
Citation: Seara, J.P.; Serrão, C.

Automation of System Security

Vulnerabilities Detection Using

Open-Source Software. Electronics

2024, 13, 873. https://doi.org/

10.3390/electronics13050873

Academic Editor: George Angelos

Papadopoulos

Received: 2 February 2024

Revised: 20 February 2024

Accepted: 21 February 2024

Published: 24 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Automation of System Security Vulnerabilities Detection Using
Open-Source Software
João Pedro Seara * and Carlos Serrão

Information Sciences, Technologies and Architecture Research Center (ISTAR), Lisbon University
Institute (ISCTE-IUL), 1600-189 Lisbon, Portugal; carlos.serrao@iscte-iul.pt
* Correspondence: joao_pedro_seara@iscte-iul.pt

Abstract: Cybersecurity failures have become increasingly detrimental to organizations worldwide,
impacting their finances, operations, and reputation. This issue is worsened by the scarcity of
cybersecurity professionals. Moreover, the specialization required for cybersecurity expertise is
both costly and time-consuming. In light of these challenges, this study has concentrated on au-
tomating cybersecurity processes, particularly those pertaining to continuous vulnerability detection.
A cybersecurity vulnerability scanner was developed, which is freely available to the community
and does not necessitate any prior expertise from the operator. The effectiveness of this tool was
evaluated by IT companies and systems engineers, some of whom had no background in cyber-
security. The findings indicate that the scanner proved to be efficient, precise, and easy to use. It
assisted the operators in safeguarding their systems in an automated fashion, as part of their security
audit strategy.

Keywords: systems security; cybersecurity; vulnerabilities; scanner; open-source software;
automation

1. Introduction

Occurrences related to cybersecurity are frequently highlighted in the media. Over the
years, there has been a noticeable increase in global cyberattacks [1]. A study conducted by
IBM had some interesting key findings [2]. The average cost of a single breach amounted
to USD 4.45 million to organizations in 2023. This represented a 2.3% increase from the
previous year’s 4.35 million. Going further back, the total cost in 2020 was 3.86 million,
so a consistent increase has been observed. Also, this study concluded that cost saving
from high levels of DevSecOps adoption amounted to USD 1.68 million per organization.
Future projections, from a different study, indicate a sharp increase in the overall global
expenditures related to cybersecurity incidents, estimating the global cost to reach USD
10.5 trillion annually by 2025 [3]. This works out to a roughly USD 28.8 billion daily cost, or
USD 333 thousand each second.

The challenge of providing organizations with cybersecurity expertise extends beyond
simply finding security professionals; it also involves finding professionals who possess
the necessary experience. As a result, hiring becomes a complex task [4,5].

Underprivileged nations are particularly susceptible to the challenges described above,
due to their insufficient cybersecurity infrastructure, lack of inter-agency coordination and
emergency responses, limited Information and Communication Technology (ICT) skills,
and inadequate protection of critical national infrastructure [6].

Combating the aforementioned problems can be aided by automating security audits.
Automated technologies offer a methodical approach to these audits and eliminate the
need for a knowledge ramp-up. The author of [7] supports this statement, by pointing out
that these automated systems will serve as the “cornerstones of cyber defense strategies”.
Some other authors [8] go further and forecast that automation tools are merely a first step

Electronics 2024, 13, 873. https://doi.org/10.3390/electronics13050873 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13050873
https://doi.org/10.3390/electronics13050873
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0001-3348-5660
https://orcid.org/0000-0002-4847-2432
https://doi.org/10.3390/electronics13050873
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13050873?type=check_update&version=1

Electronics 2024, 13, 873 2 of 24

towards what they refer to as “cyber autonomy”, a state wherein defense systems will be
completely autonomous.

In relation to Artificial Intelligence (AI), it should be noted that Large Language
Models (LLM) and other AI tools are rapidly gaining attention and adoption worldwide.
Automated cybersecurity mechanisms and AI are already interacting, as automation out-
puts can be fed into AI algorithms that use data sets to cross-check them and then determine
the best course of remediation action [9].

Automating security auditing involves some important considerations. It is crucial that
the automation process assigns different severity levels to different security vulnerabilities.
This aspect holds significant importance in ensuring the proper prioritization of the overall
security measures [10]. Also, it is essential to highlight that adhering to current standards,
policies, and guidelines, necessitates a systematic approach to cybersecurity auditing. An
exemplary framework in this regard is ISO 27001/27002 [11].

From all the previous paragraphs, one can conclude that security incidents have a neg-
ative impact on organizations in various ways. The negative impacts of security incidents
on organizations go beyond just the loss of productivity, media attention, and damage to
reputation, as these incidents also result in significant financial costs for organizations. Get-
ting the right professionals takes time and is expensive. All these problems are exacerbated
in organizations from developing countries. In order to mitigate these risks and continue
their operations, organizations are often required to adhere to cybersecurity regulations,
and employ a systematic approach to cybersecurity auditing (namely, proper prioritization
of vulnerability fixes).

It was also asserted above that, to address these challenges, automation plays a signifi-
cant role in facilitating security audits. Automated tools and technologies can streamline
the auditing process, making it more efficient and effective. These tools can scan networks,
systems, and applications, for vulnerabilities. They can identify potential threats, prioritize
different vulnerabilities, and provide recommendations for remediation. By analyzing
data and identifying critical vulnerabilities or high-risk areas, organizations can allocate
their resources and efforts more efficiently. This ensures that the most pressing security
issues are addressed promptly, reducing the risk of security incidents and their associated
impacts.

The objective of this research is to address the aforementioned problems and require-
ments by creating an artifact that performs systematic security auditing and many of the
auxiliary tasks that revolve around it (which usually require a specialized engineer). It
aims to enhance the ongoing efforts of academic institutions and businesses in automating
security audits, while also making the findings accessible to the wider community.

The produced artifact is a cost-effective, comprehensive, and user-friendly vulnerabil-
ity scanning solution, comprising a different set of modules. The first module of this scanner
is the Network Discovery module. This module is responsible for scanning and identifying
all devices connected to a network, including computers, servers, routers, and IoT devices.
It utilizes advanced scanning techniques to detect open ports, services, and vulnerabilities
present on each device. The second module of the scanner is the Vulnerability Assessment
module. This module performs in-depth scans of each device identified in the network
discovery phase. It utilizes a comprehensive vulnerability database to identify known
vulnerabilities and misconfigurations on each device. This module also provides recom-
mendations and remediation steps to address the identified vulnerabilities, helping users
improve the security posture of their network. The third module of the scanner is the
Reporting module. This module generates detailed reports summarizing the findings of
the Network Discovery and Vulnerability Assessment modules. The reports include in-
formation such as the devices scanned, vulnerabilities found, severity levels, and links
to recommended actions. Figure 1 shows a graphical representation of the relationship
between these modules (this image will be further explained and detailed in Section 3).

Electronics 2024, 13, 873 3 of 24Electronics 2024, 13, x FOR PEER REVIEW 3 of 25

Figure 1. Graphical representation of the relationship between this artifact’s modules (arrows de‐

pict data flow).

It also important to notice that this work incorporates emerging DevSecOps princi‐

ples, such as the amalgamation of security‐focused technologies known as Security Or‐

chestration, Automation, and Response (SOAR) [12].

This document begins with a brief introduction to the topic at hand. Then follows a

description of the methods and conclusions of other relevant solutions already attempted

before, to prove the relevance of the work being presented. The next part discusses the

design considerations and the implementation of the resulting artifact. The following

section will present the results of the validation tests, which were carried out both inter‐

nally and with the assistance of external testers. The final portion will elaborate on the

results accomplished in this work, and suggestions for future developments.

2. Related Work

The first stage of the research was searching for previously attempted solutions to

the problems defined above.

In their scholarly work, the authors of [13] have meticulously engineered an ad‐

vanced security auditing framework employing the capabilities of both the libnet and

libpcap libraries. Libnet, the first of the two libraries, furnishes developers with a powerful

API that facilitates the crafting and dispatching of network packets across a variety of

protocols. This capability is crucial for simulating network traffic that mimics various

interactions and behaviors within a network infrastructure. Complementarily, libpcap

stands as the second pivotal library. It is tasked with the interception and meticulous

examination of network packets in real time. The aforementioned solution excels in its

capacity to rigorously identify and document active network ports, which are potential

entry points for unauthorized access if left unsecured. Moreover, by scrutinizing network

interactions, the framework can infer the operating system details of the host machines.

Additionally, the solution integrates an assessment of system vulnerabilities by

cross‐referencing findings with the Common Vulnerabilities and Exposures Database

(CVE DB). This integration enables the artifact to pinpoint known security flaws that

could be exploited by malicious entities. This advanced level of analysis, coupled with

the ability to simulate networking events and monitor traffic in such a granular manner,

Figure 1. Graphical representation of the relationship between this artifact’s modules (arrows depict
data flow).

It also important to notice that this work incorporates emerging DevSecOps principles,
such as the amalgamation of security-focused technologies known as Security Orchestration,
Automation, and Response (SOAR) [12].

This document begins with a brief introduction to the topic at hand. Then follows a
description of the methods and conclusions of other relevant solutions already attempted
before, to prove the relevance of the work being presented. The next part discusses
the design considerations and the implementation of the resulting artifact. The following
section will present the results of the validation tests, which were carried out both internally
and with the assistance of external testers. The final portion will elaborate on the results
accomplished in this work, and suggestions for future developments.

2. Related Work

The first stage of the research was searching for previously attempted solutions to the
problems defined above.

In their scholarly work, the authors of [13] have meticulously engineered an advanced
security auditing framework employing the capabilities of both the libnet and libpcap
libraries. Libnet, the first of the two libraries, furnishes developers with a powerful API
that facilitates the crafting and dispatching of network packets across a variety of protocols.
This capability is crucial for simulating network traffic that mimics various interactions and
behaviors within a network infrastructure. Complementarily, libpcap stands as the second
pivotal library. It is tasked with the interception and meticulous examination of network
packets in real time. The aforementioned solution excels in its capacity to rigorously identify
and document active network ports, which are potential entry points for unauthorized
access if left unsecured. Moreover, by scrutinizing network interactions, the framework
can infer the operating system details of the host machines. Additionally, the solution
integrates an assessment of system vulnerabilities by cross-referencing findings with the
Common Vulnerabilities and Exposures Database (CVE DB). This integration enables the
artifact to pinpoint known security flaws that could be exploited by malicious entities. This
advanced level of analysis, coupled with the ability to simulate networking events and
monitor traffic in such a granular manner, makes the security auditing tool developed by
the authors an asset for organizations seeking to bolster their cyber defense mechanisms.

Electronics 2024, 13, 873 4 of 24

In [14], the authors have developed a vulnerability scanner in Python called “Net-
Nirikshak”. It performs the enumeration of targets (finding open ports and running
services) and interfaces with NVD to detect known vulnerabilities associated with them.
In addition to this, it also identifies and reports SQL injection vulnerabilities, highlighting
all the susceptible links on the target. Moreover, the tool possesses the ability to exploit
these SQLI-vulnerable links and retrieve confidential information from the target. The tool
automatically generates a report, which is then sent to a designated list of email addresses.

In [15], the implementation of a vulnerability scanner based on NVTs is described.
NVTs are network vulnerability test plug-ins provided by OpenVAS/Nessus, and they are
known for their vast quantity and daily update service. By combining multiple NVTs,
vulnerabilities can be detected effectively. The authors conducted a thorough analysis of
network-based vulnerability scanning and the usage of NVTs. Based on this analysis, they
designed a network vulnerability scanning system that relies on them. They also performed
a test of this system and presented its potential applications.

The work in [16] describes a vulnerability scanner that focuses on web servers, espe-
cially SQL injection and XSS. It performs vulnerability assessment by using pocsuite3, an
open-source vulnerability scanning framework for web services. It has a web interface
for the end user. During the research project, four primary examinations were conducted:
information collection testing, port scanning testing, SQL injection detection testing, and
XSS detection testing.

The authors of [17] have developed a vulnerability scanner that also focuses on web
servers. This tool detects a comprehensive range of vulnerabilities, including cross-site
scripting attacks, SQL injection, and directory traversal. No specific information is available
regarding the user interface. Although it supports the generation of reports, continuous
auditing is not supported.

The authors of [18] have developed a vulnerability scanner called “FalconEye”, which
also focuses on web servers. This artifact has an interesting design aspect: the scanning
process is distributed across servers that act as “workers”. It uses common messaging
protocols such as AMQP to handle the communication between the components. The
primary objective of this system is to identify vulnerabilities (CVEs) specifically associated
with web applications, such as XSS and XXE injection. There is no information regarding
the user interface. The FalconEye system comprises three modules: an input source module,
a scanner module, and a support platform module. The input module enhances the scope
of the target server, while the other modules enable the system to conduct comprehensive
scanning for generic vulnerabilities. The authors assert that the results substantiate the
system’s potential to be a valid competitor among the numerous detection systems currently
available.

The work in [19] implements a vulnerability scanner based on Nmap that supports
target enumeration, vulnerability scanning, and remote network mapping, and is aimed at
organizations and professionals who have little expertise in cybersecurity (a scope that is
similar to this work’s). It has a web-based interface. The authors argue that the arduous
process of acquiring proficiency in multiple command line tools, along with their intricate
functionalities and parameters, can be circumvented by utilizing advancements like this
tool. Consequently, this has the potential to broaden the availability of security testing,
especially for small and medium-sized enterprises.

The artifact developed in [20] is called “SecuBat”. It focuses on web applications,
has a website crawler and tests the target for SQL injection and XSS vulnerabilities. It
has a graphical user interface and an API that allows the user to launch custom attacks.
It implements reporting (but not continuous auditing) and stores historical data. The
researchers state that, by utilizing this particular tool, they successfully identified numerous
websites that could potentially be vulnerable. In order to validate its precision, they
selected one hundred websites from the list of potential victims for in-depth examination.
Consequently, they confirmed the existence of exploitable weaknesses in the identified
web pages, which included prominent multinational corporations and even a finance

Electronics 2024, 13, 873 5 of 24

ministry. Over fifty entities responded, either by providing supplementary information, or
by notifying that the security vulnerability had been addressed and resolved.

Finally, the work in [21] describes another high-level scanner that focuses on web
vulnerabilities. It performs a URL crawl and attacks the resulting URLs to detect XSS, CSRF,
SQL injection, and other vulnerabilities. It has a web interface allowing it to start scans, and
it generates a report at the end. The authors assert that through the utilization of the tool
on various websites, they have identified a total of 45 vulnerabilities that can be exploited,
including XSS, SQL injection, directory disclosure, as well as local and remote file inclusion.

None of the solutions above are prepared for automatic network detection. Memory
exhaustion issues have been reported with some of them.

From the analysis of all the tools described above, the following can be concluded:

• Some of the solutions are too narrow-scoped. In other words, they are not of a general
nature. They focus either exclusively on specific operating systems or on specific
services;

• Most of the solutions require network access rights to access the target hosts when
running from outside their network, with the exception of the solutions that allow the
installation of local agents. Some of them also require the credentials of the target host
to be known;

• Most solutions do not automatically determine the infrastructure information. This
means that the information about the target hosts must be obtained from the system
administrators and configured manually in the tool before the scans are executed;

• Some of these scanners require a daemon to be running. This can lead to problems if
a fault occurs, e.g., if the hard disk is full or the memory is exhausted, and therefore
requires the implementation of a watchdog that restarts the service if necessary. The
PnP philosophy is not adopted, as no tool or framework has been found that is
immediately ready to use. Quite the contrary—all require prior configuration before
execution.

The fact that all solutions examined have at least one of these shortcomings means
that no examined artifact solves the problem that this work attempts to address. The
work presented in this paper differs from these projects, in that it synthesizes a number
of features that address the current shortcomings into a single open-source artifact that
requires little to no skilled personnel to install and operate. Further details are given in the
next section regarding architecture and implementation.

3. System Design and Implementation

The initial part of this section presents a comprehensive outline of the initial design
decisions that were undertaken to ensure the achievement of the intended objectives.
Subsequently, it delves into the specifics of the artifact’s architecture, the selection of
appropriate tools, and the step-by-step process of its implementation.

3.1. Design Choices

The primary objective of this project was to create a vulnerability scanning and report-
ing system that is accessible to all users without requiring any expertise in cybersecurity. In
order to achieve this goal, a set of specific characteristics, or sub-goals, were established for
the solution:

• Agent-server architecture—This choice enables effortless scalability (through the addi-
tion or removal of agents) and the adaptability of deploying agents directly within
LANs. This placement behind firewalls and proxies allows for the direct targeting
of host systems. Meanwhile, the operator can conveniently access all metrics from
all agents through a single server. Additionally, it is feasible to access metrics from
agents without relying on a server, granting the operator the ability to possess a
portable vulnerability scanner. Further elaboration on these aspects will be provided
subsequently;

Electronics 2024, 13, 873 6 of 24

• Low-cost hardware—The primary emphasis of the agent hardware is on the Raspberry Pi
board, which uses the ARM architecture. However, the solution should possess the
adaptability to function on a conventional computer/server with an x86 architecture;

• Free software—The implementation must solely rely on open-source software (FOSS)
and tools, with a preference for those that are portable and have minimal resource
requirements to accommodate the hardware’s limitations. The selected options for this
purpose include Linux as the operating system, Python as the programming language,
Nmap as the port scanning tool, and MongoDB as the database;

• Scalability—Adding and removing processing power to/from the solution should
be a straightforward task. The proposed method involves employing a multi-agent
solution, which allows for the seamless addition or removal of agents within the
environment.

• Modularity—The flexibility of implementation enables users to enhance and personal-
ize their experience as much as possible. By adopting an API-centric approach, users
have the freedom to directly engage with the system through the standard CLI or
create their own clients, web frontends, mobile applications, or AI/ML systems for
data manipulation and the generation of remediation proposals. Moreover, the agents
can function independently from the backend server, allowing for standalone usage, if
necessary;

• Plug and play (PnP)—After installation, the system should be operational and ready to
use. However, it should also offer a high level of customization, allowing the operator
to configure it according to specific requirements. The operator has the option to
define which scans to execute and which hosts to target. In the absence of operator
intervention, the application should automatically identify and scan hosts within its
vicinity. Being “plug and play” implies that the agent–server communication should
be established using a minimal number of ports; more specifically, only HTTP/HTTPS.
Moreover, this communication should only occur in an outbound manner, with the
agent initiating contact with the server. This design choice facilitates the functioning
of agents in environments with firewalls and restricted network access, which usually
allow for outbound connections by default for well-known ports. Furthermore, the
process of discovering vulnerabilities and conducting scans should be continuous and
ongoing. It should operate continuously and iteratively in the background without
requiring any human intervention. This ensures that the system remains vigilant and
up-to-date in identifying potential security risks;

• E-mail reporting—Configured recipients should receive automatic e-mails containing
security vulnerability reports. Additionally, the level of detail in these reports should
be adjustable, allowing for the filtering of vulnerabilities that are exploitable [22]. This
feature is crucial as it enables the identification and prioritization of vulnerabilities
that require immediate attention and resolution;

• Security—Communication between the various components of the solution and the
end users must undergo authentication and be conducted securely over the HTTPS
protocol, which uses SSL/TLS encryption;

• Future-proofing—The progression of the technological landscape, specifically in terms
of IPv6 capability, should be taken into account.

In conclusion, the created artifact not only exploits the existing cutting-edge technology,
but also addresses certain deficiencies that were previously highlighted. Its implementation
aspects will now be detailed.

3.2. Implementation

The developed work comprises two fundamental software components, namely, the
Agent and the Server. A high-level overview of the architecture is illustrated in Figure 2,
showcasing a diagram of the system.

Electronics 2024, 13, 873 7 of 24

Electronics 2024, 13, x FOR PEER REVIEW 7 of 25

3.2. Implementation

The developed work comprises two fundamental software components, namely, the

Agent and the Server. A high‐level overview of the architecture is illustrated in Figure 2,

showcasing a diagram of the system.

Figure 2. High‐level architecture.

The diagram’s central portion depicts a multitude of agents, which can be any Linux

machine or VM. However, in accordance with the proposed paradigm in this study, it is

assumed that these agents are Raspberry Pi boards. These agents establish contact with

the server, with the arrows indicating that the connections are initiated from the agents

towards the server. All communications between the agents and the server employ

HTTPS and HTTP password authentication, ensuring security.

Previously, it was mentioned that this work is divided into three main modules. We

will now dive down into each one of them.

3.2.1. Network Discovery Module

This module runs in the agents. Before performing the actual vulnerability assess‐

ment, the agents need to gather a list of targets to scan, from both the neighborhood and a

manually defined list given by the operator. This module’s operation can be divided into

three main functions, which are now described below.

The first function looks at the operating system’s tables to locate ARP (IPv4) and

NDP (IPv6) entries. These tables store details about Layer 2 hosts in the neighborhood,

specifically the IP/MAC address pairs that are already known to the agent’s underlying

OS. To access this information, the agent utilizes the ip neigh command at the OS level.

The function disregards any local link addresses or reserved ranges. Additionally, in the

case of IPv6, it excludes all addresses except for Global Unicast addresses, so as to pre‐

vent the interference of transient addresses present in the network.

The second function performs automatic discovery. It involves the utilization of the

Scapy module for Python to send ARP requests to all the IP addresses within the local

IPv4 subnets that each of the network interfaces belongs to. This process aims to identify

available hosts in the vicinity by recording positive ARP replies. However, only IPv4

address spaces with a subnet mask larger than/16 are scanned, to prevent an over‐

Figure 2. High-level architecture.

The diagram’s central portion depicts a multitude of agents, which can be any Linux
machine or VM. However, in accordance with the proposed paradigm in this study, it is
assumed that these agents are Raspberry Pi boards. These agents establish contact with
the server, with the arrows indicating that the connections are initiated from the agents
towards the server. All communications between the agents and the server employ HTTPS
and HTTP password authentication, ensuring security.

Previously, it was mentioned that this work is divided into three main modules. We
will now dive down into each one of them.

3.2.1. Network Discovery Module

This module runs in the agents. Before performing the actual vulnerability assessment,
the agents need to gather a list of targets to scan, from both the neighborhood and a
manually defined list given by the operator. This module’s operation can be divided into
three main functions, which are now described below.

The first function looks at the operating system’s tables to locate ARP (IPv4) and
NDP (IPv6) entries. These tables store details about Layer 2 hosts in the neighborhood,
specifically the IP/MAC address pairs that are already known to the agent’s underlying
OS. To access this information, the agent utilizes the ip neigh command at the OS level. The
function disregards any local link addresses or reserved ranges. Additionally, in the case
of IPv6, it excludes all addresses except for Global Unicast addresses, so as to prevent the
interference of transient addresses present in the network.

The second function performs automatic discovery. It involves the utilization of the
Scapy module for Python to send ARP requests to all the IP addresses within the local
IPv4 subnets that each of the network interfaces belongs to. This process aims to identify
available hosts in the vicinity by recording positive ARP replies. However, only IPv4
address spaces with a subnet mask larger than/16 are scanned, to prevent an overwhelming
number of addresses that would require an impractical amount of time to scan (exceeding
50,000 addresses). Similarly, the probing of IPv6 subnet spaces is omitted due to their vast
size. For example, the standard/64 subnet space, which represents the smallest locally
usable IPv6 subnet, encompasses over 18 quintillion addresses.

The third and last function will parse and use the contents of a string of comma-
separated IPs (IPv4 or IPv6) and/or domain names. This string is a configuration field

Electronics 2024, 13, 873 8 of 24

that can be modified by the operator. In cases in which the input is a domain name, the
function will try to resolve it into its IP address(es) using the system’s configured DNS.
If it cannot be resolved, it is ignored. In cases when the target host happens to be in the
local network, the MAC address is obtained using ARP and then added to the host’s record.
Unlike automatic discovery, this function adds the hosts to the list of neighbors, whether
they are online or offline.

Figure 3 shows a graphical representation of the process described above.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 25

whelming number of addresses that would require an impractical amount of time to scan

(exceeding 50,000 addresses). Similarly, the probing of IPv6 subnet spaces is omitted due

to their vast size. For example, the standard/64 subnet space, which represents the

smallest locally usable IPv6 subnet, encompasses over 18 quintillion addresses.

The third and last function will parse and use the contents of a string of com‐

ma‐separated IPs (IPv4 or IPv6) and/or domain names. This string is a configuration field

that can be modified by the operator. In cases in which the input is a domain name, the

function will try to resolve it into its IP address(es) using the system’s configured DNS. If

it cannot be resolved, it is ignored. In cases when the target host happens to be in the local

network, the MAC address is obtained using ARP and then added to the host’s record.

Unlike automatic discovery, this function adds the hosts to the list of neighbors, whether

they are online or offline.

Figure 3 shows a graphical representation of the process described above.

Figure 3. Graphical representation of the Network Discovery module (arrows depict data flow).

Finally, the module will try to ping the found hosts, and also try to find their DNS

names by performing a reverse lookup. This list will be used by the agents to perform an

Nmap vulnerability scan, more specifically by the Vulnerability Assessment module,

which is now detailed below.

3.2.2. Vulnerability Assessment Module

As with the previous one, this module runs in the agents. This module performs a

scan on each of the members of the list of target hosts obtained before by the Network

Discovery module. The scanning process consists of three parts: the first part involves

identifying the running operating system on the target host, and the running services on

all open UDP and TCP ports; the second part entails running a vulnerability scan using

Nmap scripts against those ports; the last part consists in parsing this output into a

comprehensible dictionary (Python object) of vulnerabilities found per host.

Going into further detail, the module iteration starts by grabbing the list of the hosts

to target from the outputs of the Network Discovery module. Then, this list is used to

launch multiple parallel workers—one per target host—and, inside each of these work‐

ers, enumeration, scanning, and output parsing are performed.

Enumeration is performed by invoking the OS detection function from the py‐

thon3‐nmap module, together with an option to scan open ports (TCP and UDP). In its

turn, this function leverages the operating system’s Nmap command‐line with the flags

that enable OS detection and also the detection of open ports and running services. When

Figure 3. Graphical representation of the Network Discovery module (arrows depict data flow).

Finally, the module will try to ping the found hosts, and also try to find their DNS
names by performing a reverse lookup. This list will be used by the agents to perform an
Nmap vulnerability scan, more specifically by the Vulnerability Assessment module, which
is now detailed below.

3.2.2. Vulnerability Assessment Module

As with the previous one, this module runs in the agents. This module performs a scan
on each of the members of the list of target hosts obtained before by the Network Discovery
module. The scanning process consists of three parts: the first part involves identifying the
running operating system on the target host, and the running services on all open UDP and
TCP ports; the second part entails running a vulnerability scan using Nmap scripts against
those ports; the last part consists in parsing this output into a comprehensible dictionary
(Python object) of vulnerabilities found per host.

Going into further detail, the module iteration starts by grabbing the list of the hosts
to target from the outputs of the Network Discovery module. Then, this list is used to
launch multiple parallel workers—one per target host—and, inside each of these workers,
enumeration, scanning, and output parsing are performed.

Enumeration is performed by invoking the OS detection function from the python3-
nmap module, together with an option to scan open ports (TCP and UDP). In its turn,
this function leverages the operating system’s Nmap command-line with the flags that
enable OS detection and also the detection of open ports and running services. When this
function is triggered, the most common 1000 ports are probed in order to check their state.
The banners received in reply are used to determine which service is running on each of
these ports. When it comes to the OS detection, the agent—again using Nmap—sends a
specially constructed packet towards the target hosts and analyzes the reply, and then tries
to guess the most probable OSes that the target might be using, based on the specifications
of the packet received (for example, different OSes use different TCP headers, making them
uniquely identifiable).

Electronics 2024, 13, 873 9 of 24

At the end of the enumeration function, the module will have collected a list of hosts,
their OSes, and open ports/services. The next step is performing a vulnerability scan
against each of those ports.

A scan is triggered for all ports detected in the hosts, sequentially iterating all ports. If
more than one script is configured in the agent’s configuration, then multiple scans (one for
each script) are sequentially triggered during each port’s iteration. This vulnerability scan
is done by leveraging the capability of Nmap to run NSE scripts that automate such tasks
(more details about this capability below). The command is called, once again, via the
python3-nmap module. The list of scripts to run can be configured by the operator, and
these can be a single script name, or a category of scripts. By default, the “vuln” category is
enabled.

At the end of the vulnerability scanning function, the module will have collected the
information from the enumeration function, plus a list of vulnerabilities found per script,
for each of the ports.

The next step is parsing the vulnerability scanning outputs. This needs to be done as
python3-module returns the outputs in the XML format, so it must be parsed.

While the output is parsed, a dictionary of vulnerabilities is created for each of the
scanned ports, using the CVE ID of the vulnerabilities (or any other vulnerability ID, if the
DB is different) as keys. The value of these keys is a list of strings, containing the CVSS
(severity score), description, and a related link that has more information about that specific
vulnerability (and possibly remediation information as well). Plus, if the vulnerability is
exploitable, a tag is also added to this list, to make it easily identifiable (this tag will be
used later by the artifact’s logic if, for example, the operator configures the sent reports to
contain only exploitable vulnerabilities).

The parser detects whether a vulnerability is exploitable, depending on whether at
least one of these is positive: if the word “exploit” is part of the DB name (for example,
the script “vulscan” organizes the outputs per vulnerability DB, and some of these DBs
are exclusive to exploits); if the word “exploit” is part of the vulnerability name or ID; and
finally, if this same word exists in the description of the vulnerability.

Finally, statistical information is added to the data being collected: the number of
ports scanned, the number of scripts ran, the number of vulnerabilities found, the number
of exploits found, and the total duration of the scan.

All the data collected in the paragraphs above are merged into a single dictionary
object for this target host, and then this object is returned to the main loop by the forked
worker, right before it ends its job.

The last step of the module iteration is waiting until all forked workers end. Once all
the forks end, all the outputs are merged into a single dictionary object, which is now ready
to be uploaded to the server’s API.

Figure 4 shows a graphical representation of this process.
The system administrator has the ability to configure scanning options. Some config-

uration examples instruct the scanner to only consider manually configured hosts, or to
restrict scanning to a list of network ports, or even change the list of scripts that the scanner
should run.

Electronics 2024, 13, 873 10 of 24Electronics 2024, 13, x FOR PEER REVIEW 10 of 25

Figure 4. Graphical representation of the Vulnerability Assessment module (arrows depict data

flow).

The system administrator has the ability to configure scanning options. Some con‐

figuration examples instruct the scanner to only consider manually configured hosts, or

to restrict scanning to a list of network ports, or even change the list of scripts that the

scanner should run.

3.2.3. Agent–Server (and Client) Communications

All the metrics collected by the agent are consolidated into a single JSON object and

periodically transmitted to the server. Figure 5 provides a visual representation of the

structure of this JSON object.

Figure 5. Graphical representation of the JSON object’s schema.

Looking at the figure above, one can assess that, under the root key (which is the

agent’s unique ID, allowing the server to distinguish it from other agents), four main

keys can be observed. The first key displays the presently active configuration values of

the agent (some of these have already been described above). The second key exhibits the

IP addresses of the hosts discovered within the agent’s vicinity, exemplified by

192.168.122.51 in this instance (These data are collected by the Network Discovery mod‐

ule, already detailed above). The third key encompasses information concerning the

agent’s own hardware and OS, such as CPU, storage, and memory usage. Lastly, the

fourth key encompasses system information, a list of services, results from vulnerability

Figure 4. Graphical representation of the Vulnerability Assessment module (arrows depict data flow).

3.2.3. Agent–Server (and Client) Communications

All the metrics collected by the agent are consolidated into a single JSON object and
periodically transmitted to the server. Figure 5 provides a visual representation of the
structure of this JSON object.

Electronics 2024, 13, x FOR PEER REVIEW 10 of 25

Figure 4. Graphical representation of the Vulnerability Assessment module (arrows depict data

flow).

The system administrator has the ability to configure scanning options. Some con‐

figuration examples instruct the scanner to only consider manually configured hosts, or

to restrict scanning to a list of network ports, or even change the list of scripts that the

scanner should run.

3.2.3. Agent–Server (and Client) Communications

All the metrics collected by the agent are consolidated into a single JSON object and

periodically transmitted to the server. Figure 5 provides a visual representation of the

structure of this JSON object.

Figure 5. Graphical representation of the JSON object’s schema.

Looking at the figure above, one can assess that, under the root key (which is the

agent’s unique ID, allowing the server to distinguish it from other agents), four main

keys can be observed. The first key displays the presently active configuration values of

the agent (some of these have already been described above). The second key exhibits the

IP addresses of the hosts discovered within the agent’s vicinity, exemplified by

192.168.122.51 in this instance (These data are collected by the Network Discovery mod‐

ule, already detailed above). The third key encompasses information concerning the

agent’s own hardware and OS, such as CPU, storage, and memory usage. Lastly, the

fourth key encompasses system information, a list of services, results from vulnerability

Figure 5. Graphical representation of the JSON object’s schema.

Looking at the figure above, one can assess that, under the root key (which is the
agent’s unique ID, allowing the server to distinguish it from other agents), four main keys
can be observed. The first key displays the presently active configuration values of the agent
(some of these have already been described above). The second key exhibits the IP addresses
of the hosts discovered within the agent’s vicinity, exemplified by 192.168.122.51 in this
instance (These data are collected by the Network Discovery module, already detailed
above). The third key encompasses information concerning the agent’s own hardware
and OS, such as CPU, storage, and memory usage. Lastly, the fourth key encompasses
system information, a list of services, results from vulnerability scanning, and statistics of
the targeted hosts (data collected by the Vulnerability Assessment module, already detailed
above).

Following the transmission of this information to the server during the upload phase,
the agents proceed to download the configurations that have been published for them,
also from the server. These configurations may be broadcasted to all agents, or specifically
tailored for a particular agent UID (this UID is derived from the agent’s product or serial
number; in cases where this is not feasible, a randomly generated UUID is utilized). These
configurations are then implemented locally and become effective immediately. A few

Electronics 2024, 13, 873 11 of 24

examples of agent configurations could include the scanning frequency, the list of recipients
and the granularity of reports to send, or, as already mentioned before, Nmap scripts to be
executed, or a list of manually specified target hosts for scanning.

As previously mentioned, the server’s API serves as a means for agents to write
metrics into, and retrieve their configurations from. This API enables not only the agents
but also other clients to access and manipulate data within the server’s database (like
checking agents’ findings or changing agents’ configurations). These clients may include
the CLI developed in this project, a command-line HTTP client like cURL, a web browser
such as Firefox (which incorporates a JSON parser to present the API data in a human-
readable format, as depicted in Section 4.1.2), or any potential frontend that may be
developed in the future. Even an AI system can utilize the API’s outputs for further
analysis.

Furthermore, the API also facilitates the retrieval of historical metric data from the
agents. The duration of retention of these historical data is adjustable, and the server
employs this value to periodically remove older records from the database.

3.2.4. Reporting Module

The server provides support for sending vulnerability scanning reports through e-mail.
This module will read, from the server’s database, all the metrics collected by all agents.
Then, it will parse all of these results into a dictionary, which is then converted into a CSV
file, which is finally attached to the e-mail body to be sent.

The operator has to specify a list of recipients and the connection details that enable
the server to connect to the SMTP server. Figure 6 shows a graphical representation of this
process.

Electronics 2024, 13, x FOR PEER REVIEW 11 of 25

scanning, and statistics of the targeted hosts (data collected by the Vulnerability As‐

sessment module, already detailed above).

Following the transmission of this information to the server during the upload

phase, the agents proceed to download the configurations that have been published for

them, also from the server. These configurations may be broadcasted to all agents, or

specifically tailored for a particular agent UID (this UID is derived from the agent’s

product or serial number; in cases where this is not feasible, a randomly generated UUID

is utilized). These configurations are then implemented locally and become effective

immediately. A few examples of agent configurations could include the scanning fre‐

quency, the list of recipients and the granularity of reports to send, or, as already men‐

tioned before, Nmap scripts to be executed, or a list of manually specified target hosts for

scanning.

As previously mentioned, the server’s API serves as a means for agents to write

metrics into, and retrieve their configurations from. This API enables not only the agents

but also other clients to access and manipulate data within the server’s database (like

checking agents’ findings or changing agents’ configurations). These clients may include

the CLI developed in this project, a command‐line HTTP client like cURL, a web browser

such as Firefox (which incorporates a JSON parser to present the API data in a hu‐

man‐readable format, as depicted in Section 4.1.2), or any potential frontend that may be

developed in the future. Even an AI system can utilize the API’s outputs for further

analysis.

Furthermore, the API also facilitates the retrieval of historical metric data from the

agents. The duration of retention of these historical data is adjustable, and the server

employs this value to periodically remove older records from the database.

3.2.4. Reporting Module

The server provides support for sending vulnerability scanning reports through

e‐mail. This module will read, from the server’s database, all the metrics collected by all

agents. Then, it will parse all of these results into a dictionary, which is then converted

into a CSV file, which is finally attached to the e‐mail body to be sent.

The operator has to specify a list of recipients and the connection details that enable

the server to connect to the SMTP server. Figure 6 shows a graphical representation of

this process.

Figure 6. Graphical representation of the Reporting module (arrows depict data flow). Figure 6. Graphical representation of the Reporting module (arrows depict data flow).

The level of detail in these reports can also be adjusted according to the operator’s
preferences. The reports can include all vulnerabilities, or only focus on the exploits
that require immediate attention. This feature proves to be highly beneficial for system
administrators, as it enables them to prioritize their actions effectively.

3.2.5. Other Considerations

One advantageous aspect of the architecture design is that the data collected by the
agents can be accessed directly for read-only purposes, independently from the server. A
local API, which is disabled by default, can be activated within the agents. This allows
the operator to carry a Raspberry Pi device and conduct vulnerability scans in an isolated

Electronics 2024, 13, 873 12 of 24

environment, even when the server is not accessible. This can be done by editing the
configuration file and then restarting the services, within the agent itself. However, it is
important to note that this approach has certain drawbacks. Firstly, the data collected will
not be uploaded to the server, resulting in a lack of centralized availability. Additionally,
e-mails will not be sent, as this task is performed by the server.

Another possibility is to have an all-in-one (AIO) setup, simply by installing both
the agent and the server software packages on a single machine, be it physical or virtual.
This configuration provides the operator with a comprehensive vulnerability scanner in a
portable VM. However, opting for this setup means sacrificing the flexibility and scalability
advantages that come with a distributed architecture using multiple agents.

Moving on to the specific choices made for the software platforms and tools used in the
deployment of the artifact, Nmap [23] was selected as the port/vulnerability scanner. Nmap
is a straightforward yet powerful tool for vulnerability scanning. One of its advantages
is that it does not require a daemon to function. Additionally, it is portable, allowing for
easy installation and immediate use through a single installation command. Nmap also
supports parallelization, enabling the simultaneous scanning of multiple targets, which
proves useful in scanning multiple targets concurrently. Moreover, Nmap supports NSE
scripts, which are written in the Lua language. This feature empowers Nmap to perform
tasks such as enumeration, vulnerability scanning, and penetration testing (commonly
known as pentesting).

In addition to the previously mentioned OpenVAS and Nessus, the systematic research
conducted also identified other commercial alternatives to Nmap, namely, Nexpose, Scanner-
VS, Cybot, Xspider, and Qualys, as referenced in [24–26]. Commercial tools were also found,
such as Faraday. However, these alternatives were not considered for use in the presented
work. This decision was based on the fact that they either exhibited one of the issues
outlined in the concluding part of Section 2, or they required payment, which did not align
with the paradigm of this study.

While vulnerability scanning formed the central focus of this work, it was necessary
to incorporate several other features. The selection of tools to implement these features
did not follow a systematic research approach. Instead, an online search was conducted
to identify the most renowned tools that fulfilled each requirement. These tools were
then briefly studied, before a decision was made regarding their suitability. The decision
was made to utilize Python 3 as the programming language for this project. Python is a
widely used high-level programming language that is freely available. It boasts a large and
active community of developers and maintainers worldwide. One of the key advantages of
Python is its seamless integration with the underlying operating system, allowing for easy
file manipulation, retrieval of platform information [27], and execution of commands in
the OS shell. Additionally, Python offers an extensive collection of libraries and modules
that are essential for implementing the required functionalities. Among these libraries and
modules, Scapy stands out as a packet manipulation library. It proves to be particularly
valuable for performing operations related to ARP, such as scanning the network adapter’s
neighborhood. This functionality is especially useful for automating the scanning process
of neighboring hosts. A project referenced in [28] demonstrates the implementation of a
network scanner that utilizes Scapy to identify hosts within the same subnet.

In relation to the server-side implementation of the REST API, Python offers various
solutions. Among these solutions, Django, Flask, and FastAPI were considered. Django is
known for its versatility and complexity, which can make it challenging to learn. On the
other hand, Flask and FastAPI both possess the necessary functionalities to implement
the API effectively. Despite FastAPI having a smaller community and consequently less
support, Flask was ultimately chosen as the preferred option. The server API operates
behind a reverse proxy Apache web server, which is responsible for authenticating and
encrypting HTTP connections between the agents/clients and the API. This is achieved
through the utilization of SSL and HTTP authentication modules. Alternatively, Nginx
could also be considered as a suitable option. Both of these servers are readily available in

Electronics 2024, 13, 873 13 of 24

the repositories of most Linux distributions. In this particular case, Apache was selected
due to the authors’ familiarity with it, as the specific advantages and disadvantages of each
web server do not significantly impact the current work.

Regarding the choice of database technology on the server side, the main contenders
were MySQL and MongoDB. These solutions differ fundamentally, with MySQL being a
structured database, while MongoDB is a document-oriented database, commonly referred
to as a NoSQL database. MySQL ensures greater data integrity as it adheres to the fixed
structure of SQL tables. On the other hand, MongoDB is better suited for real-time ana-
lytics and offers seamless integration with Python. It readily recognizes Python objects,
such as dictionaries, and allows them to be directly uploaded to MongoDB as database doc-
uments. Both databases have robust support for Python clients. Ultimately, the flexibility
and ease of integration with Python data structures led to the selection of MongoDB.

As part of this project, a Command Line Interface, or just the CLI, was created to
simplify various tasks such as data consultation or agent configuration management. The
implementation of the CLI was facilitated by utilizing Click, a specialized Python module for
CLI development. In Figure 7, two instances of CLI outputs are depicted, showcasing the
help menu output describing the complete range of available commands and a vulnerability
report specifically highlighting exploits.

Electronics 2024, 13, x FOR PEER REVIEW 14 of 25

Figure 7. CLI showing help and vulnerability report outputs.

As observed previously, the CLI commands produce output in a JSON format that is

color‐coded. This feature enables operators to utilize a JSON parser such as jq to manip‐

ulate and filter the output. If the output is redirected, the CLI automatically disables the

colorization. This is because colorization introduces special characters to the output,

which may not be recognized by JSON parsers.

The development process primarily took place on Ubuntu 20.04 “Focal”. However, it

was also installed and tested on other operating systems, such as Ubuntu 22.04 “Jammy”

(server edition, or ARM edition in the agents), Debian 11 “Bullseye” (main edition, or

ARM edition in the agents), and Raspberry Pi OS (previously known as “Raspbian”) 11

“Bullseye” (exclusively in the agents). These operating systems were chosen as they are

the most mature releases available at the current date. Additionally, all the necessary

software packages were either present in their native repositories or made available by

the respective product owners. It is worth noting that all the aforementioned operating

systems are Debian‐based releases. Therefore, the installation scripts and source code

remain consistent across all of them. Furthermore, Python 3 is readily accessible on all

these operating systems.

4. Validation

The artifact underwent validation and testing in both a local laboratory and by ex‐

ternal testers. The external testers evaluated the artifact in a real‐world setting, and sub‐

sequently completed a survey. Local tests were conducted to assess technical metrics

such as the reliability, accuracy, and security of the agent. On the other hand, the surveys

aimed to evaluate usability and quantify the value the artifact adds to an organization.

Figure 7. CLI showing help and vulnerability report outputs.

As observed previously, the CLI commands produce output in a JSON format that is
color-coded. This feature enables operators to utilize a JSON parser such as jq to manip-
ulate and filter the output. If the output is redirected, the CLI automatically disables the
colorization. This is because colorization introduces special characters to the output, which
may not be recognized by JSON parsers.

Electronics 2024, 13, 873 14 of 24

The development process primarily took place on Ubuntu 20.04 “Focal”. However, it
was also installed and tested on other operating systems, such as Ubuntu 22.04 “Jammy”
(server edition, or ARM edition in the agents), Debian 11 “Bullseye” (main edition, or ARM
edition in the agents), and Raspberry Pi OS (previously known as “Raspbian”) 11 “Bullseye”
(exclusively in the agents). These operating systems were chosen as they are the most
mature releases available at the current date. Additionally, all the necessary software
packages were either present in their native repositories or made available by the respec-
tive product owners. It is worth noting that all the aforementioned operating systems
are Debian-based releases. Therefore, the installation scripts and source code remain
consistent across all of them. Furthermore, Python 3 is readily accessible on all these
operating systems.

4. Validation

The artifact underwent validation and testing in both a local laboratory and by external
testers. The external testers evaluated the artifact in a real-world setting, and subsequently
completed a survey. Local tests were conducted to assess technical metrics such as the
reliability, accuracy, and security of the agent. On the other hand, the surveys aimed to
evaluate usability and quantify the value the artifact adds to an organization.

In terms of local tests, the evaluation of “reliability” focused on two main parameters:
service stability over an extended period of uptime, typically spanning several days, and
resource usage, specifically CPU and memory, when subjected to stress. The assessment
of “accuracy” involved testing the scanner’s capability to precisely identify the operat-
ing system and service information of the target hosts, as well as detecting any existing
vulnerabilities. This was accomplished by creating a controlled test environment with
known vulnerabilities and verifying that the scanner produced accurate results. Lastly, the
“security” tests aimed to validate that the API does not permit unauthenticated or insecure
connections at the protocol or service level.

In an effort to ensure a diverse range of perspectives, the process of selecting external
testers aimed to encompass individuals and organizations with varying levels of knowledge
and organizational complexity. Consequently, the chosen testers consisted of an IT and
cloud business organization, a telecommunications business organization specializing in
cybersecurity, an organization operating at the intersection of IT and financial sectors, and
an independent IT freelancer with expertise in the open-source field. Further information
about these testers can be found in the acknowledgments section at the conclusion of this
paper.

An individual tester from each organization was provided with the artifact, along
with instructions on how to set it up. These instructions can be found within the project
deliverables, the links of which are available at the end of this document. Subsequently, a
survey was created, comprising 10 statements pertaining to user experience, 5 statements
concerning organizational impact, 2 statements regarding overall experience, and three
open-ended questions. The initial 17 statements required the tester to utilize the Likert
scale, selecting a value ranging from 1 to 5, in order to express their level of agreement or
disagreement with each statement. The surveys were conducted via video call, allowing
the testers the opportunity to elaborate on each point, if necessary, and enabling the
conversation to encompass different perspectives and opinions on current deficiencies and
potential enhancements. Although testers were also given the option to respond in written
form, none of them chose this method.

4.1. Local Tests

For the local tests, the hardware employed comprised a Sony Vaio E11 laptop (2013)
functioning as the server/agent with the hostname “JP-OLD”. Additionally, two Raspberry
Pi devices were utilized as agents, with “RPI4” being a fourth generation Model B (2019)
and “RPI1” being a first generation Model B (2012). Furthermore, a virtual machine

Electronics 2024, 13, 873 15 of 24

named “AIO” was employed for development and testing activities, running on an external
hypervisor.

Figure 8 shows a photo of the setup of the local laboratory.

Electronics 2024, 13, x FOR PEER REVIEW 16 of 25

Figure 8. Local laboratory.

Specifications of the environment:

 JP‐OLD (server and agent, for testing/staging)—1.75 GHz dual‐core processor, 8 GB

RAM, connected via Wi‐Fi;

 RPI4 (agent for testing/staging)—1.5 GHz quad‐core processor, 2 GB RAM, con‐

nected via Wi‐Fi;

 RPI1 (agent for testing/staging)—700 MHz single‐core processor, 256 MB RAM,

connected via Ethernet;

 AIO (VM running in an external hypervisor; mostly for deployment)—1.8 GHz

quad‐core processor, 8 GB RAM, connected via Ethernet and Wi‐Fi.

4.1.1. Reliability Tests

When it comes to the uptime, no special tests were performed, as the staging envi‐

ronment was always on during the entire deployment period, since the first working

builds. This means at least 5 months of mostly continuous hardware uptime with no is‐

sues (from November 2022 until March 2023). Service restarts were performed from time

to time to test new builds. System logs (link available at the end of this document) show

at least 14 days of continuous uninterrupted service uptime in both the server (JP‐OLD)

and one of the agents (RPI4) between service restarts.

When it comes to testing resource usage, all the staging agents (RPI1, RPI4, and

JP‐OLD) were left running on default configurations for 72 h, and then data were grabbed

for at least the last 24. The same was done for the server running in JP‐OLD. This means

they were finding and scanning all hosts in the neighborhood (the other agents, the

server, an Internet gateway, and any other devices eventually connected to the Wi‐Fi

network), plus two manual hosts that were configured (“sapo.pt,google.pt”). Three

scripts were activated in the configuration (“vuln,vulscan,discovery”) (two of these were

script categories, so the number of individual scripts was higher than three). To further

stress the agents, the local APIs and debug logs were activated, and the time interval

between modules’ iterations was set to only 5 s.

Figure 9 shows the CPU usage observed in the agent boards, during an entire day of

testing, using the tool Munin.

Figure 8. Local laboratory.

Specifications of the environment:

• JP-OLD (server and agent, for testing/staging)—1.75 GHz dual-core processor, 8 GB
RAM, connected via Wi-Fi;

• RPI4 (agent for testing/staging)—1.5 GHz quad-core processor, 2 GB RAM, connected
via Wi-Fi;

• RPI1 (agent for testing/staging)—700 MHz single-core processor, 256 MB RAM, con-
nected via Ethernet;

• AIO (VM running in an external hypervisor; mostly for deployment)—1.8 GHz quad-
core processor, 8 GB RAM, connected via Ethernet and Wi-Fi.

4.1.1. Reliability Tests

When it comes to the uptime, no special tests were performed, as the staging environ-
ment was always on during the entire deployment period, since the first working builds.
This means at least 5 months of mostly continuous hardware uptime with no issues (from
November 2022 until March 2023). Service restarts were performed from time to time to
test new builds. System logs (link available at the end of this document) show at least
14 days of continuous uninterrupted service uptime in both the server (JP-OLD) and one of
the agents (RPI4) between service restarts.

When it comes to testing resource usage, all the staging agents (RPI1, RPI4, and JP-
OLD) were left running on default configurations for 72 h, and then data were grabbed for
at least the last 24. The same was done for the server running in JP-OLD. This means they
were finding and scanning all hosts in the neighborhood (the other agents, the server, an
Internet gateway, and any other devices eventually connected to the Wi-Fi network), plus
two manual hosts that were configured (“sapo.pt,google.pt”). Three scripts were activated
in the configuration (“vuln,vulscan,discovery”) (two of these were script categories, so the
number of individual scripts was higher than three). To further stress the agents, the local
APIs and debug logs were activated, and the time interval between modules’ iterations
was set to only 5 s.

Electronics 2024, 13, 873 16 of 24

Figure 9 shows the CPU usage observed in the agent boards, during an entire day of
testing, using the tool Munin.

Electronics 2024, 13, x FOR PEER REVIEW 17 of 25

Figure 9. CPU usage in the agent boards during tests.
Figure 9. CPU usage in the agent boards during tests.

Electronics 2024, 13, 873 17 of 24

Figure 10 shows the memory usage observed in the agent boards, during an entire day
of testing, using the same tool as above.

Electronics 2024, 13, x FOR PEER REVIEW 18 of 25

Figure 10 shows the memory usage observed in the agent boards, during an entire

day of testing, using the same tool as above.

Figure 10. Memory usage in the agent boards during tests. Figure 10. Memory usage in the agent boards during tests.

Electronics 2024, 13, 873 18 of 24

It should be pointed out that, in the case of the agent operating on older hardware
(RPI1), certain adjustments had to be made regarding the selection of scripts to execute
and the number of workers to initiate. This is understandable considering that the initial
versions of Raspberry Pi possess limited resources in comparison to more recent hardware
models. Nevertheless, once the appropriate configuration was established, this agent also
operated flawlessly for consecutive hours until the conclusion of the tests. In conclusion,
the agents consistently and effectively transmitted data to the server throughout the entire
duration of the testing period.

4.1.2. Accuracy Tests

The developed artifact demonstrated commendable accuracy in vulnerability scanning
by successfully identifying the operating system, services, versions, and vulnerabilities.
Although there were occasional discrepancies in detecting the correct versions of the Kernel,
this was merely a superficial concern as it did not affect the detection of service versions. It
is important to note that the artifact’s scanning capabilities were limited to network-based
scanning, but it effectively covered as much ground as possible in this regard.

Figure 11 shows the API output from a scan performed against a Microsoft Windows
Server 2022 VM, using the script “vulscan” (not active by default), showing a list of found
vulnerabilities from different databases.

Electronics 2024, 13, x FOR PEER REVIEW 19 of 25

It should be pointed out that, in the case of the agent operating on older hardware

(RPI1), certain adjustments had to be made regarding the selection of scripts to execute

and the number of workers to initiate. This is understandable considering that the initial

versions of Raspberry Pi possess limited resources in comparison to more recent hard‐

ware models. Nevertheless, once the appropriate configuration was established, this

agent also operated flawlessly for consecutive hours until the conclusion of the tests. In

conclusion, the agents consistently and effectively transmitted data to the server

throughout the entire duration of the testing period.

4.1.2. Accuracy Tests

The developed artifact demonstrated commendable accuracy in vulnerability scan‐

ning by successfully identifying the operating system, services, versions, and vulnerabil‐

ities. Although there were occasional discrepancies in detecting the correct versions of the

Kernel, this was merely a superficial concern as it did not affect the detection of service

versions. It is important to note that the artifact’s scanning capabilities were limited to

network‐based scanning, but it effectively covered as much ground as possible in this

regard.

Figure 11 shows the API output from a scan performed against a Microsoft Win‐

dows Server 2022 VM, using the script “vulscan” (not active by default), showing a list of

found vulnerabilities from different databases.

Figure 11. Scanning results for a Windows Server VM during local tests. Figure 11. Scanning results for a Windows Server VM during local tests.

Electronics 2024, 13, 873 19 of 24

The implementation of this work is subject to an inherent limitation due to the type
of scanner utilized. Specifically, the scanner employed is a “network-based” vulnerability
scanner, which means it lacks the ability to access the internal patch level of the services
operating on a host. Instead, it can only ascertain the upstream version displayed in
the service’s banner on a given port. Consequently, it is unable to determine whether a
vulnerability has been resolved through the internal patching of the service. However, this
issue could potentially be addressed by developing a module that can be installed on the
target hosts. This suggestion is put forth as a future endeavor in Section 5.

4.1.3. Security Tests

Lastly, an additional examination was conducted to assess the security of the API. The
user authentication process relies solely on basic HTTP authentication, which means that
the login credentials are hardcoded in the host system (although they can be modified in
the Server installation script). Consequently, only basic tests were performed to verify the
proper implementation of the HTTPS protocol and simple HTTP authentication. A list of
tests performed is given below:

1. Request against the server’s API IP address (instead of the hostname), using the
correct username/password, but without the endpoint’s certificate to validate against
(expected result—rejection);

2. Repeat, but explicitly using the client’s flag to ignore certification validation (expected
result—acceptance);

3. Request with proper username/password and CA bundle to validate against, but
using IP address instead of hostname (expected result—rejection);

4. Repeat, but with correct hostname, and wrong username/password (expected
result—rejection);

5. Repeat, but with correct user/name (expected result—acceptance);
6. Repeat, but using HTTP in the URL instead of HTTPS (expected result—client redi-

rected from HTTP to HTTPS, and then accepted).

All these tests were successfully passed.
The raw outputs from all local tests can be consulted online (check the data availability

links in the “Declarations” section).

4.2. User Tests

As said above, a total of four organizations and one freelancer tested and replied to
the tester survey. Figure 12 shows a graphical distribution of the agreeableness replies
obtained.

As illustrated in Figure 12, the vast majority of the responses fall within the categories
of “agree” and “strongly agree”, indicating a high level of overall satisfaction among all
the testers.

Testers were requested to provide feedback on open-ended questions regarding prob-
lems encountered, and suggestions for improvement. The reported issues encompassed
the vulnerability scanner’s inability to identify backported vulnerabilities, which was al-
ready elaborated upon in the previous sub-section. Additionally, a well-known MongoDB
limitation was identified in the agent’s capacity to upload objects of larger sizes to the
server, although this occurrence was infrequent. Another concern raised was the potential
vulnerability of the agents to ARP spoofing, as their reliance on the ARP protocol for host
discovery may potentially rend them susceptible. In terms of recommendations for future
endeavors, the primary focus was on the development of a web interface. Furthermore,
testers emphasized the importance of obtaining more comprehensive information regarding
the target’s operating system distribution versions and lifecycle. Lastly, containerization
was proposed as an area for further exploration and improvement. All of this feedback has
been incorporated as suggestions for future work in the subsequent section.

Electronics 2024, 13, 873 20 of 24
Electronics 2024, 13, x FOR PEER REVIEW 21 of 25

Figure 12. Graphical distribution of the agreeableness replies given by the testers.

As illustrated above, the vast majority of the responses fall within the categories of

“agree” and “strongly agree”, indicating a high level of overall satisfaction among all the

testers.

Testers were requested to provide feedback on open‐ended questions regarding

problems encountered, and suggestions for improvement. The reported issues encom‐

passed the vulnerability scanner’s inability to identify backported vulnerabilities, which

was already elaborated upon in the previous sub‐section. Additionally, a well‐known

Figure 12. Graphical distribution of the agreeableness replies given by the testers.

The last inquiry was open-ended and revolved around concluding remarks. Each
and every tester provided exceedingly positive feedback regarding their perception of
the enhanced worth to their respective organizations. In fact, a few individuals even
contemplated incorporating this valuable resource into their own set of tools.

To summarize, the artifact has been deemed user-friendly and positively impactful by
external testers. Its implementation would enable organizations to streamline and enhance
their cybersecurity measures effectively. By filtering out exploits, it assists in identifying

Electronics 2024, 13, 873 21 of 24

critical vulnerabilities that require immediate attention. Moreover, it has been established
that this tool holds particular significance for organizations lacking paid solutions or
dedicated cybersecurity experts.

5. Conclusions

The primary objective of this study was to create a vulnerability scanner that possessed
user-friendly features, easy configuration, and scalability. Additionally, it aimed to ensure
that the scanner was readily operational, compatible with inexpensive hardware, and
accessible to the wider community.

In addition to the port scanning conducted by Nmap, which was selected for its sim-
plicity, portability, efficiency, and seamless integration with Python, this study incorporates
an automated discovery mechanism for identifying hosts in the vicinity. By utilizing this
list of hosts, the port scanner can be effectively utilized without the need for extensive
configuration, enabling system administrators lacking cybersecurity expertise to operate it
with minimal effort. Nevertheless, the system’s adaptability permits operators to configure
a range of manual hosts, specify ports to scan, execute Nmap scripts, and make other
customizations as desired.

The wide range of Nmap script categories available expands the scanner’s capabilities
beyond merely crosschecking services and versions against vulnerability databases. It
also facilitates more advanced penetration testing, including assessments targeting specific
services offered by particular vendors.

The work presented here follows an agent–server architecture. Consequently, the
agents can be directly connected to internal LANs, bypassing the bureaucratic procedures
and access restrictions typically associated with other scanners. This is particularly advan-
tageous in data centers that prohibit inbound connections.

This work is designed to be highly modular, allowing an agent to operate indepen-
dently from a server if required. The comprehensive API provided can be utilized by web
interfaces developed by the community, enabling the potential for the creation of new
features such as advanced graphing and reporting.

The artifact makes it possible to generate vulnerability reports and deliver them via
email in a file format widely recognized as CSV. The level of detail in these reports can
be customized, granting system administrators the ability to concentrate on addressing
exploitable vulnerabilities that require immediate attention. Additionally, there is even
the option of setting up an all-in-one (AIO) environment by installing both the agent and
server in a single machine, or—as chosen by the testers of the artifact—a VM.

The examination of the artifact demonstrated its stability and reliability, even when
used on older hardware that possesses fewer resources, provided that the appropriate
configuration is in place. Despite the inherent limitations of the scanner type employed
in this artifact, it effectively and accurately identifies hosts within the network, as well as
their operating systems and services, along with any vulnerabilities present. The inclusion
of multiple Nmap scripts enables the operator to select the most suitable option for a
specific target host’s operating system. Furthermore, the security-related tests, although
minimalistic in nature, have indicated that the API implementation successfully prohibits
unauthorized or untrusted connections.

Feedback obtained from external users, including those without a cybersecurity-
specific background, has revealed that the artifact is user-friendly in terms of installation
and operation. It accurately assesses the characteristics of the users’ environments and
provides a valuable vulnerability-related output, without causing any negative impact on
the rest of the infrastructure. Additionally, all testers have expressed that the artifact proves
to be effective in automating the security audit processes of organizations, especially in the
absence of other (paid) options.

Based on the authors’ examination of the current state-of-the-art solutions and their
limitations (Section 2), one can conclude that the research outlined in this paper distin-
guishes itself from previous research efforts as, unlike any other solution, it consolidates all

Electronics 2024, 13, 873 22 of 24

of its provided features into a single artifact. Besides this, this artifact is also open-source,
and can be easily installed and operated without the need for highly skilled personnel.
Even when considering commercial/community solutions as well, the authors consider it
can be confidently stated that there is currently no offering available that comprehensively
addresses all the aforementioned aspects.

Future Work

The authors present the following recommendations for future research, drawing from
their own observations and feedback received from testers.

In terms of UI/UX, a web frontend could serve as the interface between the server’s
API and the users. This frontend would have the potential to incorporate various features.
Firstly, it could provide an AAA/SaaS multi-tenant cloud offering with a systematic ap-
proach to API security, ensuring the protection of sensitive data. Additionally, it could offer
advanced graphical reporting, allowing users to visualize data in a more comprehensive
manner. This frontend could also include stateful metadata information, enabling users to
mark vulnerabilities as resolved and keep track of which vulnerabilities have already been
reviewed. Moreover, it could notify users about new vulnerabilities found since their last
visit. Furthermore, it could enhance e-mail reports, making them more informative and
user-friendly. Another improvement could be the advanced scheduling of the agent’s and
server’s modules, replacing the current fixed time interval approach. This would allow
for more flexibility and efficiency in module execution. Additionally, a mobile application
version of the web frontend could also be developed, to cater to users who prefer accessing
the system through their mobile devices.

In the realm of AI/ML, an AI system could analyze the output of the API and deter-
mine appropriate courses of remediation. This AI system would leverage the data provided
by the API to make informed decisions and suggest effective solutions. One possible use
case would be suggesting which possible patches could be applied in a system to solve
the existing vulnerabilities, using OS information, services running and their version, and
the list of found vulnerabilities for each of these services. Additionally, outputs from the
artifact could be used as inputs for ML algorithms that perform anomaly detection [29].

Regarding vulnerability scanning, the authors suggest the development of an optional
agent-based software module that would be installed on target hosts. This module would
provide additional information directly to the server, enabling a more detailed analysis. For
example, it could gather information about backported vulnerability fixes for older versions
of services, or obtain specific details about the OS distribution, version, and lifecycle.

Lastly, there is the possibility of expanding the capabilities of the agent by adding
extra tools or modules. One suggestion is to incorporate specialized tools like Metasploit,
which can be utilized for extensive pentesting. This would involve probing for exploits and
running post-exploitable code, allowing for a more comprehensive assessment of system
vulnerabilities.

Author Contributions: Conceptualization, J.P.S. and C.S.; methodology and investigation, J.P.S. and
C.S.; software, J.P.S.; validation, J.P.S. and C.S.; writing—original draft preparation, J.P.S. and C.S.;
writing—review and editing, J.P.S. and C.S.; supervision, C.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: GitHub repository containing the source code, installation scripts, and
“readme” files, of the Agent artifact: https://github.com/jpseara/siaas-agent (accessed 2 February
2024). GitHub repository containing the source code, installation scripts, and “readme” files, of
the Server artifact: https://github.com/jpseara/siaas-server (accessed 2 February 2024). GitHub
repository containing the source code, installation scripts, and “readme” files, of the CLI artifact:
https://github.com/jpseara/siaas-cli (accessed 2 February 2024). GitHub repository containing
complete configuration and API references, outputs of local tests, sample API outputs, and user survey
form and response transcriptions: https://github.com/jpseara/siaas-research (accessed 2 February

https://github.com/jpseara/siaas-agent
https://github.com/jpseara/siaas-server
https://github.com/jpseara/siaas-cli
https://github.com/jpseara/siaas-research

Electronics 2024, 13, 873 23 of 24

2024). Original recordings of the user surveys can be requested by contacting the corresponding
author(s) via e-mail.

Acknowledgments: We would like to thank all the testers of this work: Matt Golden—Trilio Data
(USA); Ricardo Ramalho—Cybersecurity Behaviour and Automation at Altice Portugal (Portugal);
Jorge Teixeira—VTXRM—Software Factory (Portugal); and David Negreira—Ubuntu community.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Check Point Blog. Check Point Research: Third Quarter of 2022 Reveals Increase in Cyberattacks and Unexpected Developments

in Global Trends. checkpoint.com. Available online: https://blog.checkpoint.com/2022/10/26/third-quarter-of-2022-reveals-
increase-in-cyberattacks/ (accessed on 2 February 2024).

2. IBM. Cost of a Data Breach Report; IBM: Armonk, NY, USA, 2023.
3. Morgan, S. Cybercrime To Cost The World $10.5 Trillion Annually By 2025. cybersecurityventures.com. Available online:

https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/ (accessed on 2 February 2024).
4. Furnell, S.; Fischer, P.; Finch, A. Can’t get the staff? The growing need for cyber-security skills. Comput. Fraud. Secur. 2017, 2017,

5–10. [CrossRef]
5. Furnell, S. The cybersecurity workforce and skills. Comput. Fraud. Secur. 2021, 100, 102080. [CrossRef]
6. Russu, C. The Impact of Low Cyber Security on the Development of Poor Nations. developmentaid.org. Available online:

https://www.developmentaid.org/news-stream/post/149553/low-cyber-security-and-development-of-poor-nations (accessed
on 2 February 2024).

7. Smith, G. The intelligent solution: Automation, the skills shortage and cyber-security. Comput. Fraud. Secur. 2018, 2018, 6–9.
[CrossRef]

8. Ko, R.K.L. Cyber Autonomy: Automating the Hacker—Self-healing, self-adaptive, automatic cyber defense systems and their
impact to the industry, society and national security. arXiv 2020. [CrossRef]

9. Deascona. How ChatGPT Will Revolutionize the Cyber Security Industry. uxdesign.cc. Available online: https://bootcamp.uxdesign.cc/
how-chat-gpt-will-revolutionize-the-cyber-security-industry-7847cc7fc24e (accessed on 2 February 2024).

10. Ponemon Institute. The State of Vulnerability Management in DevSecOps; Ponemon Institute: Traverse City, MI, USA, 2022.
11. Anderson, J. Updates to ISO 27001/27002 Raise the Bar on Application Security and Vulnerability Scanning. invict.com. Avail-

able online: https://www.invicti.com/blog/web-security/iso-27001-27002-changes-in-2022-application-security-vulnerability-
scanning/ (accessed on 2 February 2024).

12. Shea, S. SOAR (Security Orchestration, Automation and Response). techtarget.com. Available online: https://www.techtarget.com/
searchsecurity/definition/SOAR (accessed on 2 February 2024).

13. Liu, W. Design and Implement of Common Network Security Scanning System. In Proceedings of the 2009 International
Symposium on Intelligent Ubiquitous Computing and Education, Chengdu, China, 15–16 May 2009; pp. 148–151. [CrossRef]

14. Shah, S.; Mehtre, B.M. An automated approach to Vulnerability Assessment and Penetration Testing using Net-Nirikshak 1.0. In
Proceedings of the 2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies,
Ramanathapuram, India, 8–10 May 2014; pp. 707–712. [CrossRef]

15. Wang, Y.; Bai, Y.; Li, L.; Chen, X.; Chen, A. Design of Network Vulnerability Scanning System Based on NVTs. In Proceedings of
the 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 12–14 June
2020; pp. 1774–1777. [CrossRef]

16. Chen, H.; Chen, J.; Chen, J.; Yin, S.; Wu, Y.; Xu, J. An Automatic Vulnerability Scanner for Web Applications. In Proceedings of
the 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom),
Guangzhou, China, 29 December 2020–1 January 2021; pp. 1519–1524. [CrossRef]

17. Zhang, X.; Zhao, J.; Yang, F.; Zhang, Q.; Li, Z.; Gong, B.; Zhi, Y.; Zhang, X. An Automated Composite Scanning Tool with
Multiple Vulnerabilities. In Proceedings of the 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic
and Automation Control Conference (IMCEC), Chongqing, China, 11–13 October 2019; pp. 1060–1064. [CrossRef]

18. Wang, C.; Liu, X.; Zhou, X.; Zhou, R.; Lv, D.; Lv, Q.; Wang, M.; Zhou, Q. FalconEye: A High-Performance Distributed Security
Scanning System. In Proceedings of the 2019 IEEE International Conference on Dependable, Autonomic and Secure Computing,
International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing,
International Conference on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Fukuoka, Japan,
5–8 August 2019; pp. 282–288. [CrossRef]

19. Davies, P.; Tryfonas, T. A lightweight web-based vulnerability scanner for small-scale computer network security assessment.
J. Netw. Comput. Appl. 2009, 32, 78–95. [CrossRef]

20. Kals, S.; Kirda, E.; Kruegel, C.; Jovanovic, N. SecuBat: A web vulnerability scanner. In Proceedings of the 15th International
Conference on World Wide Web (WWW ’06), Edinburgh, Scotland, 23–26 May 2006; Association for Computing Machinery: New
York, NY, USA, 2006; pp. 247–256. [CrossRef]

21. Noman, M.; Iqbal, M.; Rasheed, K.; Muneeb Abid, M. Web Vulnerability Finder (WVF): Automated Black-Box Web Vulnerability
Scanner. Int. J. Inf. Technol. Comput. Sci. 2020, 12, 38–46. [CrossRef]

https://blog.checkpoint.com/2022/10/26/third-quarter-of-2022-reveals-increase-in-cyberattacks/
https://blog.checkpoint.com/2022/10/26/third-quarter-of-2022-reveals-increase-in-cyberattacks/
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://doi.org/10.1016/S1361-3723(17)30013-1
https://doi.org/10.1016/j.cose.2020.102080
https://www.developmentaid.org/news-stream/post/149553/low-cyber-security-and-development-of-poor-nations
https://doi.org/10.1016/S1361-3723(18)30073-3
https://doi.org/10.48550/arXiv.2012.04405
https://bootcamp.uxdesign.cc/how-chat-gpt-will-revolutionize-the-cyber-security-industry-7847cc7fc24e
https://bootcamp.uxdesign.cc/how-chat-gpt-will-revolutionize-the-cyber-security-industry-7847cc7fc24e
https://www.invicti.com/blog/web-security/iso-27001-27002-changes-in-2022-application-security-vulnerability-scanning/
https://www.invicti.com/blog/web-security/iso-27001-27002-changes-in-2022-application-security-vulnerability-scanning/
https://www.techtarget.com/searchsecurity/definition/SOAR
https://www.techtarget.com/searchsecurity/definition/SOAR
https://doi.org/10.1109/IUCE.2009.24
https://doi.org/10.1109/ICACCCT.2014.7019182
https://doi.org/10.1109/ITOEC49072.2020.9141812
https://doi.org/10.1109/TrustCom50675.2020.00207
https://doi.org/10.1109/IMCEC46724.2019.8983828
https://doi.org/10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00059
https://doi.org/10.1016/j.jnca.2008.04.007
https://doi.org/10.1145/1135777.1135817
https://doi.org/10.5815/ijitcs.2020.04.05

Electronics 2024, 13, 873 24 of 24

22. Haydock, W. But Is It Exploitable? deploy-securely.com. Available online: https://www.blog.deploy-securely.com/p/
but-is-it-exploitable (accessed on 2 February 2024).

23. Lyon, G.F. Nmap Network Scanning; The Official Nmap Project Guide to Network Discovery and Security Scanning; Insecure Press:
Sunnyvale, CA, USA, 2008; ISBN 978-0-9799587-1-7. Available online: https://nmap.org/book/toc.html (accessed on 2 February
2024).

24. Chalvatzis, I.; Karras, D.A.; Papademetriou, R.C. Evaluation of Security Vulnerability Scanners for Small and Medium Enterprises
Business Networks Resilience towards Risk Assessment. In Proceedings of the 2019 IEEE International Conference on Artificial
Intelligence and Computer Applications (ICAICA), Dalian, China, 29–31 March 2019; pp. 52–58. [CrossRef]

25. Wang, Y.; Yang, J. Ethical Hacking and Network Defense: Choose Your Best Network Vulnerability Scanning Tool. In Proceedings
of the 2017 31st International Conference on Advanced Information Networking and Applications Workshops (WAINA), Taipei,
Taiwan, 27–29 March 2017; pp. 110–113. [CrossRef]

26. Zulkarneev, I.; Kozlov, A. New Approaches of Multi-agent Vulnerability Scanning Process. In Proceedings of the 2021 Ural
Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), Yekaterinburg, Russia, 13–14
May 2021; pp. 488–490. [CrossRef]

27. Rockikz, A. How to Get Hardware and System Information in Python. thepythoncode.com. Available online:
https://www.thepythoncode.com/article/get-hardware-system-information-python (accessed on 2 February 2024).

28. Waldvogel, B. Layer 2 Network Neighbourhood Discovery Tool. github.com. Available online: https://github.com/bwaldvogel/
neighbourhood (accessed on 2 February 2024).

29. Elmrabit, N.; Zhou, F.; Li, F.; Zhou, H. Evaluation of Machine Learning Algorithms for Anomaly Detection. In Proceedings of the
2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), Dublin, Ireland, 15–19 June
2020; pp. 1–8. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.blog.deploy-securely.com/p/but-is-it-exploitable
https://www.blog.deploy-securely.com/p/but-is-it-exploitable
https://nmap.org/book/toc.html
https://doi.org/10.1109/ICAICA.2019.8873438
https://doi.org/10.1109/WAINA.2017.39
https://doi.org/10.1109/USBEREIT51232.2021.9455061
https://www.thepythoncode.com/article/get-hardware-system-information-python
https://github.com/bwaldvogel/neighbourhood
https://github.com/bwaldvogel/neighbourhood
https://doi.org/10.1109/CyberSecurity49315.2020.9138871

	Introduction
	Related Work
	System Design and Implementation
	Design Choices
	Implementation
	Network Discovery Module
	Vulnerability Assessment Module
	Agent–Server (and Client) Communications
	Reporting Module
	Other Considerations

	Validation
	Local Tests
	Reliability Tests
	Accuracy Tests
	Security Tests

	User Tests

	Conclusions
	References

