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Abstract: In the field of collaborative filtering, attribute information is often integrated to improve
recommendations. However, challenges remain unaddressed. Firstly, existing data modeling meth-
ods often fall short of appropriately handling attribute information. Secondly, attribute data are
often sparse and can potentially impact recommendation performance due to the challenge of in-
complete correspondence between the attribute information and the recommendations. To tackle
these challenges, we propose a hypergraph collaborative filtering with attribute inference (HCFA)
framework, which segregates attribute and user behavior information into distinct channels and
leverages hypergraphs to capture high-order correlations among vertices, offering a more natural
approach to modeling. Furthermore, we introduce behavior-based attribute confidence (BAC) for
assessing the reliability of inferred attributes concerning the corresponding behaviors and update the
most credible portions to enhance recommendation quality. Extensive experiments conducted on
three public benchmarks demonstrate the superiority of our model. It consistently outperforms other
state-of-the-art approaches, with ablation experiments further confirming the effectiveness of our
proposed method.

Keywords: hypergraph learning; collaborative filtering; attribute inference

1. Introduction

In collaborative filtering (CF), leveraging attribute information can significantly en-
hance the recommendation process by capturing the similarities among users and items [1–4].
For instance, students might prefer stationery to people with other occupations, and chil-
dren may favor cartoons over horror movies. These attributes provide a multi-faceted
description that can reflect user preferences and behavior, thus enriching personalized
recommendations [5–7].

Two pressing challenges in the realm of attribute information are its proper modeling
and the challenge of sparsity [8,9]. Addressing the first challenge involves considering
how attributes are integrated into collaborative filtering models. One common practice
is to incorporate attributes directly into user and item embeddings [10–12]. However,
this direct incorporation can be problematic if individual behaviors frequently diverge
from stereotypical patterns linked to these attributes. An overemphasis on stereotypical
attribute–behavior alignments may lead to inaccurate recommendations, as it fails to
capture the full complexity and variability of human behavior. Another approach involves
using graph-based models to represent attribute information, as employed by methods
in [10,11,13]. While these models are effective in capturing pairwise relationships, they
may not fully represent the group traits often characterized by attribute information, thus
not fully exploiting the high-order correlations that attributes can provide. To address the
second challenge of attribute sparsity, methods like those in [10] use attribute inference to
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generate pseudo-labels for adaptive updating. However, this strategy risks propagating
errors through incorrect pseudo-labels, leading to increasingly distorted representations as
learning progresses.

To solve these issues, we propose a hypergraph collaborative filtering with attribute
inference (HCFA) framework. HCFA effectively models attribute information, resolves
the issue of attribute sparsity, and prevents error propagation. First, HCFA employs a
multi-channel approach to separately model attribute and behavior information using
a channel attention mechanism to assign distinct weights to each channel. This strategy
allows users or items to select attributes that more accurately reflect their behaviors, thereby
avoiding the pitfalls of incorporating irrelevant or inaccurate attributes into their embed-
dings. Second, we leverage hypergraph structures to capture the high-order correlations
between attributes and behaviors. The hypergraph’s ability to encompass any number of
vertices makes it ideal for representing the complex, group-based relationships inherent
in attribute and behavior data. Finally, to tackle attribute sparsity with attribute inference
and mitigate error propagation, we propose the behavior-based attribute confidence (BAC).
BAC quantitatively assesses an attribute’s credibility in relation to the corresponding user or
item behavior, calculated as the average similarity of the attribute with the neighbors of the
user or item. Attributes with higher BAC scores are prioritized for updates in subsequent
training rounds.

To conclude, our contributions are summarized as follows:

• We propose the hypergraph collaborative filtering with attribute inference (HCFA)
framework, leveraging a multi-channel hypergraph to distinctly model attribute and
behavior information. This approach enables the extraction of high-order correlations,
providing precise modeling for both dimensions.

• We introduce the behavior-based attribute confidence (BAC) metric to quantitatively
ascertain the credibility of inferred attributes. Coupled with a selection and update
mechanism, this approach prioritizes attributes with higher BAC scores, thus resolving
the sparsity issue and circumventing error propagation.

• Our experimental results on three public benchmarks show that our HCFA framework
achieves an average performance improvement of 9.23% compared with state-of-the-
art methods. Extensive ablation studies further demonstrate the effectiveness of each
component of our method.

2. Related Work

The following related works are organized in Table 1.

Table 1. Related methods. The check mark (✓) indicates that the method utilizes the corresponding
structure or information.

Methods Graph Hypergraph Attribute

NGCF ✓ - -
GC-MC ✓ - -
PinSage ✓ - -
SGCN ✓ - -

LightGCN ✓ - -
DHCF - ✓ -
HCCF - ✓ -
AGCN ✓ - ✓
AGNN ✓ - ✓
BSAL - - ✓

BiANE - - ✓
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2.1. Graph Collaborative Filtering Methods

Graph convolutional networks (GCNs) [14,15] have garnered significant successes in
vertex representation learning, leading to their integration into CF frameworks such as
NGCF [16], GC-MC [17], and PinSage [18]. To streamline these models for CF, methods like
SGCN [19] and LightGCN [20] have simplified the GCN architecture. Notably, LightGCN
simplifies the GCN approach by solely focusing on neighbor aggregation, thus enhancing
performance, reducing complexity, and establishing itself as state-of-the-art. However,
while graph structures adeptly capture pairwise relationships, they often fall short of
encapsulating high-order correlations, such as those inherent in attribute information.

2.2. Hypergraph Collaborative Filtering Methods

Compared to traditional graph structures that primarily model pairwise correlations,
the hypergraph structure is notably proficient at capturing the intricate, high-order re-
lationships among users and items. As deep learning continues to evolve, a number
of methodologies utilizing hypergraphs for collaborative filtering have emerged [21–25].
Among them, DHCF [21] stands out as the first CF method based on hypergraph convo-
lutional networks, utilizing hypergraph convolution across dual channels to refine user
and item embeddings independently. Building on this, HCCF [22] advances the field with
a hypergraph-enhanced cross-view contrastive learning architecture adept at integrating
local and global collaborative relationships. This model synergizes hypergraph structure
learning with self-supervised learning, significantly improving the discriminative capa-
bilities of GNN-based CF models and, consequently, the representational quality within
recommender systems.

2.3. Recommendation with Attribute Information

In the realm of CF, augmenting models with user and item attributes has proven to
be an effective strategy for overcoming data sparsity. AGCN [10] leverages a GCN-based
adaptive model for attribute inference and updates attributes to address the sparsity issue.
On a different front, AGNN [13] employs a variational auto-encoder framework to generate
preference embeddings that are particularly useful for cold-start users or items. Mean-
while, BSAL [26] capitalizes on node attributes to construct a semantic topology, extracting
structural insights from the resulting semantic graph. Similarly, BiANE [12] focuses on
integrating attribute proximity with structural information, thus enhancing node represen-
tation for more precise recommendations. While these methods innovatively incorporate
attribute information into collaborative filtering, their approach to modeling attributes
is not without drawbacks, potentially leading to degradation. Moreover, AGCN’s [10]
strategy of updating attribute information to combat sparsity issues, despite being creative,
introduces the risk of error propagation, which could compound inaccuracies over time.

3. Preliminaries

A hypergraph is the generalization of a graph, where edges can connect any number
of vertices [27]. Formally, a hypergraph is defined as G = (V , E), where vertex set V
and hyperedge set E are finite sets. Each element e ∈ E is a non-empty subset of V . The
incidence matrix of a hypergraph is defined as H ∈ {0, 1}|V|×|E|. It is used to represent
interactions between the vertex set V and the hyperedge set E . It can be formulated as

H(v, e) =

{
1, v ∈ e
0, v /∈ e

, (1)

The degree of each vertex v in a hypergraph G can be defined as d(v) = ∑e∈E H(v, e),
and the degree of each hyperedge e can be defined as δ(e) = ∑v∈V H(v, e). Furthermore,
Dv ∈ N|V|×|V| and De ∈ N|E |×|E | represent the diagonal matrix of the vertex and hyperedge
degrees, respectively.
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The hyperedge convolutional layer [28] is defined as

X(l+1) = σ(D−1/2
v HW D−1

e HTD−1/2
v X(l)Θ(l)), (2)

where X(l) ∈ Rn×d is the signal of the hypergraph at l layer, and n and d denote the
vertex number and embedding dimension, respectively. σ denotes the nonlinear acti-
vation function. X(l+1) is the output of layer l + 1, which can be used for a variety of
downstream tasks.

In summary, compared to a graph, a hypergraph proves more effective by enabling
advanced information interaction through its structural superiority.

4. Method

In this section, we introduce the proposed hypergraph collaborative filtering with
attribute inference (HCFA) framework, as illustrated in Figure 1.

Figure 1. The pipeline of the proposed method. The initial attribute and behavior information,
along with the constructed hypergraph structure, feed into the multi-channel hypergraph learning
module. The learned embeddings are leveraged for attribute information and recommendation,
where the former is further sent for attribute selection and update and the latter is the output of the
proposed method.

4.1. Hypergraph Construction

To capture the high-order correlation between users and items, we utilize both attribute
and behavioral information to construct hypergraphs.

First, the attribute hypergraph is built to capture the high-order relationship estab-
lished by the attributes shared among users and items. Vertices sharing the same attribute
are linked by a hyperedge. This is noted as A, and Au, Av represent the attribute hyper-
graphs for the user and item, respectively. The incidence matrix can be formulated as

Hu
A(i, j) =

{
1 useri have attributej
0 otherwise

,

Hv
A(i, j) =

{
1 itemi have attributej
0 otherwise

.
(3)

Thus, Hu
A = X and Hv

I = Y .
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Next, the behavior hypergraph is built to capture the high-order relationship estab-
lished by the behavior information. Specifically, users who interact with the same item
will be grouped into the same hyperedge. Similarly, items that interact with the same user
will be linked by the same hyperedge. This is noted as B for the sake of brevity, and Bu, Bv
represent the behavior hypergraphs for the user and item, respectively. The incidence
matrix can be formulated as

Hu
B(i, j) =

{
1 useri interacted with itemj
0 otherwise

,

Hv
B(i, j) =

{
1 itemi interacted with userj
0 otherwise

.
(4)

Obviously, it can be find out that Hu
B = R and Hv

B = RT , where R is the user-item
interaction matrix.

4.2. Multi-Channel Hypergraph Learning

After generating the two aforementioned types of hypergraphs for users and items,
multi-channel hypergraph convolution is applied using user and item embeddings.

Multi-channel hypergraph convolution. Inspired by [20], the nonlinear activation
layer and the learnable linear transformation parameters W and Θ are removed as they
might cause precision loss. Therefore, the hypergraph convolution is performed based on

X(k+1) = D−1/2
v HD−1

e HTD−1/2
v X(k), (5)

where X(k) denotes the vertex embedding after k layer convolution. In our case, it can be
replaced by U(k)

c and V (k)
c for the user and item embeddings.

After propagating the user and item embeddings through K layers, the results from
each layer are averaged to obtain the final result of each channel, thereby mitigating the
over-smoothing problem [20]:

U∗
c =

1
K + 1

K

∑
l=0

U(k)
c , V∗

c =
1

K + 1

K

∑
l=0

V (k)
c . (6)

Channel attention. Furthermore, a channel attention operation is utilized on the final
generated channel-specific user and item representations to aggregate information from
different channels to form comprehensive user and item representations. According to [29],
the attention operation is defined as

αc
u = fa(U∗

c ) =
exp(aT

u · W c,u
a U∗

c )

∑cexp(aT
u · W c,u

a U∗
c )

,

αc
v = fa(V∗

c ) =
exp(aT

v · W c,v
a V∗

c )

∑cexp(aT
v · W c,v

a V∗
c )

,
(7)

where W a ∈ Rd×d is a trainable parameter. Additionally, comprehensive representations
of users and items after channel attention can be formulated as

U∗ = ∑
c

αc
uU∗

c , V∗ = ∑
c

αc
vV∗

c , (8)

where c ∈ {Au, Bu, Av, Bv}.
Graph convolution. To further leverage implicit interactive information between

users and items, we conduct a graph convolution on the representations of users and items
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to extract more pairwise relationship information. Following the definitions in [14,20], the
graph convolution layer is defined as(

U∗(j+1)

V∗(j+1)

)
= D−1/2

(
0 R

RT 0

)
D−1/2

(
U∗(j)

V∗(j)

)
, (9)

where R ∈ Rnu×nv is the interaction matrix between nu users and nv items, and D is a
(nu + nv)× (nu + nv) diagonal degree matrix. After propagating the embedded feature
through J graph convolution layers, the results obtained in each layer will be averaged to
obtain the final result. This can be formulated as

Û =
1

J + 1

J

∑
l=0

U∗(j), V̂ =
1

J + 1

J

∑
l=0

V∗(j). (10)

This is the same operation as Equation (6) mentioned above.

4.3. Recommendation and Attribute Inference

First, the recommendation task can be performed according to the idea of matrix
factorization [30]. The user and item interaction matrix can be predicted as

R̂ = ÛV̂ T . (11)

Next, to improve the attribute inference process, we consider both attributes and
vertices as entities in our matrix factorization framework. This approach enables us to
embed attributes into the same semantic space as users and items, simplifying the com-
putation of similarities across all entities. By placing attribute embeddings in a shared
space, correlations among users, items, and attributes themselves can be more precisely
established. The matrix factorization is formulated as follows:

X̂ = ÛPT , Ŷ = V̂QT , (12)

where X̂ ∈ Rnu×np and Ŷ ∈ Rnv×nq represent the inferred attribute matrices for users and
items, respectively, while P ∈ Rnp×d and Q ∈ Rnq×d denote the corresponding attribute
embeddings. This bidirectional flow of information between the vertices and the attributes
not only enriches the attribute data but also underscores the individual importance of each
attribute in relation to different vertices. Consequently, the use of matrix factorization for
inferring attributes is both logical and effective.

4.4. Optimization

First, the Bayesian personalized ranking (BPR) loss is utilized to optimize the recom-
mendation outcomes. This loss function is a pairwise personalized ranking loss derived
from the maximum posterior estimator and is widely employed in various recommendation
models. Its formulation is as follows:

Lr = ∑
j∈I(i),k/∈I(i)

−logσ(r̂i,j − r̂i,k) + λ∥Φr∥2
2, (13)

where Φr represents the parameters of the model, r̂i,j = uT
i vj is the prediction score of useri

on itemj, and σ(·) represents the sigmoid function.
Next, the cross-entropy (CE) loss is leveraged to optimize the attribute inference, as it

can be regarded as classification. It is formulated as

Lu
i = − 1

nu
∑

i

np

∑
j=1

xijlog(x̂ij),

Li = Lu
i + Lv

i ,

(14)
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where x̂i,j = uT
i pj is the inference score of useri on user attributej, and ŷi,j = vT

i qj is the
inference score of itemi on item attributej.

Therefore, the overall loss function of the proposed method can be written as

L = Lr + γ · Li, (15)

where γ is a hyper-parameter to balance the two different losses.

4.5. Attribute Selection and Update

To address the issue of sparse attribute information, we adopt the attribute updating
strategy from AGCN [10]. However, this approach carries the risk of error propagation,
where inaccurately inferred attributes might be carried over into subsequent training it-
erations, potentially amplifying the initial errors. Furthermore, the informativeness of
attributes for recommendations varies, as some truthful attributes may not necessarily indi-
cate behavior patterns. There can be instances of atypical consumer behavior that deviates
from expected norms, such as individuals frequently engaging with products traditionally
associated with a different demographic. For example, a professional who frequently pur-
chases items categorized outside of their field of expertise or a customer who consistently
prefers products that are not traditionally aligned with their demographic profile.

Therefore, to better assess the relevance of attributes in the context of user and item
behaviors, we introduce the concept of behavior-based attribute confidence (BAC). This
metric quantifies the confidence in a vertex’s attribute by considering its associated be-
haviors. As previously discussed, users and items, along with their respective attributes,
are represented as vertices within a shared semantic space. This representation facilitates
the computation of similarities between any pair of vertices. The BAC’s definition and
calculation are thus detailed below:

Definition 1 (Behavior-based attribute confidence (BAC)). The confidence of an attribute
with respect to a vertex reflects the degree of alignment between the attribute and the vertex’s
behavior, as expressed by the average similarity between the attribute and all neighboring nodes of
the given vertex.

Given a node v and an attribute a, the behavior-based attribute confidence BAC(a, v) is
calculated as follows:

BAC(a, v) =
1

|N(v)| ∑
u∈N(v)

s(a, u), (16)

where N(v) is the set of neighbors of v, and s(a, u) is the similarity score between attribute a and
neighbor u.

After calculating the BAC for each inferred attribute, we select those with high BAC
values to update in the subsequent training iterations. This selection process is regulated
by the hyper-parameter β, which has a range from 0 to 1. A β value of 0 means that no
attributes are updated, while a value of 1 indicates that all inferred attributes are subject to
an update. The frequency of these updates is determined by the parameter L, where L = 0
implies that no updates are performed.

5. Experiments

In our experimental evaluation, we address several research questions that cumula-
tively build a comprehensive understanding of our proposed method’s performance and
characteristics:

Q1. Is the behavior-based attribute confidence (BAC), as delineated in Definition 1, an accurate
and reliable measure for quantifying the extent to which a vertex’s attribute is pertinent to its
behaviors?

Q2. How does the proposed modeling method perform compared to existing methods?
Q3. How effective is each component of the model?
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Q4. How does parameter sensitivity affect the model’s performance?

5.1. Experimental Protocol
5.1.1. Datasets, Metrics, and Settings

Datasets. We conduct experiments on three public benchmarks: MovieLens (https:
//grouplens.org/datasets/movielens/1m/ accessed on 30 October 2023) [31], RentTheRun-
way (https://cseweb.ucsd.edu/~jmcauley/datasets.html#clothing_fit accessed on 30 Octo-
ber 2023) [32], and Google Local Reviews (https://cseweb.ucsd.edu/~jmcauley/datasets.
html#google_local accessed on 30 October 2023) [33,34]. These datasets contain behavior
and attribute information, as shown in Table 2.

Table 2. Datasets details.

Dataset Users Items Ratings Sparsity User Attributes Item Attributes

MovieLens 6040 3952 226,310 99.052% Gender, age, occupation, zip code Genre
RentTheRunway 1194 11,310 20,853 99.846% Age, body type, height, weight Category, size

Google Local Reviews 1656 1380 8901 99.611% Job Category, address

We randomly split the dataset into the training set and the testing set with a ratio of 9
to 1. For each type of attribute, we randomly delete 90% and keep only 10% for training to
ensure sparsity. The deleted attributes are only used for testing.

Metrics. For evaluating the top-k recommendation performance on ranking tasks
of different methods, we use four commonly used evaluation metrics, i.e., precision@k,
recall@k, normalized discounted cumulative gain (ndcg@k), and hit ratio (hr@k). In our
experiments, k is set to 10.

Settings. For a fair comparison, we initialize all latent embeddings using the Xavier
uniform initializer, and employ Adam [35] for optimization with a learning rate of 0.001.
For our model, the number of latent factors is set to 32, and the batch size is set to 1024
for all models. The number of hypergraph convolution layers K and the number of graph
convolution layers J are both set to 2. The number of updates L is set to 20. For the three
datasets, the hyper-parameter γ in Equation (15) is set to 0.01, 0.001, and 0.001, respectively,
while β is set to 0.8, 0.4, and 0.2, respectively. All experiments were conducted using the
Python programming language and the PyTorch framework on a server equipped with
two Intel Xeon E5-2678 2.50 GHz CPUs and an Nvidia GeForce RTX 3090 GPU.

5.1.2. Baselines

We compare our method with the following state-of-the-art methods. They can be
categorized into three groups.

Graph collaborative filtering methods:

• NGCF [16]: A classical model that integrates the bipartite graph structure of user–item
interaction into the embedding process.

• LightGCN [20]: A state-of-the-art graph-based collaborative filtering method that
simplifies and removes unnecessary parts of GCN.

Hypergraph collaborative filtering methods:

• DHCF [21]: A hypergraph-based method that proposes the jump hypergraph convo-
lution (JHConv) method to support the explicit and efficient embedding propagation
of high-order correlations.

• HCCF [22]: A self-supervised recommendation framework that jointly captures local
and global collaborative relations with a hypergraph-enhanced cross-view contrastive
learning architecture.

https://grouplens.org/datasets/movielens/1m/
https://grouplens.org/datasets/movielens/1m/
https://cseweb.ucsd.edu/~jmcauley/datasets.html##clothing_fit
https://cseweb.ucsd.edu/~jmcauley/datasets.html##google_local
https://cseweb.ucsd.edu/~jmcauley/datasets.html##google_local
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Methods incorporating attribute information:

• AGCN [10]: An adaptive graph convolutional network approach for joint item recom-
mendation and attribute inference that could adjust the graph embedding learning pa-
rameters by incorporating both the given attributes and the estimated attribute values.

• BiANE [12]: A bipartite attributed network embedding method that models both the
inter-partition proximity and the intra-partition proximity.

5.2. Validity of Behavior-Based Attribute Confidence (Q1)

In this section, our experiments are designed to assess the validity of the proposed
behavior-based attribute confidence (BAC), as outlined in Definition 1. The procedure
commences with the training of the base model using a complete dataset to establish a BAC
score for each attribute. Subsequently, we conduct two sets of experiments to demonstrate
the model.

Experiments with BAC quintiles. Attributes are stratified based on their BAC into
five distinct categories. These categories are ordered by BAC and are segmented into
quintiles along the x-axis, denoted by “n”. For instance, n = 1 represents attributes in the
top 20% of BACs, while n = 5 corresponds to the bottom 20%. The blue bars in Figure 2
represent the NDCG values for each quintile category. This visualization allows us to
observe how the recommendation performance varies with the attributes of differing BACs.
The red line across the quintiles depicts the average BAC within each category, providing
a clear visual correlation between the BAC and the recommendation performance. The
analysis reveals a discernible trend where higher BAC categories (n = 1, 2), which represent
attributes with stronger confidence, correlate with higher NDCG values. Conversely, as
the BAC average decreases across the quintiles (n = 3, 4, 5), there is a noticeable decline
in NDCG performance. This trend demonstrates the efficacy of the BAC as a reliable
indicator of attribute quality and its consequent impact on recommendation performance.
By employing attributes with higher BACs, our HCFA model effectively enhances the
recommendation system, affirming the hypothesis that well-informed attribute selection
based on confidence levels is crucial for optimizing collaborative filtering outcomes.

Experiments with varying proportions of high-BAC attributes. In the subsequent
experimental sequence, we analyze the impact of varying the proportion of high-BAC
attributes included in training, denoted by the parameter α, which ranges from 0 to 1. This
parameter represents the percentage of attributes with the highest BAC values that are used
during model training. As illustrated in Figure 3, we observe a performance increase as
alpha grows, reflecting the incorporation of a greater number of informative attributes with
high BAC scores. However, the performance peaks and then diminishes as alpha exceeds a
certain saturation point, indicating that the inclusion of too many attributes, particularly
those with lower BAC scores, can dilute the model’s effectiveness.

Figure 2. Analysis of performance by BAC quintiles.
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Figure 3. Analysis of performance with varying proportions of high-BAC attributes.

In summary, the outcomes of these two experimental series lend solid support to the ef-
fectiveness of our proposed BAC, solidifying its foundational role within our methodology.
The precision with which BAC delineates between the most and least informative attributes
is crucial, as it underpins the integrity of our subsequent experimental investigations.

5.3. Performance Comparing with Other State-of-the-Art Methods (Q2)

In this section, we present a comparative analysis of the performance between our
hypergraph collaborative filtering with attribute inference (HCFA) framework and other
cutting-edge methods. As demonstrated in Table 3, HCFA uniformly outperforms com-
peting approaches across all evaluated metrics on three distinct datasets. Specifically,
HCFA exceeds the performance of the notable second-best method, LightGCN, by margins
of 8.31%, 5.15%, and 13.22% on the respective datasets. While LightGCN stands as a
robust baseline with its adept handling of behavior information, its limitations become
evident due to its lack of high-order correlation modeling and side information exploitation.
These shortcomings are where HCFA gains an edge. Methods that leverage hypergraph
structures, such as DHCF and HCCF, indeed tap into high-order information. However,
they similarly fall short by not incorporating attribute information, which is a critical
component for enriching the recommendation context. Performance metrics for BiANE
were suboptimal, primarily because it eschews graph or hypergraph structures in favor of
encoding via multiple MLPs. This method significantly underperforms when compared
to the others, highlighting the importance of structured modeling in capturing complex
user–item interactions. Lastly, AGCN integrates attribute information and employs an
attribute inference and update strategy. Nevertheless, its lack of a selective process leads
to error propagation and consequent performance decline. Additionally, AGCN’s focus
on pairwise relationships without considering higher-order correlations further limits its
effectiveness within the scope of our evaluation.
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Table 3. Comparison of recommendation performance against state-of-the-art methods. The top-performing metrics are accentuated in bold for the best and
underlined for the second-best. Performance improvements are quantified by comparing HCFA against the highest-scoring baseline methods.

MovieLens Google Local Reviews RentTheRunway

Models Precision Recall NDCG HR Precision Recall NDCG HR Precision Recall NDCG HR

NGCF [16] 7.06±0.03 20.69±0.24 21.21±0.23 15.56±0.16 3.43±0.27 15.91±1.93 16.10±1.94 9.46±0.91 0.13±0.04 0.92±0.29 0.92±0.29 0.60±0.18
LightGCN [20] 7.11±0.06 21.05±0.10 21.58±0.11 15.96±0.08 3.54±0.15 16.40±1.09 16.58±1.08 10.11±0.31 0.17±0.03 1.25±0.20 1.25±0.20 0.68±0.05

DHCF [21] 6.79±0.05 20.42±0.12 20.94±0.13 15.19±0.04 3.10±0.26 14.84±2.42 14.97±2.40 9.33±1.22 0.12±0.02 0.89±0.13 0.89±0.13 0.49±0.10
HCCF [22] 6.66±0.05 19.62±0.27 20.11±0.28 14.89±0.07 2.61±0.09 12.80±1.74 12.92±1.72 7.55±0.82 0.08±0.02 0.63±0.12 0.63±0.12 0.32±0.05

AGCN [10] 6.31±0.01 18.57±0.23 19.05±0.23 14.05±0.12 2.89±0.19 14.64±0.41 14.74±0.44 9.18±0.43 0.13±0.02 0.91±0.22 0.91±0.22 0.59±0.08
BiANE [12] 1.24±0.01 3.51±0.07 3.62±0.11 3.64±0.08 1.06±0.08 4.22±0.19 4.28±0.19 2.44±0.13 0.03±0.01 0.24±0.03 0.24±0.03 0.14±0.02

HCFA 8.08±0.03 22.40±0.24 22.93±0.26 17.70±0.17 3.59±0.97 17.46±0.86 17.68±0.89 10.72±0.38 0.19±0.04 1.33±0.02 1.33±0.02 0.88±0.03

Improve 13.67% 6.46% 6.24% 10.95% 1.47% 6.50% 6.62% 6.01% 9.76% 6.88% 6.74% 29.49%
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5.4. Ablation Study (Q3)

In this section, we aim to isolate and evaluate the individual contributions of the
various components within our HCFA model through a series of ablation studies, as shown
in Figure 4. The ablation studies can be categorized into two main parts. The first category
pertains to the ablation study of the hypergraph learning module:

• Hypergraph convolution ablation removes the hypergraph component, and the
model reverts to relying solely on graph convolutions, akin to LightGCN enhanced
with attribute inference and updates. We achieve this by setting the hypergraph layer
K = 0. The full model outperforms this ablation by an average of 2.33%, 28.54%, and
34.14% on three datasets, respectively, underscoring the hypergraph’s superior ability
to navigate the high-order correlations intrinsic to collaborative filtering with attribute
data as opposed to the mere pairwise relationships captured by graph structures.

• Multi-channel ablation simplifies the multi-channel framework by merging hyper-
graphs from different channels into a single channel, as depicted in the equation
H A+B = [H A, HB]. The full model outperforms this ablation by an average of 1.65%,
8.23%, and 18.30% on the three datasets, respectively, validating our hypothesis that
attributes and behaviors exert distinct influences on collaborative filtering, and their
separate treatment in the model proves to be advantageous for its overall efficacy.

• Graph convolution ablation sets the graph convolution layer J = 0 to evaluate the
impact of the graph convolution layer. The full model outperforms this ablation by an
average of 1.76%, 54.47%, and 37.29% on three datasets, respectively, illustrating that
pairwise relationships in collaborative filtering are crucial for performance.

Figure 4. The ablation study of the proposed method.

The second category relates to the utilization of attribute information:

• Attribute information ablation assesses the significance of attribute information by
removing the attribute channel and the update mechanism, thereby retaining only
the behavior channel for model operation. This is implemented by setting γ = 0 and
excluding the attribute hypergraph channel H A. The full model outperforms this abla-
tion by an average of 1.86%, 6.17%, and 18.30% across the three datasets, respectively.
This underscores the critical role that attribute information plays in collaborative
filtering, notably in fostering similarities among users and items, a fundamental aspect
of the collaborative filtering approach. Interestingly, this ablation model exhibits
better performance than subsequent ablations that incorporate attributes, which can
be attributed to the high sparsity and imbalance of the attribute data we employ,
which, if not handled properly, could detrimentally affect performance. Nevertheless,
our HCFA method effectively addresses these issues of sparsity and avoids error
propagation, thereby unlocking the full potential and benefits of integrating attribute
information into the recommendation process.

• Attribute inference ablation seeks to determine the contribution of attribute inference
by setting γ = 0, which means using attribute information solely for constructing
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hypergraph structures and not for optimization. The full model outperforms this abla-
tion by an average of 0.91%, 17.20%, and 31.21% across the three datasets, respectively,
indicating the effectiveness of attribute inference.

• Attribute selection ablation evaluates the effectiveness of the attribute selection
module by setting β = 1, which indicates that all attributes are subject to updates.
The full model outperforms this ablation by an average of 0.91%, 17.20%, and 31.21%
across the three datasets, respectively, demonstrating the efficacy of selective attribute
updating based on the proposed BAC. The validity of BAC is also confirmed in
Section 5.2.

• Attribute update ablation sets the update number L = 0 to assess the impact of the
attribute update mechanism. The full model outperforms this ablation by an average
of 6.14%, 13.18%, and 20.89% across the three datasets, respectively, indicating the
effectiveness of attribute updates informed by the proposed BAC.

5.5. Sensitivity Analysis (Q4)

To investigate the robustness of our model and identify key influencing hyper-parameters,
we conduct sensitivity analyses. Firstly, we varied the value of γ from 0.0001 to 0.5, as per
Equation (15), with the results displayed in Figure 5. The model demonstrates optimal
performance at γ values of 0.01, 0.001, and 0.001 for the three datasets, respectively.

Next, we explore the influence of the hyper-parameter β, which represents the pro-
portion of attributes with high behavior-based attribute confidence (BAC) selected for
updates (Section 4.5). We adjusted β from 0.1 to 0.9 and found that the model performance
initially increases with more high-BAC attributes included for training. The optimal per-
formance is achieved at β values of 0.8, 0.4, and 0.2 for the respective datasets, as shown
in Figure 6. However, performance declines when β becomes too large, incorporating
too many attributes with low behavioral relevance, as consistent with observations in
Section 5.2.

Finally, we assess the impact of the numbers of hypergraph and graph convolution
layers, K and J, ranging from 1 to 5. As shown in Figures 7 and 8, the model performs well
across all datasets with K and J set to 1 or 2. However, higher values lead to a decline in
performance due to over-smoothing, a phenomenon where vertex features converge and
become less distinctive. Therefore, we commonly select 2 as the value for both K and J
layer numbers.

Figure 5. NDCG variations when altering the value of γ in Equation (15) across three datasets.
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Figure 6. Variations in NDCG when adjusting the value of β across three datasets.

Figure 7. NDCG variations with different numbers of hypergraph convolution layers K across three
datasets.

Figure 8. NDCG variations with different numbers of hypergraph convolution layers J across three
datasets.

5.6. Interpretable Analysis

In Section 5.2 and the sensitivity analysis of β (Section 5.5, Figure 6), we have already
demonstrated the validity of the proposed behavior-based attribute confidence (BAC). Here,
we present a visualization of BAC’s distribution. “Existing attributes” refer to the ground
truth attribute information of users and items, whereas “non-existing attributes” represent
attributes not present in the data. For instance, if a user is identified as “Female”, then
the “Female” attribute is an existing attribute for this user, while “Male” is a non-existing
attribute. Similarly, for an item categorized as “Action” and “Sci-Fi”, these are its existing
attributes, with other categories being non-existing attributes.

As depicted in Figure 9, we generally observe higher BAC scores for existing attributes
compared to non-existing ones. This trend validates the rationale behind BAC, suggesting
that most existing attributes are indeed reflective of behavior. However, there are instances
where some existing attributes display a lower BAC than non-existing ones, indicating that
these attributes are relatively less relevant to the corresponding behavior.
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Figure 9. Violin plots depicting the distribution of BAC values for existing and non-existing attributes
across three datasets.

6. Conclusions

In conclusion, this study introduces the novel hypergraph collaborative filtering with
attribute inference (HCFA) framework, which is specifically tailored for collaborative fil-
tering by integrating attribute information. HCFA stands out for its use of multi-channel
hypergraphs to capture high-order correlations from both attributes and behaviors, leading
to more refined data modeling. A key innovation of HCFA is the behavior-based attribute
confidence (BAC) metric, which quantitatively assesses the credibility of inferred attributes
in relation to behaviors. By prioritizing attributes with high BAC scores in subsequent
training iterations, HCFA addresses challenges related to attribute sparsity and mitigates
the risk of error propagation. Our extensive experimental evaluations confirm the effective-
ness of BAC and demonstrate HCFA’s superior performance compared to existing methods.
Overall, this work contributes to the field by providing a comprehensive framework for
collaborative filtering that leverages attribute information to enhance recommendation
accuracy and robustness.
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