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Abstract: The accurate and reliable acquisition of measurement information is very important for
the stable operation of power systems, especially the operation status information of new energy
stations. With the increasing proportion of new energy stations in power systems, the quality issues
of data from these stations, caused by communication congestion, interference, and network attacks,
become more pronounced. In this paper, to deal with the issue of low accuracy and poor performance
of bad data restoration in new energy stations, a novel deep learning approach by combining the
modified long short-term memory (LSTM) neural network and Wasserstein generative adversarial
network with gradient penalty (WGAN-GP) is proposed. The proposed method can be implemented
in a parallel ensemble way. First, the normal data set acquired from multiple sections of new energy
stations is utilized to train the modified LSTM and WGAN-GP model. Secondly, according to the
data characteristics and rules captured by each model, the two models are systematically integrated
and the bad data repair model pool is constructed. Subsequently, the results of model repair are
screened and merged twice by the parallel integration framework to obtain the final repair result.
Finally, the extensive experiments are carried out to verify the proposed method. The simulative
results of energy stations in a real provincial power grid demonstrate that the proposed method can
effectively repair bad data, thereby enhancing the data quality of new energy stations.

Keywords: renewable energy station; long short-term memory neural network; Adam optimization
algorithm; Wasserstein generative adversarial network; parallel ensemble learning; data repair

1. Introduction

In recent years, with the ongoing development of new energy systems, the integration
of numerous new energy stations has led to a surge in the amount of data processed by
power systems, making the data structures more complex [1]. In modern power systems,
the tight integration of the physical and information layers has deepened the reliance of
control centers on real-time measurement data. However, in addition to inevitable data
noise, these real-time measurements frequently contain bad data. Such data not only
distorts the system’s true state and adversely affects the accuracy and convergence of state
estimation, but also poses significant challenges to the performance of subsequent advanced
applications [2,3]. For instance, voltage amplitude errors in line parameter identification
can be amplified a thousandfold in resistance identification [4]. In addition, network and
time synchronization attacks on synchronous phasor data pose a threat to the safe and
stable operation of power systems, sometimes even triggering cascading failures [5,6].
To deal with issues, repairing the bad measurement data of the new energy stations in
real time is not only crucial for improving data quality and reliability, but also enhances
the situational awareness capabilities of power systems, supporting their safe and stable
operation.

Generally speaking, the methods for repairing bad data at new energy stations fall into
two main categories: model-dependent repair methods and data-driven repair methods.
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Model-dependent repair methods require knowledge of the system’s topology and detailed
parameters, which repairs the bad data through state estimation models. Reference [7]
proposed a synchronous phasor data conditioning algorithm in which Kalman filtering
and smoothing techniques for synchronous phasor data conditioning preprocessed the
data before they reached the linear estimator to ensure the quality of the data obtained
from phasor measurement units (PMUs), achieving the accurate restoration of PMU data.
Reference [8] proposed a state estimator (PSE) method based on phasor measurement,
which used an augmented state vector approach to identify and correct angle deviations and
current scaling errors in phasor data, thereby improving data consistency and facilitating
the repair of PMU data.

Although the aforementioned model-based methods for repairing bad data can effec-
tively address anomalies, it is important to note their high dependency on models, requiring
detailed system topology and parameter information. However, acquiring the accurate
topology and detailed parameters of actual power systems is often challenging. In contrast,
data-driven strategies for bad data repair can establish mappings between normal data
sets and target data by directly learning intrinsic data relationships using data mining and
machine learning methods, thereby accomplishing data repair. Consequently, data-driven
repair methods have gained widespread attention in recent years [9–12]. Reference [13]
proposed a data repair model, which is constructed with a generative adversarial network
(GAN), which combines a temporal convolutional network (TCN) and a bi-directional long
short-term memory network (BiLSTM) to repair the AIS data. Reference [14] proposed a
bidirectional recurrent imputation time series (BRITS) method, leveraging bi-directional
recurrent neural networks to capture the dynamic properties of time series data from both
directions and provide accurate predictions for missing values. Reference [15] proposed a
method using artificial neural networks to estimate missing synchrophasor data, predicting
missing data values from existing complete data sets. Reference [16] proposed a method
using an improved generative adversarial network, which can learn the distribution of mea-
surement data in the power system and realize the reconstruction of missing measurement
data with higher accuracy.

Data-driven repair methods, not reliant on detailed system models, offer significant
flexibility. For the above-mentioned data-driven methods, they mostly rely on a single
model. However, this dependence on a single training method significantly reduces the
model’s generalization ability. Recently, ensemble learning has become a popular machine
learning paradigm. Its core idea is to introduce diversity into models and appropriate
combination strategies to overcome the limitations of single models, thereby enhancing
overall repair accuracy [17]. Reference [18] proposed a multi-scale ensemble neural network
method that utilizes long short-term memory (LSTM), gated recurrent units (GRU), and
temporal convolutional networks (TCN) as the basic models. These networks are assembled
on both single-model and multi-model scales to improve prediction accuracy. In dealing
with large, variable, and nonlinear data sets, the heterogeneous base learning model can
comprehensively capture the potential properties and associations of data with different
distribution characteristics, and improve the overall performance of the model.

Therefore, addressing the issues of poor generalization and overfitting in single models,
and considering the nonlinear time-series characteristics of new energy station data, in
order to realize the reliable repair of abnormal data of new energy stations, a deep learning
method combining modified LSTM with WGAN-GP is proposed in this paper. This
method employs a parallel ensemble learning framework that integrates both modified
LSTM and WGAN-GP models. Initially, the modified LSTM model is used to capture the
temporal correlation features in the data of new energy stations, ensuring accurate fitting
and prediction of time trends and patterns in the data. Simultaneously, the WGAN-GP
model learns the distribution characteristics of the new energy station data, generating
data similar to the actual data distribution, thereby enhancing robustness in real-world
applications. Afterwards, by parallelly integrating the modified LSTM and WGAN-GP
models, the strengths of both models are deeply fused to enhance the model’s generalization
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capabilities. Finally, simulation tests on the actual operational dataset of a new provincial
energy station demonstrate that, compared to single data models, the proposed multi-
model parallel ensemble method exhibits stronger generalization abilities. It can achieve
the high-precision repair of bad data under various conditions, thus improving the data
quality level of new energy stations.

The rest of the paper is organized as follows. Section 2 introduces the two selected
models, the modified LSTM and the WGAN-GP. Section 3 is dedicated to presenting the
multi-model parallel ensemble model. Section 4 provides a detailed discussion of the
simulation results. Finally, Section 5 concludes by summarizing the article and discussing
the future scope for the proposed method.

2. Multi-Model Parallel Integrated Data Repair Method

In this section, a novel approach by combining the modified long short-term memory
(LSTM) neural network and Wasserstein generative adversarial network with gradient
penalty (WGAN-GP) is developed and will be introduced in detail.

2.1. Modified LSTM Algorithm
2.1.1. Traditional LSTM Algorithm

Long short-term memory is a special type of recurrent neural network (RNN) first
proposed in [19], primarily designed to deal with the issues of gradient disappearance and
gradient explosion during long sequence training. Different from a traditional RNN, LSTM
introduces three gate mechanisms: the forget gate, the input gate, and the output gate, along
with a cell state. These gate mechanisms, implemented through neural networks, enable
effective memory retention and selective forgetting of information within measurement
data, thereby capturing temporal dependencies among the measured data.

In general, LSTM can be represented in the following form:
ft = σ(w f [xt, ht−1] + b f )
it = σ(wi[xt, ht−1] + bi)
ot = σ(wo[xt, ht−1] + bo)
ct = ( ft ⊗ ct−1)⊕ (it ⊗ tanh(wc[xt, ht−1] + bc))
ht = ot ⊗ tanh(ct)

(1)

where ft is the forgetting door; it indicates an input gate; ot denotes an output gate; ct
represents a cell state; ht is hidden state; xt is the input vector at time t; t is a time step; b f , bi,
bo, bc are the deviation of the corresponding gate control unit; w f , wi, wo, wc are the weight
vector of the forget gate ft, input gate it, output gate ot, and the cell state ct, respectively;
σ(·) and tanh(·) are the Sigmoid activation function and hyperbolic tangent function,
respectively; ⊗ is the matrix multiplication operation; ⊕ is the matrix addition operation.

As shown in Figure 1, LSTM consists of input gates, control gates, forget gates, and
output gates. Among these, the forget gate is responsible for filtering and discarding non-
critical information from the cell state, allowing LSTM to disregard irrelevant information
and retain valuable information for subsequent computations. The input gate regulates
the input of new data information, enabling LSTM to update its internal cell state when
processing new data. The output gate is in charge of transmitting information from the cell
state to the next layer or the next time step, enabling LSTM to selectively output information
that is useful for the current task. The cell state is the core of LSTM, spanning the entire
time sequence and carrying essential information. The cell state can be updated through
a combination of operations involving the forget gate and the input gate, ensuring the
transmission of information in long sequences [19,20].

Despite its widespread application and robustness in handling sequential data, the
traditional long short-term memory (LSTM) model is not without its limitations. One of
the primary challenges associated with LSTM is its susceptibility to overfitting, especially
in scenarios involving complex data sets with numerous parameters. Additionally, LSTM
often faces difficulties in efficiently processing longer sequences, leading to a degradation in
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performance due to the vanishing gradient problem. In response to these shortcomings, our
research focuses on further enhancements to the LSTM architecture. These improvements
aim to address these specific limitations by optimizing the model’s architecture and training
process. The following sections detail the methodologies employed to refine the LSTM
model, encompassing optimization algorithms and regularization techniques.
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Figure 1. Schematic diagram of LSTM.

2.1.2. Adam Optimization Algorithm

Adam optimization algorithm is a learning rate adaptive optimization algorithm [21].
Adam algorithm can be understood as a learning rate adaptive optimizer with momentum
method. It is an extension of stochastic gradient descent and can replace the classical
stochastic gradient descent method to update network weights more effectively. It estimates
the gradient first and second moments of each parameter according to the objective function,
calculated using the exponential moving average. In order to solve the problem of high
noise and gradient dilution during parameter space iteration, the feature scaling of the
gradient of each parameter is kept constant. The formula is derived as follows:

θ
(k+1)
i = θ

(k)
i − g(k)i

g(k)i =
ηv̂(k)i√
ŝ(k)i +ε

(2)


v̂(k)i =

v(k)i
1−βk

1

ŝ(k)i =
s(k)i

1−βk
2

(3)

where k is the number of iterations; θ
(k)
i represents the ith characteristic parameter in the

iterative process; g(k)i denotes the descending distance value along the gradient direction;

s(k)i indicates the exponential decay average of the historical gradient; v(k)i is the exponential

decay average of the quadratic historical gradient; ŝ(k)i and v̂(k)i are the deviation correction

values of s(k)i and v(k)i , respectively. Hyperparameter η = 0.001; ε is manually entered
parameters; Hyperparameter β1 = 0.9; β2 = 0.999.

Adam optimization algorithm in LSTM has significant advantages over the traditional
stochastic gradient descent (SGD). With Adam, the learning rate can be adjusted more easily,
helping to overcome the problem of disappearing or exploding gradients. The adaptive



Electronics 2024, 13, 870 5 of 18

performance of Adam makes it more suitable to deal with different gradient characteristics
of different parameters, thus, improving the training efficiency and convergence speed.

2.1.3. Dropout Regularization

Dropout regularization is a technique commonly used in neural network training to
prevent models from overfitting [22]. The core idea of dropout is to randomly turn off
a subset of neurons in the network during each training iteration, which can reduce the
complex co-adaptive relationships between neurons. Dropout regularization is introduced
into the structure of the long short-term memory network (LSTM) [23] to enhance the
generalization ability of the model. While LSTMs are more effective than traditional RNN
at capturing long-term dependencies, they still run the risk of overfitting. By adding
dropout regularization to the LSTM structure, a subset of connections or neurons in the
network can be randomly dropped during training. This method can reduce the complex
co-adaptive relationship between LSTM units and reduce the overfitting of the training
data. Slightly different from standard dropout, when dropout is applied in LSTM, it is
usually applied with different dropout proportions in different parts of the LSTM unit (such
as input gate, forget gate, output gate) or between different layers to avoid excessive impact
on the time dependence of LSTM. The modified LSTM model with dropout is shown in
Figure 2.
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2.2. WGAN-GP Algorithm

Generative adversarial network (GAN) is a type of deep learning model [24]. This
model is capable of generating data with similar characteristics to the training data. GAN
consists of two opposing networks: a generator and a discriminator. The generator’s task is
to produce data samples resembling the distribution of real data, while the discriminator’s
task is to distinguish between generated data and real data. These two networks learn
from each other in an adversarial environment. The generator continuously improves its
ability to generate realistic data, while the discriminator aims to enhance its capability to
distinguish between real and generated data. As the training progresses, the generator
eventually becomes proficient at creating samples that exhibit characteristics similar to the
real data.
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The objective function of the original generated adversarial network is as follows:

L(G, D) = min
G

max
D

{Ex∼pr(x)[lg(D(x))]

+Ex∼pg(z) [lg(1 − D(G(z))]}
(4)

where L(·) is the objective function of generator and discriminator; E(·) denotes the expec-
tation function; G(·) represents the generator functions; D(·) is the discriminator function;
Pr(·) indicates the distribution of the objective function x; Pg(·) is the noise data distribution;
z is the input noise data vector.

The traditional GAN model often exhibits a certain instability during training, which
can lead to the problem of mode collapse. This issue refers to the generator’s tendency to
produce highly similar samples, resulting in a lack of diversity in the generated samples [25].
In such cases, the generator struggles to capture the diversity present in the training data,
thus failing to effectively generate new and diverse data samples. To address this problem,
one approach is to introduce the Wasserstein distance to measure the discrepancy between
generated data and real data. The definition of the Wasserstein distance is as follows:

W(Pr, Pg) =
1
K

sup
∥ f ∥≤K

( E
x∼Pr(x)

[ f (x)]− E
x̃∼Pg(x̃)

[ f (x̃)]) (5)

where K represents the Lipschitz constant; sup(·) is the upper bound; x is the raw data; x̃ is
the generated data.

During the actual operation of WGAN, to ensure training stability, it is necessary to
perform weight clipping on the discriminator. However, this weight clipping approach
might lead to issues such as exploding gradients and non-convergence. To address this
problem, based on the WGAN, a gradient penalty is introduced to regularize the gradients
of the discriminator. The gradient penalty term helps ensure smoothness during the
training process and encourages the generator to produce more diverse and higher-quality
samples. The loss function of the WGAN-GP model can be represented as follows:

L(G, D) = min
G

max
D

{
E

x∼Pr(x)
[D(x)]− E

z∼Pg(z)
[D(G(z))]

+λ E
x̂∼Px̂(x̂)

[∥∇x̂D(x̂)∥p − 1]2
(6)

where λ represents the gradient penalty coefficient; x̂ = αx + (1 − α)G(z) indicates a
random interpolation between the real data and the generated data; α is the number
randomly sampled from the uniform distribution [0, 1]; Px̂(·) is an interpolation distribution
formed between the real data distribution and the generated data distribution. ∥·∥p is p
norm; ∇ is the gradient operator.

By enhancing the discriminator, WGAN-GP not only overcomes the issue of mode
collapse but also improves the stability of training in GANs. This enhancement enables the
generator to produce more diverse and higher-quality data samples. Figure 3 depicts the
architecture of the WGAN-GP network.

2.3. WGAN-GP Algorithm

Ensemble learning is a machine learning method that leverages the combination of
multiple simple models to obtain a composite model with improved performance, thereby
enhancing the accuracy and generalization capabilities of the model [26]. The primary
strategies of ensemble learning involve generating diversity, model training, and model
combination. Common ensemble learning techniques include bagging, boosting, and stack-
ing. Ensemble learning not only enhances model performance but also allows researchers
to design combination approaches tailored to specific machine learning problems to obtain
more robust solutions.
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As an extension of ensemble learning, parallel ensemble learning can enhance the
efficiency of ensemble learning through parallel computing [27]. In the conventional
ensemble learning, the training and prediction of each base model are executed sequentially.
However, in the parallel ensemble learning, multiple base models can be trained and
make predictions simultaneously on different computing resources. Parallel ensemble
learning can significantly reduce the time required for model training and prediction,
thereby enhancing the model’s performance. This is particularly significant for handling
large-scale data sets and achieving real-time predictions.

This paper adopts the bootstrap aggregating (Bagging) algorithm from parallel ensem-
ble learning to integrate LSTM and WGAN-GP. Bagging is a commonly used basic strategy
in ensemble learning [28], and its fundamental principle is depicted in Figure 4. The core
idea of the Bagging algorithm involves multiple rounds of resampling the original dataset
to generate several diverse training subsets. These subsets are then used to train multiple
models. Finally, the predictions of these models are integrated through voting or averaging
to produce the ultimate prediction.

Generally, for the regression problem, Bagging’s aggregated results often employ
either the averaging method or the weighted averaging method to combine the predictions
from all base models. Specifically, the averaging method accumulates the predictions of
each base model and then divides the sum by the number of base learners to obtain the
final prediction value. On the other hand, the weighted averaging method assigns different
weights to each base model based on its performance. Then, it calculates the weighted
average as the final prediction result [29].
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To ensure the quality of the repair while considering the differences and effective-
ness of each base learning model, based on the theory of minimizing loss [30], this paper
proposes a multi-model prediction result fusion strategy based on an improved weighted
averaging method. This method allows multiple models to contribute predictions pro-
portionally based on their trustworthiness or estimated performance, thereby enhancing
the performance and stability of the ensemble model and minimizing prediction errors.
By analyzing the loss value of each model, weights can be assigned to each model and
integrated with the predictions of the base models, ensuring the accuracy of data repair.

Therefore, the weight calculation formulas for the predictions from the modified LSTM
algorithm and the WGAN-GP algorithm are as follows:

α =
loss_wgan

loss_lstm + loss_wgan
(7)

β =
loss_lstm

loss_lstm + loss_wgan
(8)

Ypre = ω1Ypre_lstm + ω2Ypre_wgan (9)

where ω1 denotes the weight of the predicted value of modified LSTM model; ω2 repre-
sents the weight of the predicted value of WGAN-GP model; loss_lstm indicates the loss
function value of the modified LSTM training model; loss_wgan is the loss function value
of the WGAN-GP training model; Ypre is the result value of multi-model fusion prediction;
Ypre_lstm is the predicted value of the modified LSTM model; Ypre_wgan is the predicted value
of the WGAN-GP model.

3. Bad Data Repair Method for New Energy Station Based on Multi-Model
Parallel Ensemble

In order to overcome the potential issues such as overfitting associated with existing
single models, in this paper, by combining the modified LSTM model and WGAN-GP
model, a novel multi-model parallel ensemble method for the repair of bad data of new
energy stations is developed. The proposed method can merge the strengths of multiple
models to enhance the repairing performance and robustness. By training multiple models
in parallel on different data or feature subsets, it can effectively reduce training time and
increase the diversity of models, thereby reducing the risk of overfitting and having better
model interpretability.

Specifically, the application of a multi-model parallel ensemble data repair method for
the correction process of adverse data in new energy station is illustrated in Figure 5. It
mainly consists of two stages: (1) offline training; (2) online repair.

(1) Offline Training

The offline training stage is the key step in building the integrated model, which
involves the training and weight determination of the model.
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Step 1: Model training. First, the current and voltage historical data of the new energy
station are normalized and divided into a training set and a test set, in which the ratio of
training set and test set is usually 4:1. Then, self-sampling is utilized to randomly extract
multiple subsets from the training data, each containing 70% of the original training data
set. Finally, the improved LSTM and WGAN-GP models are trained with each data subset
to determine their respective model parameters and structures.

Step 2: Weight calculation. Since the improved LSTM and WGAN-GP each represent
different repair strategies, it is necessary to clarify the weight allocation between them.
First, loss measurement is used to evaluate the error between the model repair results and
the real data, which provides a quantitative evaluation basis for the following steps. Then,
the loss values of the improved LSTM and WGAN-GP models in the process of data repair
are calculated individually to evaluate the repair efficiency of each model. A lower loss
value indicates that the model has a better repair effect, while a higher loss value reflects
that the model has a poor repair effect. Finally, the weights of the improved LSTM and
WGAN-GP models are determined according to Formulas (7)–(9).

Step 3: Integrated model building. Following the completion of preliminary data
preparation, training of individual models, and weight allocation, this stage employs the
architecture of parallel ensemble learning. The previously trained, improved LSTM and
WGAN-GP models are fused to create an efficient integrated learning model. Initially, the
outputs of the two models are fed into a specifically designed fully connected layer, tasked
with integrating the outputs of both models to generate a comprehensive repair result.
Subsequently, within the fully connected layer, the outputs of the improved LSTM and
WGAN-GP models are weighted and fused using the weight strategy determined in Step 2.
Finally, for this parallel ensemble learning model, further training and optimization are
conducted by adjusting the model’s parameters and structure to ensure its effectiveness in
handling real-world data repair tasks.

(2) Online Repair

The online stage is the practical application stage, which mainly repairs the real-time
measurement data.

Step 1: Real measurement data input. At this stage, the three sets of measured current
and voltage data of the new energy station are preprocessed to ensure that the data format
is consistent with the model training. Then, the measured data after processing are input
into the trained model.

Step 2: Repair bad data online. First, the model loads the parameters and structures
learned during the offline training phase. Then, using the knowledge of offline training,
the model can repair the actual measurement data.

In summary, establishing an effective bad data repair system for new energy stations
requires two key phases: offline training and online repair. The offline phase focuses on
training the repair models and determining the weights between different models to ensure
the extraction of time-series data characteristics and the generation of high-quality data.
The online phase then utilizes the previously trained models to repair bad data.

Remark 1. In this paper, an innovative approach is developed for the bad data repair of new energy
stations in power systems, leveraging a novel integration of modified LSTM and WGAN-GP models
in a parallel framework. Compared with a single model, the resulting model significantly improves
the robustness and generalization ability of the model, and the accuracy and efficiency of data repair
are also significantly improved.
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4. Case Analysis

In this paper, a PC configured with AMD Ryzen 7 5800 H 3.20 GHz CPU, 16 GB
RAM and a Windows 10 64-bit operating system is used to compile Python programs
with Pytorch as the deep learning framework and to build an improved LSTM model and
WGAN-GP model. The performance of the proposed algorithm is verified by actual new
energy station data.

4.1. Experimental Data Set

In practical applications, the true value of abnormal or corrupted data is often difficult
to obtain. This means that the accuracy of data repair cannot be evaluated by directly
comparing the true value, so data repair becomes a typical unsupervised learning prob-
lem [31]. To more intuitively assess and understand the effects of data repair, a strategy can
be employed: simulate the generation of data sets containing bad data from a complete
and reliable data set. Then, the proposed method is used to repair these bad data, and the
repaired data are compared with the original real data, so as to evaluate the accuracy of
the repair effect. In addition, because the data are often affected by random factors and
uncertainties, it is difficult to predict the location and amount of bad data. In order to
simulate this real scenario and ensure the quantity of bad data in each experiment, this
study uses the mask matrix strategy to ensure the randomness and authenticity of the
generated bad data, so as to be closer to the abnormal data situation in actual operation.

In order to verify the effectiveness of the proposed method, an actual wind farm
in a province was selected as the research object, and the real-time current and voltage
measurement data of three PMUs were randomly selected as the test set. Each group
contained 200 data points, and the overall data dimension was 200 × 6. In order to ensure
the generalization ability of the model, the complete data set is divided into the training
set and the test set in a 4:1 ratio. In the test set, some measurement data in the data set are
randomly added with mixed noise to simulate the bad data that may appear in the real
scene. In general, various bad data conditions are characterized by increasing or decreasing
the normal voltage and current measurement values by 5–10%.
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Before training the model, it is necessary to preprocess the historical measurement
data to ensure that different data levels or ranges will not adversely affect the training
of the model and capture the real characteristics of the data. For data normalization, the
calculation formula is as follows

xNor =
x − min(x)

max(x)− min(x)
(10)

where x is the data that need to be normalized; xNor is the normalized value; min(x) is the
minimum value of the feature x; max(x) is the minimum value of the feature x.

4.2. Experiment and Result Analysis
4.2.1. Data Repair Evaluation Index

In order to quantitatively test the data repair effect of the proposed model, root-mean-
square error (RMSE) and mean absolute percentage error (MAPE) were selected in this
paper. MAPE is used as an evaluation index of the data repair effect [31]. Among them,
RMSE can measure the deviation between the predicted value and the actual value, while
MAPE gives the relative relationship between the predicted error and the actual value,
which can more intuitively understand the accuracy of the repair effect.

The performance evaluation indexes are defined as follows:

µRMSE =

√
1
n

n

∑
i=1

(yreal
i − ypre

i )
2

(11)

µMAPE =
1
n

n

∑
i=1

∣∣∣∣∣yreal
i − ypre

i

yreal
i

∣∣∣∣∣ (12)

where n is the number of bad data; yreal
i is the actual quantity measurement; ypre

i is the
repair value.

4.2.2. Case Setting

In order to accurately evaluate the repair effect of the bad data of the proposed method,
two comparative experimental scenarios were set up for verification based on the selected
experimental data set.

Scenario 1. Generate bad data randomly in the original data set, compare the data repair effect of
LSTM and the proposed method, and evaluate the bad data repair performance of the proposed method.

Scenario 2. Under the condition of different proportions of bad data, the method proposed in this
paper is comprehensively compared with several unsupervised data repair methods.

4.3. Random Bad Data Situation

In order to intuitively demonstrate the superiority in repairing bad data of the parallel
integration strategy proposed in this paper over a single model, the single model LSTM
and the proposed model are selected in this scenario for comparative experiments. The
experiment randomly generates 5% bad data on the original data set, and repaired bad data
on the same data set, aiming to reveal the improvement and advantages of the proposed
method compared with a single model in processing the same data.

The LSTM method and the method proposed in this paper were used to repair the
bad data. The test results are shown in Figure 6. As can be seen from the results shown in
Figure 6, the LSTM method has a certain repair effect on a single item of bad data. However,
in the face of continuous bad data, the LSTM method has a poor repair performance,
and the output is continuous and unchanged data. This is because LSTM over-relies on
historical data to make predictions in the face of continuous bad data, fails to effectively
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capture the characteristics of the current continuous bad data, and so overfitting occurs,
resulting in continuous and identical data.
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In addition, Figure 6 also shows the repair results of bad data using the method
proposed in this paper. It can be seen that when the same continuous bad data are repaired
using the proposed method in this paper, the repair result is an item of data with a
similar distribution to the original data, and the overfitting phenomenon is effectively
alleviated. These results show that the proposed method can better capture data features by
integrating the prediction of multiple models, reducing the over-dependence on historical
data, avoiding the overfitting problem of a single model, and realizing the high-precision
repair of continuous bad data.

In order to evaluate the performance of the proposed method more comprehensively,
Table 1 gives the calculation results of the root-mean-square error and mean absolute
percentage error of LSTM and the proposed method in this paper. It can be seen from the
results in Table 1 that the error of the repair method proposed in this paper is smaller than
that of the single LSTM model. This indicates that the proposed method is more accurate
and effective in repairing bad data.

Table 1. Case system parameters setting.

Method RMSE MAPE

LSTM 0.1859 0.0440%
Proposed method 0.0548 0.0138%
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In summary, the method proposed in this paper significantly improves the repair
quality of bad data by integrating multiple models. Compared with a single LSTM model,
it can effectively alleviate the overfitting phenomenon and show higher accuracy and effect.

4.4. Different Proportions of Bad Data

In order to further systematically and comprehensively verify the performance of
the method proposed in this study, in this scenario, three unsupervised bad data repair
methods are selected: mean value repair method, KNN repair method, and GAN repair
method, and comparative tests are conducted. The experiment randomly generated eight
different percentages of bad data on the original data set: 20%, 30%, 40%, 50%, 60%, 70%,
and 80%. In each ratio of bad data, four repair methods were tested and compared in detail.

Due to the page limit, this article only displays a comparison of the repair effects of
current values under 20% and 80% proportions of bad data. Figures 7 and 8 show the
repair results obtained by the mean value method, KNN method, GAN method, and the
proposed method under the different proportions of bad data. Clearly, from these figures,
it can be observed that under all proportion conditions, the repair effect of the mean value
method is significantly inferior to the other three algorithms.
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Under low proportions of bad data conditions, the repair effects of KNN, GAN, and the
method proposed in this study are similar. However, with the increase in the proportion of
bad data, the repair effects of KNN and GAN gradually deteriorate. In contrast, the method
proposed in this paper still has an excellent repair effect. In order to more thoroughly
compare the efficiency of these four algorithms in handling different proportions of bad
data, this article also provides a comparative analysis of the root-mean-square error and
mean absolute percentage error for these methods.

Figure 9 shows the root-mean-square and average percentage errors of each repair
method with 20% to 80% bad data. It can be seen that the mean method consistently
maintains high RMSE and MAPE values, which indicates that the method is less capable of
repairing in the face of bad data. In contrast, the KNN repair method, GAN repair method,
and method proposed in this paper can obtain smaller RMSE values and MAPE values
when the proportion of bad data is small (<50%), and the error index of the proposed
method is significantly smaller than that of other methods. However, in the case of a large
proportion of bad data (>50%), as the proportion of bad data increases, the bad data repair
effect of each model decreases; however, it can be seen that the performance of the proposed
method is still far superior to other methods.
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Specifically, from the comparison results of error indicators of each test method under
different proportions of bad data in Tables 2 and 3, it can be seen that with a data missing
rate of 20%, the data repair accuracy of the proposed method is improved by 36.57%
compared with KNN and 28.61% compared with GAN. With a data missing rate of 50%,
the proposed method improves the data repair accuracy by 33.71% compared with KNN
and 27.63% compared with GAN. Even in the extreme case where the proportion of bad
data is as high as 80%, the data repair accuracy of the method proposed in this paper still
remains at a high level, with an MAPE of 0.3801%.

Table 2. Root-mean-square error of each method under different proportions of bad data.

Loss Rate/%
RMSE

Mean Value Method LSTM GAN Proposed Method

20 0.7742 0.2283 0.2201 0.1621
30 0.7746 0.2516 0.2346 0.1897
40 0.8159 0.2698 0.2512 0.2017
50 0.8363 0.3143 0.2796 0.2162
60 0.8524 0.3496 0.3127 0.2355
70 0.8615 0.4403 0.3528 0.2724
80 0.8862 0.6124 0.5003 0.3564
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Table 3. Mean absolute percentage error of each method with different proportions of bad data.

Loss Rate/%
MAPE (%)

Mean Value Method KNN GAN Proposed Method

20 0.8435 0.2098 0.1856 0.1325
30 0.8569 0.2517 0.2291 0.1693
40 0.8647 0.2796 0.2667 0.1943
50 0.8762 0.3295 0.3018 0.2184
60 0.9104 0.4121 0.3612 0.2402
70 0.9235 0.4812 0.4454 0.2979
80 0.9331 0.6987 0.5842 0.3801

The above experimental results show that compared with the traditional mean repair
method and KNN and GAN single model repair method, the multi-model integration-
based bad data repair method proposed in this paper can obtain better bad data repair
accuracy and has stronger generalization ability. This is because the proposed method can
more comprehensively capture the different distribution characteristics of the new energy
station measurement data and mine the potential characteristics and correlation of the data,
so that it can better adapt to and deal with bad data, improve the overall performance of
the model, and thus provide more accurate repair results under various bad data scenarios.

5. Conclusions

To deal with the issue of low accuracy and poor performance of bad data repair in
new energy stations, this paper proposes a novel deep learning approach by combining
modified LSTM and WGAN-GP models. Based on the experimental results, the following
conclusions can be drawn.

(1) The adoption of the modified LSTM model has effectively mitigated the problems
of gradient vanishing or explosion, which is a notable progression in neural network
training. This modification can significantly reduce the model’s tendency to overfitting of
training data, thereby improving both the efficiency of the training and the generalization
ability of the model.

(2) This ensemble approach has not only facilitated effective feature extraction from
normal measurement data, but has also significantly improved the overall performance of
the system. By leveraging the strengths of both models, our approach can achieve a more
nuanced and comprehensive analysis of the data, resulting in more accurate and reliable
repair data results.

(3) The multi-model parallel ensemble method proposed in this paper has significant
advantages over a single model, which can achieve the high-precision repair of bad data
under various working conditions and has stronger generalization ability.

Since the approach proposed in this paper for repairing bad data from new energy
field stations based on the parallel ensemble of multiple models shows superiority, the con-
clusions drawn from this study can guide more complex models and integration strategies.
Therefore, further research should focus on how to optimize this parallel integration strat-
egy. This may include adjusting the weight allocation between different models, exploring
the integration effects of different types of neural network models such as convolutional
neural networks (CNNs) or recurrent neural networks (RNNs), as well as improving the
existing models to better handle specific types of bad data.
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