprocessing and Initialization

Step 1: Data Cleansing.
Initially, detection of any data gaps or anomalies is performed. In the event of missing

data, linear interpolation, as presented in Equation (41), is employed for data processing.
In the case of anomalous data, the use of the mean smoothing method, as indicated in
Equation (42), is warranted.

xa+i = xa +
i(xa+n − xa)

n
(41)

xb =
(xb+i − xb−i)

2
(42)

Step 2: VMD Algorithm.
The dataset is partitioned into m effective modal components using the VMD algo-

rithm, such that the sum of the decomposed bandwidths of each modal element
is minimized.

Step 3: Normalization.
The data are normalized using the min-max method before training.

2. Bayesian Optimization Phase

Step 1: Initialization.
The BiLSTM model parameters and hyperparameter ranges are initialized, and ran-

dom initialization points are generated. The data samples processed by the VMD algorithm
and the initialized parameters are used as input variables for the Gaussian model in
Bayesian optimization. Parameters are refined based on the model’s predictions, aiming to
improve the output results to approximate the proper distribution of the objective function.

Step 2: Evaluation.
The refined Gaussian model selects a set of parameters for evaluation. If the function

achieves an optimal state closest to the objective function’s proper distribution, the chosen
parameter set becomes the optimal parameter set.
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Step 3: Training.
The optimal parameter set is used for training in the BiLSTM. If the error of the selected

parameter set is greater than the pre-set threshold, the algorithm terminates, outputting the
model’s predictive error and the current parameters.

Step 4: Refinement.
If the error does not meet the threshold, further refinement of the Gaussian model is

carried out, returning to Step 2 until a mistake less than the pre-set threshold is achieved.

3. BiLSTM Prediction Phase

Step 1: Prediction.
The m modal components are individually input into the Bayesian-optimized BiLSTM

model for prediction, and their predicted values are aggregated to obtain the overall
prediction result.

Step 2: Performance Evaluation.
To assess the performance of the VMD-BO-BiLSTM model, this study employs the

root mean square error (RMSE), mean absolute error (MAE), and mean fundamental
percentage error (MAPE) as performance evaluation metrics. These are expressed by
Equations (43)–(45). A decrease in RMSE, MAE, and MAPE indicates higher precision and
reliability of the model [33].

The root mean square error is represented by:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (43)

The mean absolute error is denoted as:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (44)

The mean absolute percentage error is given by:

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (45)

5. Experimentation and Validation
5.1. The Establishment of Testing Environments

To validate the effectiveness of the proposed channel quality level assessment and
prediction methods, a vehicle equipped with a LoRa vehicular terminal was used for testing.
During the testing process, packet reception rate, signal-to-noise ratio, and signal strength
were collected to construct a dataset for training and analysis. The testing scenario occurred
within the campus’s internal roads, as shown in Figure 10, with a gateway located at point
A for receiving data from the vehicular terminal. The recording points (D_enter) and
(D_leave) represent the moments when the vehicle entered and exited the obstructed area
of building D relative to point A, respectively. In this testing scenario, there are two main
buildings, D and C. The vehicle followed a predetermined route depicted in the figure, and
the vehicular terminal’s data reporting was analyzed under three different link budgets of
high, medium, and low by adjusting the transmission power of the vehicular terminal. The
specific testing parameters are shown in Table 6 below.

Table 6. Experimental parameter table.

Parameter Parameter Values

BW 500 KHz
Frequency 480 MHz

SF 12
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Table 6. Cont.

Parameter Parameter Values

Packet length 20 Bytes
CR 4/5

Preamble length 10
Transmission power 14 dBm, 17 dBm, 20 dBm

Distance 150 m
Gateway height 1 m

Data packet generation rate 1 packet/s
Vehicle speed 25 km/h
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nario occurred within the campus’s internal roads, as shown in Figure 10, with a gateway 
located at point A for receiving data from the vehicular terminal. The recording points 
(D_enter) and (D_leave) represent the moments when the vehicle entered and exited the 
obstructed area of building D relative to point A, respectively. In this testing scenario, 
there are two main buildings, D and C. The vehicle followed a predetermined route de-
picted in the figure, and the vehicular terminal’s data reporting was analyzed under three 
different link budgets of high, medium, and low by adjusting the transmission power of 
the vehicular terminal. The specific testing parameters are shown in Table 6 below. 

 
Figure 10. Deployment diagram for testing. 

Table 6. Experimental parameter table. 

Parameter Parameter Values 
BW 500 KHz 

Frequency 480 MHz 
SF 12 

Packet length 20 Bytes 
CR 4/5 

Preamble length 10 
Transmission power 14 dBm, 17 dBm, 20 dBm 

Distance 150 m 
Gateway height 1 m 

Data packet generation rate 1 packet/s 
Vehicle speed 25 km/h 

Figure 10. Deployment diagram for testing.

5.2. Validation of Model Performance

As illustrated in Figure 11, in conjunction with the time log recorded during the
testing process, it is evident that the PRR noticeably decreases when the vehicle enters the
obstructed area of the building. Conversely, as the vehicle exits the obstructed area, the PRR
gradually increases. Furthermore, the degree of PRR variation differs with varying link
budgets at the terminal, with a greater magnitude of change in PRR observed for lower link
quality compared to higher link quality. This phenomenon arises because the terminal’s
perception of channel quality is not solely determined by the loss resulting from spatial
factors between the transmitter and receiver but also correlates with the link budget during
terminal operation.

Figures 12 and 13 illustrate the relationship between PRR, SNR, and RSSI variances for
vehicle-mounted terminals on the same road segment under three different link budgets.
From the figures, it is evident that as vehicles enter or exit regions obstructed by buildings,
variations in PRR correspond to increases in both SNR and RSSI variances. Thus, the
SNR and RSSI variances serve as channel stability indicators. Furthermore, the range of
changes in SNR and RSSI variances differs depending on the link quality. In the case of
a low-quality link budget, as shown in Figure 12a, the range of SNR variance change is
0.3–991, while the range of RSSI variance change, as depicted in Figure 13a, is 0–80.3. For a
medium-quality link budget, as shown in Figure 12b, the range of SNR variance change is
3.3–408; in Figure 13b, the range of RSSI variance change is 1–33.3. Lastly, for a high-quality
link budget, as illustrated in Figure 12c, the range of SNR variance change is 9.3–342, and
in Figure 13c, the range of RSSI variance change is 0.2–28.3. Therefore, we can infer that
the channel becomes more unstable as the link budget quality decreases. Additionally, it
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is worth noting that PRR values may be the same for different variance values, indicating
that relying solely on PRR changes is inadequate for assessing channel stability.
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der three distinct link budget scenarios proposed in this study. It is evident that while 
PRR remains relatively stable, there are noticeable fluctuations in the channel quality 
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medium-level link budget. (c) Comparison of SNR variance and PRR under a low-level link budget.
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The comparative plots in Figure 14a–c depict the channel quality scores and PRR
under three distinct link budget scenarios proposed in this study. It is evident that while
PRR remains relatively stable, there are noticeable fluctuations in the channel quality scores.
These fluctuations are correlated with the variances in SNR and RSSI. Thus, the channel
quality scores proposed in this paper provide a more descriptive assessment of channel
quality variability compared to PRR.
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This study leverages a GRU-based model for evaluating the quality grades of channels,
incorporating spatial channel information of vehicle locations and channel quality scores
as input, and generating channel quality grades as output. The model is trained on a large
dataset and the final results are depicted in Figure 15, showcasing a comparison between
the classification outcomes and the original data. Category 1 in the figure corresponds to
low channel quality, Category 2 to medium channel quality, and Category 3 to high channel
quality. The accuracy achieved in the campus road scenario is 97.5%.
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To validate the effectiveness of the channel quality classification algorithm, the pre-
dicted data confusion matrix is shown in Figure 16a. Each column represents the expected
category of the channel quality grade, while each row represents the true category. The
confusion matrix shows that the proposed method accurately classifies the three-channel
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quality categories. Furthermore, a comprehensive evaluation of precision, recall, and F1-
score for each channel quality grade is conducted by creating relevant bar charts. The
accuracy, recall, and F1-score for each channel quality grade in the campus road segment
scenario are depicted in Figure 16b, all within a reasonable classification range.
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This study conducted a comparison experiment using four commonly used classifica-
tion algorithms. The experimental results for different classification algorithms are shown
in Table 7. The proposed GRU algorithm establishes a mapping relationship between
the channel quality rating, spatial feature information of the vehicle’s location, and the
channel quality grade. It achieves the highest recognition accuracy when compared with
four classical deep learning algorithms.

Table 7. Comparative analysis of accuracy among various classification algorithms.

Algorithm
Average

Recognition
Accuracy

High
Channel
Quality

Medium
Channel
Quality

Low
Channel
Quality

Time
Overhead

SVM 88.6% 88.3% 92.3% 84.6% 0.97 s
MLP 90.1% 92.8% 92.8% 87.5% 7.69 s
CNN 93.2% 93.7% 93.7% 91.6% 52.9 s
LSTM 95.4% 93.8% 94.2% 100% 24.2 s
GRU 97.5% 97.7% 97.5% 95.2% 16.3 s

This study’s proposed VMD-BO-BiLSTM prediction model takes the campus road test
data samples as input and the channel ratings calculated through the channel quality rating
system as output. Bayesian optimization is employed to adjust the model’s hyperparame-
ters, facilitating the identification of the optimal combination of hyperparameters and thus
improving the model’s performance. The VMD algorithm is further applied to decompose
the original data, enhancing the accuracy of the predictions. Figure 17 illustrates the graph
after VMD decomposition. To validate the algorithm’s performance, a comparison is made
between the performance parameters of the ordinary LSTM algorithm, the one without
Bayesian optimization, the one without the VMD algorithm, and the proposed prediction
model, as shown in Table 8. The table reveals that employing Bayesian optimization can
reduce the algorithm’s time overhead while using the VMD algorithm can enhance predic-
tion accuracy at the cost of increased time overhead. The VMD-BO-BiLSTM algorithm used
in this study achieves an R2 value of 0.9945, demonstrating excellent performance while
meeting the time constraints.
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Table 8. Comparative analysis of the performance of prediction algorithms.

Algorithm MAE MAPE MSE RMSE R2 Time Overhead

VMD-Bo-BiLSTM 0.5664 0.0129 0.58762 0.7665 0.9945 18.52 s
BiLSTM 2.1675 0.4831 7.67.4 2.7695 0.9214 13.15 s

Bo-BiLSTM 1.427 0.0333 3.0955 1.9594 0.9683 12.13 s
VMD-Bo-LSTM 0.7775 0.0180 1.1152 1.0560 0.9896 18.25 s
VMD-BiLSTM 1.8643 0.0409 5.6367 2.3742 0.9474 14.55 s

6. Conclusions

This study proposes a combined weighting-based approach to address the problem
of channel quality assessment in V2I communication in mobile scenarios based on LoRa
technology. This method considers the long-term and short-term variations in the channel
when selecting parameters, enabling effective measurement of the continuously changing
channel environment for vehicular terminals during motion. The combined weighting-
based approach is also employed to calculate the channel quality rating. This evaluation
method provides a more scientific description of channel quality from both subjective and
objective perspectives, making it more sensitive compared to relying solely on PRR for
channel quality description. In evaluating channel quality levels, the channel quality rating
and spatially based channel information are utilized to characterize the channel quality
levels, considering the differences in channel quality assessment for different services.

The GRU algorithm is employed to train the channel quality assessment model, achiev-
ing an accuracy of 97.5%. This research comprehensively considers the influence of space
and time on channel quality levels. The prediction of channel quality levels is achieved
by combining the spatial channel information of the vehicle’s next moment position and
predicting the corresponding channel quality score. The prediction algorithm achieves an
R2 value of 0.9945, demonstrating significantly improved accuracy compared to the unopti-
mized prediction algorithm. Furthermore, to ensure the generality and persuasiveness of
the obtained data, the algorithm is validated in three different link quality scenarios. In this
study, the vehicle’s speed remains relatively stable. In future experiments, the assessment
of channel quality levels during variable-speed vehicle motion will be investigated, and
the proposed model will be validated using a more extensive dataset. Furthermore, the
current experiments only involve single gateway data reception. The following steps will
include expanding the area and increasing the number of gateways to study handover
between the vehicular terminals and gateways during motion. Ultimately, the assessment
of channel quality levels will be applied to network resource allocation to ensure the ratio-
nality of channel resource switching for vehicular terminals. Following the investigation of
LoRa-based V2I scenarios, our team will further refine the methodology and analyze and
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validate the experimental data for application in 5G and V2V, extending this work to 5G
and V2V scenarios.
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