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Abstract: High-altitude work poses significant safety risks, and wearing safety belts is crucial to
prevent falls and ensure worker safety. However, manual monitoring of safety belt usage is time
consuming and prone to errors. In this paper, we propose an improved high-altitude safety belt
detection algorithm based on the YOLOv8 model to address these challenges. Our paper introduces
several improvements to enhance its performance in detecting safety belts. First, to enhance the
feature extraction capability, we introduce a BiFormer attention mechanism. Moreover, we used
a lightweight upsampling operator instead of the original upsampling layer to better preserve
and recover detailed information without adding an excessive computational burden. Meanwhile,
Slim-neck was introduced into the neck layer. Additionally, extra auxiliary training heads were
incorporated into the head layer to enhance the detection capability. Lastly, to optimize the prediction
of bounding box position and size, we replaced the original loss function with MPDIOU. We evaluated
our algorithm using a dataset collected from high-altitude work scenarios and demonstrated its
effectiveness in detecting safety belts with high accuracy. Compared to the original YOLOv8 model,
the improved model achieves P (precision), R (recall), and mAP (mean average precision) values of
98%, 91.4%, and 97.3%, respectively. These values represent an improvement of 5.1%, 0.5%, and 1.2%,
respectively, compared to the original model. The proposed algorithm has the potential to improve
workplace safety and reduce the risk of accidents in high-altitude work environments.

Keywords: high-altitude work; safety belt detection; yolov8

1. Introduction

The rapid advancement in artificial intelligence and big data technology has led to the
adoption of intelligent and digital approaches in numerous industries. In high-risk work
environments, it is paramount to enhance safety behaviors and supervision systems to
prevent accidents and personnel casualties. In real-life scenarios, electricians face numerous
unpredictable factors during high-altitude work, such as the risks of electric shock and
falling from heights. It is noteworthy to mention that falls from heights are a major
concern in electrical work. According to official statistics from China’s National Energy
Administration, there has been an increase in the number of electric power accidents in
recent years, with high-altitude fall accidents accounting for approximately 26% of these
incidents. The working environment at electric power operation sites is characterized by
complexity and variability, which significantly impacts the safety of electricians.

Investigations have revealed that the primary cause of personal accidents at high-
altitude electrical work sites is inadequate safety measures and behavioral standards among
electricians, coupled with a lack of strict adherence to operational procedures and systems
for on-site supervision [1]. As a result, many power companies have implemented a
requirement for on-site guardians for power staff working at high-altitude power operation
sites. This paper aims to enhance the target detection algorithm used for monitoring the
safety behavior of staff in modern construction sites, as well as electric power production
and maintenance sites. The objective is to achieve accurate and real-time detection and
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identification of the field environment of electricians in real-life scenarios. Once abnormal
behavior is detected, an alert will be promptly issued to notify and remind the staff.

2. Related Work

Object detection is one of the fundamental challenges in the domain of computer
vision. Its main task is to identify all the targets of interest in the image and to determine
their categories and locations [2]. Object detection has always been a challenging problem
due to the different types of objects with different appearances, postures, and degrees of
occlusion, as well as light-intensity interference. Object detection algorithms based on
deep learning can be roughly divided into one-stage and two-stage algorithms [3,4]. The
fundamental distinction stems from the disparities in the candidate regions; the two-stage
algorithm requires the generation of region proposals before predicting the classification
and location of the target object using convolutional neural networks. The distinguishing
feature of the two-stage algorithms is their comparatively slower processing speed, despite
their high level of accuracy. Examples of such algorithms include the RCNN series (R-
CNN [5], Fast R-CNN [6], Faster R-CNN [7], and Mask R-CNN [8]). While the one-stage
algorithm directly extracts features in the network to predict the classification and location
of the target object, this type of algorithm is characterized by its speed, but its accuracy
is not as high as that of a two-stage algorithm [9]. Typical examples of the one-stage
algorithm include the SSD [10] series and the YOLO [11–18] series. While the SSD series has
relatively few applications, the algorithms of the YOLO series have developed rapidly. The
original YOLO object detector was first released in 2016 by Joseph Redmon, Ali Farhadi,
and Santosh Divvaia [11]. At the time of its release, this architecture was significantly faster
than other object detectors, making it the state-of-the-art technology for real-time computer
vision applications. It remains a popular choice for real-time object detection today, with
an ongoing trend of continuous updates and iterations in the future. In July 2022, YOLOv7
has been released [17], followed by YOLOv8 in January 2023 [18]. In less than eight years
since the initial release of YOLOv1, many other versions of the YOLO algorithm have been
developed during this period [19].

The focus of this study is safe belt detection for high-altitude work. Currently, research
on object detection in high-altitude work mainly focuses on the recognition and detection of
safety belts and helmets. For example, Feng Zhizhen and colleagues used a two-stage Mask
R-CNN-based approach for high-altitude operation safety belt detection [20], whereas
Zhang Meng and colleagues employed an improved one-stage YOLOv4 object detection al-
gorithm [21]. In addition, to address the issues of low timeliness and lack of scene specificity
in existing safety-belt-wearing detection methods, Cao Jie and colleagues introduced the
YOLOX target detection model [22], which enables real-time detection with high accuracy.
These studies suggest that advancements have been made in target detection technology
for high-altitude power safety operations. Although there are some existing studies on
high-altitude safety operations, there is still room for improvement.

3. Methods
3.1. YOLOv8 Model

As one of the most representative examples of one-stage target detection algorithms,
the YOLOv8 algorithm employs a deep neural network to recognize and locate objects. It
is known for its speed and can be effectively utilized in real-time systems. The YOLOv8
network architecture is depicted in Figure 1.

The YOLOv8 algorithm is primarily composed of three components: Backbone, Neck,
and Head.

• Backbone: The Backbone layer is a network responsible for feature extraction. Its
main role is to extract relevant information from images, which can then be utilized by
subsequent networks or modules for further processing and analysis.

• Neck: The Neck layer is positioned between the Backbone and the Head to optimize
the utilization of features extracted by the backbone. It plays a crucial role in feature
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fusion, enabling the Neck layer to effectively combine and integrate the extracted
features.

• Head: The Head layer utilizes the previously extracted features to perform recognition.
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3.2. Improvement Measures

The challenges in detecting safety belts during high-altitude operations are as follows:

• Occlusion by Other Objects: During high-altitude electrical work, there can be other
objects that occlude the visibility of safety belts worn by electricians.

• Misidentification of Cables: Aerial cables and similar structures in high-altitude
electrical work can be mistakenly identified as safety belts, leading to inaccurate
detection results.

• Variations in Lighting Conditions and Electrician Movements: The dynamic changes in
lighting conditions and the movement of electricians during high-altitude operations
introduce complexities in accurately detecting safety belts.

These challenges can result in false positives or false negatives, ultimately affecting
the overall detection performance. To overcome these obstacles, this paper proposes an
improved YOLOv8 model that effectively addresses these challenges.

The primary focus is to introduce improvements in the Backbone, Neck, and Head
layers based on the YOLOv8 architecture. The improvement strategy involves the following
key points:

• Firstly, an attention mechanism is integrated into the Backbone layer to enhance the
capability of feature extraction. Through multiple experimental trials, attention mech-
anisms, known as Biformer, are introduced at various locations within the Backbone
layer. After careful evaluation, it is determined that adding Biformer attention at
the end of the Backbone layer yields the most favorable results. This choice is made
considering that incorporating attention mechanisms in the shallower layers of the
Backbone layer would lead to increased computational complexity.

• Secondly, in the Neck layer, the original upsampling operations are completely re-
placed with the CARAFE lightweight upsampling operator. Additionally, a lightweight
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network called Slim-neck is employed as the neck structure to maintain the network’s
performance while reducing the model complexity and making it more lightweight.
The C2f module is replaced with the VoVGSCSP module, and all 3 × 3 convolutions
are substituted with GSConv.

• Thirdly, additional auxiliary heads are incorporated into the Head layer to facilitate
training and enable the intermediate layers of the network to learn more information.

• Lastly, the original loss function is replaced with the MPDIoU loss function, which
optimizes the regression of bounding boxes. This replacement aims to improve the
accuracy and precision of object detection.

The improved network model structure is shown in Figure 2 as follows:
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3.2.1. Biformer Attention

For small target detection, if sufficient context can be used as additional information
to help detect small targets, the detection efficiency will be higher because computers do
not directly identify objects visually like human eyes; instead, they abstract the real world
into an information world and then digitize the information world into a computer world.
The objects in target detection exist digitally in the computer; each pixel in a picture is
composed of numbers in the range of 0–255 in the computer, and a three-channel picture
is composed of three digital matrices. However, no pixel in the image is isolated; a pixel
must have a certain connection with its surrounding pixels, and a large number of pixels
are mutually connected to produce various objects in the image. Therefore, to determine
which category a pixel at a certain position in the whole picture belongs to, not only the
grayscale value of the pixel should be considered but the adjacent pixels should also be
fully considered. Attention mechanisms are powerful tools for capturing long-distance
contextual dependencies, but traditional attention mechanisms often cause two common
problems: high memory consumption and high computational cost.
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To address the aforementioned issues, Lei Zhu et al. [23] proposed a novel dynamic
sparse attention: the Bi-Level Routing Attention, whose workflow is shown in Figure 3a.
The BiFormer block is designed based on the Bi-Level Routing Attention, as shown in
Figure 3b.
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The workflow of the Biformer attention mechanism primarily consists of the following
three steps:

1. Partitioning Regions and Linear Mapping:

For a given feature map X ∈ RH×W×C, the initial step entails dividing it into S × S non-
overlapping regions, ensuring that each region contains HW

S2 feature vectors. Subsequently, a

reshaping operation is performed to transform X into Xr ∈ RS2× HW
S2 ×C, facilitating a linear

mapping denoted as Q, K, V ∈ RH×W×C. The computational equations are as follows,
represented by Equations (1)–(3):

Q = XrWq (1)

K = XrWk (2)

V = XrWv (3)

2. Implementing Inter-Region Routing via Directed Graphs:

Firstly, the average value of each region is calculated individually for Q and K, resulting
in Qr, Kr ∈ RS2×C. Then, by performing matrix multiplication on these two average
values, the affinity adjacency matrix between the regions is obtained. This process can be
represented by the following Equation (4):

Ar = Qr(Kr)T (4)

Subsequently, a pruning operation is performed on matrix Ar, eliminating the least
relevant token within Ar at the coarse-grained level. The top k regions with the highest
relevance scores in Ar are selectively retained, leading to the generation of the routing index
matrix denoted as Ir ∈ Ns2×k. The calculation formula for this procedure is represented by
Equation (5):

Ir = topkIndex(Ar) (5)

3. Token-to-token Attention:

For each query token in region i, it focuses on the key-value pairs belonging to
the union of k routing regions indicated by the indices Ir(i , 1) ,Ir(i , 2) ,.....,Ir(i, k). These



Electronics 2024, 13, 850 6 of 17

regions are distributed throughout the entire feature map, and modern GPUs rely on
memory coalescence to load blocks of contiguous bytes efficiently. Therefore, it is necessary
to first collect K and V. The calculation formula for this procedure is represented by
Equations (6) and (7):

Kg = gather(K, Ir) (6)

Vg = gather(V, Ir) (7)

In the end, attention is applied to the collected key-value pairs. The calculation formula
for this procedure is represented by Equation (8):

O = Attention(Q, Kg, Vg) + LCE(V) (8)

The key idea is to filter out unimportant key-value pairs to achieve fine-grained and
sparse attention [24]. It introduces a new two-layer routing attention mechanism, realizing
content-aware sparse patterns using an adaptive query, and dynamic and query-aware
ways to achieve an efficient allocation of computation, so the Biformer attention mechanism
has better performance and lower computational cost.

In addition, introducing the Biformer attention mechanism can help the algorithm
better distinguish between targets and backgrounds, thereby reducing the number of false
positives and false negatives and improving the accuracy of object detection. By focusing
on the key areas of the target, the algorithm can cope better with occlusions, changes in
lighting, and other interference factors, thereby increasing the robustness of the object
detection algorithm.

In this article, we use the Class Activation Mapping (CAM) method to visualize
the features of the model’s detection results, allowing us to observe which areas of the
image the network has paid attention to after going through the Backbone and Head to
recognize and locate the target. It also allows us to analyze and compare the YOLOv8
model with and without attention mechanisms to determine the degree of attention paid
to the same target. The original image is shown in Figure 4a, Figure 4b is the heat map
without adding attention mechanism and Figure 4c is the heat map with adding Biformer
attention mechanism. The comparison between Figure 4b,c shows that adding the attention
mechanism will pay more attention to the seat belt area.
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3.2.2. Lightweight Upsampling Operator CARAFE

The original YOLOv8 employs the nearest-neighbor interpolation method for upsam-
pling in its feature fusion network. This approach solely relies on the spatial position of the
pixel point to determine the upsampling kernel, neglecting the semantic information in the
feature map. The method can be perceived as a uniform upsampling process that disregards
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the potential impact of adjacent feature points, possessing a limited receptive field of 1 × 1.
To overcome the limitations of the nearest neighbor interpolation upsampling method, this
paper employs the CARAFE (Content-Aware ReAssembly of FEatures) operator [25] as a
lightweight universal upsampling alternative. By replacing nearest-neighbor interpolation
with CARAFE, the aim is to generate feature maps that contain more extensive semantic
information. CARAFE offers improved performance in terms of preserving spatial details
and capturing richer contextual information during the upsampling process. The specific
structure of CARAFE is shown in Figure 5.
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CARAFE is divided into two main modules: the upsampling kernel prediction module
and the content-aware reassembly module. Assuming an upsampling factor of σ, given an
input feature map with a shape of H × W × C, CARAFE first uses the upsampling kernel
prediction module to predict the upsampling kernel, and then uses the content-aware
reassembly module to complete the upsampling, resulting in an output feature map with a
shape of σH × σW × C. Below are the upsampling steps of CARAFE.

(1) The upsampling kernel prediction module:

The module is mainly responsible for generating upsampling recombination kernels
in a content-aware manner so that the content-aware recombination module can complete
the upsampling task.

Step 1: Feature Map Channel Compression
For an input feature map with the shape H × W × C, we first use a 1 × 1 convolution

to compress its number of channels to H × W × Cm, and the main purpose of this step is to
reduce the computational cost of subsequent steps.

Step 2: Content Coding and Upsampling Kernel Prediction
Assuming an upsampling kernel size of kup × kup (where a larger kernel size implies a

wider receptive field and increased computational complexity), if we aim to utilize distinct
upsampling kernels for each position in the output feature map, the predicted shape of the
upsampling kernel would be denoted as σH × σW × kup × kup.

In the initial step, the compressed input feature map is utilized, and a convolutional
layer with a kernel size of kencoder × kencode is employed to predict the upsampling kernel.
The input channel is set to Cm, and the output channel is σ2k2

up. Subsequently, the channel
dimension is expanded in the spatial dimension, resulting in an upsampling kernel with
the shape σH × σW × k2

up.
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By following this process, CARAFE enables the use of diverse upsampling kernels tai-
lored to different positions in the output feature map. This approach enhances the capacity
to capture detailed features and improves the overall quality of the upsampling process.

Step 3: Upsampling Kernel Normalization
The upsampling kernels obtained in the second step using softmax should be normal-

ized, ensuring that the weights of the convolutional kernels sum up to 1.

(2) The content-aware reassembly module:

The module primarily focuses on reassembling the features within local regions.
Each position in the output feature map is mapped back to the input feature map, and a
kup × kup region centered around that position is extracted. The dot product is then taken
between this region and the predicted upsampling kernel for that specific point to obtain
the output value. It is important to note that different channels at the same position share
the same upsampling kernel.

3.2.3. Slim-Neck

To alleviate model complexity while maintaining accuracy, Li H, Li J, and Wei H
et al. [26] proposed the GSConv module and designed the Slim-neck feature fusion net-
work. In this paper, we replace the original Conv module in the neck layer of YOLOv8 with
the GSConv module and substitute the C2f module with the VoVGSCSP module. We make
these modifications because using the GSConv module in the backbone may lead to exces-
sive computational complexity. However, in the neck layer, the feature maps have already
become slender, and there is no longer a need for transformation. Therefore, by introducing
the GSConv module in the neck layer, we strike a balance between computational efficiency
and preserving the necessary feature transformations.

The GSConv module enhances the non-linear expressive power by introducing the
DWConv layer and Shuffle operation. Introducing the GSConv module in the Backbone
layer may lead to an increase in the number of network layers, resulting in a more complex
model and a substantial increase in the inference computation time. However, when
adopting the GSConv module in the neck layer, the feature map’s channel dimension C
has already reached its maximum value, and the height H and width W have reached their
minimum values. Consequently, there is minimal redundant information and no need for
compression. The structural diagram of the GSConv module is illustrated in Figure 6.
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In the GSConv structure, the input feature map F1 undergoes a downsampling oper-
ation using a 3 × 3 convolutional layer, resulting in the feature map F2. Next, DWConv
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is applied to F2, generating the feature map F3. F2 and F3 are then concatenated along
the channel dimension, creating a new feature map F4. Finally, the Shuffle operation is
employed to shuffle the feature channels, resulting in the output feature map F5. The
computation process is illustrated in Equation (9):

FGSC = Shu f f le(Cat(α(F1)C2/2, δ(α(F1)C2/2)))C2
(9)

In this equation, F1 represents the input feature map with a channel number of C1. α
represents the Conv operation, and δ represents the DWConv operation. FGSC represents
the output feature map obtained after the GSConv operation with a channel number of C2.

To further reduce model complexity, a cross-stage partial network module called
VoVGSCSP is designed utilizing the aggregation method inspired by ResNet’s concept. The
structure of VoVGSCSP is illustrated in Figure 7.
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The VoVGSCSP module is designed as follows. Firstly, an initial feature extraction is
performed on the input using a 1 × 1 convolutional layer, reducing the channel dimension
to half of the original input. The resulting feature map is then fed into the GS Bottleneck.
Within the GS Bottleneck, the residual concept is employed, where the input feature map
undergoes two GSConv convolutions. The output of these convolutions is then added
to a feature map obtained through a 1 × 1 convolutional layer, resulting in the module’s
output. At this stage, the channel dimension is C1/2. Subsequently, the input to the
VoVGSCSP module is subjected to a 1 × 1 convolutional operation and concatenated with
the output of the GS Bottleneck. Finally, the output is obtained by passing through a 1 × 1
convolutional layer, resulting in a channel dimension of C2. The formulas are shown as
Equations (10) and (11):

GSBout = FGSC(FGSC(α(F1)C2
)) + α(F1)C1/2 (10)

VoVGSCSPout = α(Concat(GSBout,α(F1))) (11)

In the equations, GSBout represents the output of the GS Bottleneck, and VoVGSCSPout
represents the final output of this module.
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3.2.4. Auxiliary Training Heads

The main reason for adding the Aux head in YOLOv8 is to allow the intermediate
layers of the network to learn more information and have rich gradient information to aid
in training. Good gradient information can help a network with the same parameter count
perform better. In YOLOv8, the method of adding the auxiliary head involves extracting
some shallow-level features such as the Aux head, whereas the deep-level features, which
are the final output of the network, serve as the Lead head, as shown in Figure 8a. During
the loss calculation, the Lead head independently calculates its own loss, whereas the Aux
head uses the positive samples obtained by matching with the Lead head (here, it involves
coarse matching, selecting the neighboring grids of the central point of the ground truth
box as the positive sample selection region) as its own positive samples, and calculates the
loss accordingly. Finally, the losses are added together with the different weights, as shown
in Figure 8b.
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3.2.5. Improvement of the Loss Function

In object detection, the accuracy of bounding boxes is of great importance as it directly
affects the performance of detection algorithms. The traditional Intersection over Union
(IoU) metric measures the overlap between two bounding boxes, but it may not be accurate
in certain cases, especially when there is an overlap between objects or significant differ-
ences in bounding box sizes. In previous research, YOLOv8 employed the CIOU loss as
a measure for bounding box evaluation to address this issue. The CIOU loss calculation
takes into account the overlap area, center distance, and aspect ratio of the bounding boxes.
However, the aspect ratio description in CIOU is a relative value, which introduces a certain
level of ambiguity.

Taking inspiration from the collective features of horizontal rectangles, Siliang M
et al. [27] designed a loss function for bounding box regression. It combines the concepts
of Maximum Precision Distance (MPD) and Intersection over Union (IoU) to address the
issue that most existing bounding box regression loss functions fail to optimize when
the predicted box has the same aspect ratio as the ground truth box but significantly
different width and height values. Moreover, it incorporates the relevant factors considered
in existing loss functions, such as overlapping or non-overlapping regions, center point
distance, and deviations in width and height. It simplifies the computation process by
calculating the IoU by minimizing the point distance between the predicted bounding box
and the ground truth bounding box.

This innovative loss function has garnered significant attention since its introduction
due to its outstanding performance across multiple datasets. It considers the size, position,
and degree of overlap of the objects, contributing to its remarkable performance. In
comparison to the traditional Intersection over Union (IoU), MPDIOU provides a more
accurate reflection of the relative positions and sizes of the objects, thereby enhancing
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the accuracy of object detection. The calculation process of MPDIOU is illustrated in
Equations (12)–(14):

d2
1 = (xB

1 − xA
1 )

2
+ (yB

1 − yA
1 )

2
(12)

d2
2 = (xB

2 − xA
2 )

2
+ (yB

2 − yA
2 )

2
(13)

MPDIOU =
A ∩ B
A ∪ B

−
d2

1
w2 + h2 −

d2
2

w2 + h2 (14)

In Equations (9)–(11), A and B represent the predicted box and the ground truth box,
respectively. The variables w and h represent the width and height of the input image.
(xA

1 ,yA
1 ) and (xA

2 ,yA
2 ) represent the coordinates of the top-left and bottom-right points of

the predicted bounding box, respectively. (xB
1 ,yB

1 ) and (xB
2 ,yB

2 ) represent the coordinates of
the top-left and bottom-right points of the ground truth box, respectively. The calculated
distances between the top-left points and bottom-right points of the predicted bounding
box and the ground truth bounding box are denoted as d2

1 and d2
2, respectively. Finally, the

optimization process aims to minimize the distances between the top-left and bottom-right
points of the predicted bounding box and the ground truth bounding box. The final loss
function for bounding box regression is represented by Equation (15):

LMPDIOU = 1 − MPDIOU (15)

MPDIOU simplifies the similarity comparison between two bounding boxes, aiding
the algorithm in selecting the most suitable bounding box to accurately localize the target.
By utilizing the MPDIOU loss function, the issues of overlapping anchor boxes, occlusion,
and the removal of partially overlapping boxes during non-maximum suppression can be
effectively addressed in object detection. This leads to a reduction in false negatives and
effectively lowers the instances of missed detections.

4. Experiments and Analysis
4.1. Experimental Setting

In this study, we strictly controlled or fixed the experimental environment and its
parameters. Other than the differences in methods, all other environments were consistent,
and random seeds were controlled to make the results under different experimental con-
ditions comparable. This allowed for the validation and replication of the experimental
results, ensuring the credibility and reliability of the experimental outcomes. The config-
uration environment during the experiment is shown in Table 1, and the experimental
parameters during the experiment are shown in Table 2.

Table 1. Experimental configuration.

Name Configure

Operating system Windows 10

Processor Intel(R) Xeon(R) W-2255 CPU @ 3.70GHz

Video card NVIDIA GeForce RTX 3080Ti

Run memory 64GB

GPU internal storage 12GB

Programming tools Pycharm

Programming language python

Deep learning framework Pytorch2.0.0
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Table 2. Experimental parameters.

Parameter Value

Learning 0.01

Batch Size 4

Epochs 300

Workers 4

4.2. Dataset

This experiment used a dataset mainly from the Tiachi competition held by Alibaba
Cloud in July 2021, as well as relevant images downloaded from the Internet. It contained
a total of 2546 images. The dataset’s labels were divided into one category: “safety belt”.
The labeled images were divided into a training set of 2036 images, a validation set of
255 images, and a test set of 255 images. The Distribution of image dimensions as shown in
Figure 9a, and distribution of annotated object size as shown in Figure 9b.
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4.3. Evaluation Metrics

In order to evaluate the performance of the algorithm, the evaluation metrics used in
this study were precision (P), recall (R), and mean average precision (mAP).

Precision is defined from the perspective of the predicted results, indicating the pro-
portion of positive samples among the samples with positive predicted results, i.e., the
probability of detecting the target correctly among all detected targets. The calculation
formula is as follows:

Precision =
TP

TP + FP
(16)

Recall is a metric from the perspective of the sample, indicating the proportion of
actual positive samples in the predicted positive samples and the entire positive samples,
i.e., the probability of being correctly identified among all positive samples. The calculation
formula is as follows:

Recall =
TP

TP + FN
(17)

Precision reflects the model’s ability to distinguish between negative samples. The
higher the precision, the stronger the model’s ability to distinguish between negative
samples. Recall reflects the model’s ability to identify positive samples. The higher the
recall rate, the stronger the model’s ability to identify positive samples.

AP is a recognizer for a single category, and AP is the area enclosed by the P-R curve
(P is the vertical axis and R is the horizontal axis). The calculation formula is as follows:
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AP =
∫ 1

0
P(R)dR (18)

Meanwhile, mAP is the average of AP from the category dimension, and mAP is the
mean of the average precision AP of all categories, so it can evaluate the performance of
multi-classifiers. Typically, AP is calculated for all images of each category when IOU = 0.5,
and then the average is taken for all categories, that is, mAP@0.5. The calculation formula
is as follows:

mAP =

m
∑

i=1
APi

m
(19)

Among them, TP (true positives) refers to the number of positive samples correctly
identified as positive by the model, i.e., the amount predicted correctly in the model; FP
(false positives) refers to the number of negative samples incorrectly identified as positive
by the model, i.e., the amount predicted incorrectly in the model; FN (false negatives) refers
to the number of positive samples incorrectly identified as negative by the model, i.e., the
number of positive samples that were misdetected by the model. m refers to the number of
detection categories.

4.4. Comparative Analysis and Experimental Results

After conducting numerous experiments, the comparative results between the original
YOLOv8 algorithm and the improved YOLOv8 algorithm are presented in Table 3.

Table 3. Comparison of detection performance before and after improvement.

Model Precision/% Recall/% mAP@0.5/% mAP@0.5:0.95% Flops/G Model Size/MB

before 0.929 0.909 0.962 0.765 8.1 5.9
after 0.98 0914 0.973 0.781 7.6 7.8

From Table 3, it is evident that the improved YOLOv8 algorithm outperforms the
original YOLOv8 algorithm in terms of precision, recall, mAP@0.5, and mAP@0.5:0.95 for
the safety belt dataset. The experimental results indicate that the precision value increased
by 5.1%, the recall value increased by 0.5%, the mAP@0.5 value increased by 1.1%, and
the mAP@0.5:0.95 value increased by 1.6%. Although the improved YOLOv8 model is
slightly larger in size compared to the original YOLOv8 model, it actually reduced the
floating-point operations. Overall, this improvement is reasonable as it has resulted in
an overall enhancement in the detection performance of YOLOv8. In the future, further
research will be conducted on techniques such as pruning and distillation to optimize and
refine the model.

4.4.1. The Ablation Experiments

In order to validate the effectiveness of the proposed improved YOLOv8 algorithm and
to comprehensively compare the performance of different models, ablation experiments
were conducted. The purpose of these experiments was to compare the impact of adding
or removing modules in the original model. The results of the ablation experiments are
presented in Table 4.

During the experiment, a comparison was made among three of the most classic YOLO
algorithms: YOLOv5s, YOLOv7-tiny, and YOLOv8n. These three algorithms represent
the smallest models within YOLOv5, YOLOv7, and YOLOv8, with the lowest number of
parameters and the smallest model sizes. From Table 3, it can be observed that YOLOv8
performed the best among the three algorithms. It has the highest mAP value in detec-
tion, the lowest floating-point operations, and the smallest model size. This indicates
that YOLOv8 has an overall superior detection performance compared to YOLOv5 and
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YOLOv7. Therefore, various optimization strategies and improvements were carried out
using YOLOv8 as the foundation.

Table 4. Comparison of ablation experiments.

Model Precision/% Recall/% mAP@0.5/% Flops/G Model Size/MB

yolov7-tiny 0.947 0.845 0.895 13 11.7
yolov5s 0.968 0.938 0.959 16.3 14.4
yolov8 0.929 0.909 0.962 8.1 5.9
yolov8 + Biformer 0.956 0.938 0.965 8.1 6.8
yolov8 + TripleAttention 0.908 0.938 0.957 8.1 6.2
yolov8 + Biformer + CARAFE + slim 0.944 0.93 0.968 7.6 6.4
yolov8 + Biformer + CARAFE + slim + Aux 0.949 0.92 0.969 7.6 7.8
yolov8 + Biformer + CARAFE + slim + Aux + mpdiou 0.98 0.914 0.973 7.6 7.8
yolov8 + Biformer + CARAFE + dyhead 0.964 0.926 0.971 9.8 7.9
yolov8 + Biformer + CARAFE + bifpn + Aux 0.942 0.91 0.969 7.4 6.1
yolov8 + Biformer + CARAFE + bifpn + Aux + mpdiou 0.944 0.908 0.967 7.4 6.1

Firstly, the addition of attention modules to the Backbone layer resulted in a slight
improvement in detection performance. Then, in the Neck layer, lightweight modules such
as the Slim-neck network and CARAFE were introduced, leading to an mAP value of 0.968.
Subsequently, the introduction of the Aux-head auxiliary detection head in the Head layer
resulted in a small improvement in detection performance. Many papers have utilized
BiFPN feature pyramids in the feature fusion stage of the YOLO series, and experimental
comparisons showed similar performance to our method. However, the experimental
results demonstrated that the yolov8 + Biformer + CARAFE + slim + Aux + mpdiou
optimization strategy achieved the best performance after introducing the MPDIOU loss
function; moreover, replacing the loss function had almost no impact on the parameter
count and size of the model.

4.4.2. Test the Effect of The Experimental Pictures

Based on the aforementioned experiments, we have obtained an optimized YOLOv8
model. Finally, we conducted tests on four identical images to observe the detection results
of the original YOLOv8 model and the improved YOLOv8 model. Figure 10a represents the
labeled image. Figure 10b shows the results predicted by the original model, and Figure 10c
displays the results predicted by the improved model.
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Figure 10. (a) The labeled picture, where the red rectangles represent the ground truth boxes. (b) The
results predicted by the original model, where the red rectangles represent the predicted boxes and
the numbers indicate the predicted probabilities. (c) The results predicted by the improved model.

From Figure 10, it is clear that the improved YOLOv8 model performs better in terms
of detection compared to the original YOLOv8 model.

5. Conclusions

This paper proposes an improved YOLOv8 algorithm to enhance its detection perfor-
mance, particularly for small objects. To achieve this, the algorithm introduces a BiFormer
attention mechanism based on the Transformer architecture, which strengthens the feature
extraction capability and improves the detection performance for seat belts. Additionally,
the algorithm incorporates Slim-neck by replacing the traditional convolution modules
(SC) with lightweight GSConv modules and replacing the C2f module with the VoV-GSCSP
module based on the GSConv design. This not only reduces the model’s parameter count
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effectively but also mitigates the increased computational complexity caused by the Bi-
Former attention mechanism. Furthermore, it enhances the feature fusion ability of the neck
layer, resulting in an overall performance improvement. The algorithm also introduces
auxiliary detection heads, enabling the Head layer to learn more semantic information
from the intermediate layers. Finally, the algorithm optimizes candidate boxes using the
MPDIOU loss function. Experimental results on a seat belt detection dataset demonstrate
that compared to the original YOLOv8n, the improved algorithm achieves better accuracy
in seat belt detection while also showing overall performance improvements.

Further work will focus on lightweight optimization techniques such as model pruning
and distillation. The goal is to minimize the model size and improve inference efficiency
while maintaining high performance levels. The aim is to enhance the deployment efficiency
and user experience on edge devices, mobile devices, and embedded systems.

Author Contributions: T.J.: Paper direction and suggestions. Z.L.: conceptualization, data curation,
methodology, software, and supervision. Z.L., H.T., C.A., J.Z. and C.W.: writing–original draft,
validation, and test. All authors have read and agreed to the published version of the manuscript.
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