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Abstract: Reconstructing large-scale scenes using Neural Radiance Fields (NeRFs) is a research
hotspot in 3D computer vision. Existing MLP (multi-layer perception)-based methods often suffer
from issues of underfitting and a lack of fine details in rendering large-scale scenes. Popular solutions
are to divide the scene into small areas for separate modeling or to increase the layer scale of the
MLP network. However, the subsequent problem is that the training cost increases. Moreover,
reconstructing large scenes, unlike object-scale reconstruction, involves a geometrically considerable
increase in the quantity of view data if the prior information of the scene is not effectively utilized. In
this paper, we propose an innovative method named MM-NeRF, which integrates efficient hybrid
features into the NeRF framework to enhance the reconstruction of large-scale scenes. We propose
employing a dual-branch feature capture structure, comprising a multi-resolution 3D hash grid
feature branch and a multi-view 2D prior feature branch. The 3D hash grid feature models geometric
details, while the 2D prior feature supplements local texture information. Our experimental results
show that such integration is sufficient to render realistic novel views with fine details, forming a more
accurate geometric representation. Compared with representative methods in the field, our method
significantly improves the PSNR (Peak Signal-to-Noise Ratio) by approximately 5%. This remarkable
progress underscores the outstanding contribution of our method in the field of large-scene radiance
field reconstruction.

Keywords: NeRF; scene representation; view synthesis; hash grid feature; multi-view prior

1. Introduction

With the development of deep learning technology, learning-based neural networks
are beginning to replace traditional methods in various industries, such as medicine [1],
finance [2], manufacturing [3,4], etc. However, accurate modeling of 3D scenes has al-
ways been a challenging problem. In recent times, the succession of methods employing
Neural Radiance Fields (NeRFs) [5] for the representation of large-scale 3D scenes [6–9]
has achieved notable success. These studies have greatly promoted the development of
the meta-universe, virtual reality, animations, and more. Existing methods mainly use a
progressive update scheme [6,7] to construct the final 3D representation or divide the scene
into multiple partitions, each represented by a multi-layer perception (MLP) model [8,9].
However, these methods based on MLP architecture have the problem of losing details
when simulating large and complex scenes due to the limited model capacity and can
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only generate blurry renderings [6,8,9]. Furthermore, the MLP model learns from zero
knowledge, lacking some prior information input. This results in each scene requiring a
large amount of view source data [6,8], further limiting their application in the real world.

Lately, we noticed that some NeRF variants [10–12] offer insights that may address
the aforementioned challenges. Specifically, some methods focusing on accelerating object-
scale NeRF optimization propose storing local features in a three-dimensional dense voxel
grid [10,11] or hash grid [12]. Grid features make it easy to fit local scene content with
explicitly and independently learned features, replacing extensive MLP computations
with fast feature interpolation. However, using a dense voxel grid to represent large-scale
scenes, the number of parameters will grow cubically as the scene increases, so existing
methods [11] often use smaller resolutions during the optimization process. The multi-
resolution hash grid is another structure that has been used, which applies a hash function
to randomly map three-dimensional points into a hash table. The resolution can be set to a
larger number. However, a failure to provide additional information can lead to suboptimal
results in the presence of hash collisions.

Another distinctive variant that motivated us is the generalizable NeRF [13–16], which
aims to give NeRF the ability to model general scene structures by inputting additional
information from images. Existing methods [13–16] usually employ a pipeline of an image
encoder to embed multi-view images into a prior z and a NeRF as the decoder input 3D
position conditioned on z to generate the target view image. These variants perform well in
object-scale scenes, requiring only a few (e.g., three [13,14]) camera views to synthesize new
views without any retraining. We try to transfer the capabilities of the generalizable NeRF,
using the image encoder to provide scene priors for large-scale scenes, thereby reducing the
dependence on the number of views. Simultaneously, the priors information can serve as a
supplement to the hash grid to solve the suboptimization problem under hash collisions.

To summarize, we integrate the multi-resolution hash grid feature with the gener-
alizable NeRF encoder–decoder pipeline and apply it to large-scale scenes, proposing a
high-resolution refined neural representation method that does not require a large number
of multi-views, called MM-NeRF. Our major contributions can be summarized as follows:

• We propose a new optimization NeRF variant, called MM-NeRF, that is specifically
designed for large-scale unbounded scene modeling.

• We introduce a new pipeline that integrates complementary features from 3D hash
grids and scene priors to achieve efficient and accurate large-scene modeling.

• Our MM-NeRF achieves good scene synthesis representation without requiring a large
number of views, indicating the superior performance of our model.

2. Related Work
2.1. NeRF

NeRFs [5] represent 3D scenes as a radiance field approximated using multi-layer
perception (MLP). The MLP takes the position and viewing direction of 3D points as input
to predict their color and density. Combined with volume rendering [17], NeRF achieves a
photo-realistic rendering quality and has attracted considerable attention. Many follow-
up methods have been developed to improve the quality of synthesized views [18–20],
training and inference speed [12,21–23], explore model generalization based on sparse
views [13,14,24,25], and pose estimation [26–28]. Further, some recent works have de-
veloped NeRF for more complex tasks, such as dynamic scenes [29,30], controllable edit-
ing [31,32], multi-modality [33], etc.

2.2. Large-Scale Scene NeRF

Although the vanilla NeRF [5] was designed only to handle object-scale scenes, scaling
up NeRFs to large-scale scenes such as cities will enable a wider range of applications.
NeRF-W [34] was the first attempt to apply NeRF to outdoor scenes. BungeeNeRF [6] and
NeRFusion [7] propose a progressively updated reconstruction scheme to reconstruct large
indoor and outdoor scenes, respectively. Mega-NeRF [8] and Block-NeRF [9] adopt a divide-
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and-conquer strategy to handle large-scale scenes, decomposing the scene into multiple
regions, each of which is represented by a single NeRF. However, these methods merely
consider the reconstruction results of large scenes, and there is insufficient improvement
in the model framework. Therefore, like most MLP-based NeRFs, the loss of details and a
large number of views in these methods when dealing with large and complex scenes are
still challenging problems to be solved.

2.3. Grid-Based NeRF

NeRFs use MLP to approximate implicit functions for representing 3D scenes, with the
benefit of occupying minimal memory. However, each sampling point in the space needs
to undergo forward calculation by MLP, resulting in a very low efficiency. Instant-ngp [12]
introduces a hash encoding strategy that utilizes hash searches to obtain 3D features and
then connects the NeRF pipeline to achieve rendering output. Hash searches are much
faster than MLP calculation, greatly speeding up NeRF. Plenoxels [10] and DVGO [11]
take a more aggressive approach by directly substituting a dense voxel grid for MLP and
performing volume rendering on the interpolated 3D features. However, both of these
approaches have their limitations. Specifically, hash encoding may encounter issues with
search conflicts, while the representation using only voxel grids becomes memory-intensive
as the scene scale increases. Therefore, in NeRFs of large-scale scenes [35,36], grid-based
features are often used as one of the multiple branching features. Our method also adopts
a similar strategy.

2.4. Generalizable NeRF

Pioneer works [13–16] mix the 2D features independently extracted from each input
view and inject them into the MLP, providing an intuitive mechanism to adapt NeRF.
However, these methods struggle to handle complex scenes effectively due to the lack of
explicit geometric awareness encoding in the features. Following methods [24,37,38] verify
that introducing geometric priors can improve generalization. Particularly, MVSNeRF [24]
constructs a cost volume and then applies a 3D CNN to reconstruct a neural encoding
volume with per-voxel neural features. GeoNeRF [37] further enhances the architecture by
using a cascaded cost volume and incorporating attention modules. NeuRay [38] calculates
a visibility feature map with the cost volumes or depth maps to select whether the 3D point
is visible. All these geometry priors based on cost volumes are sensitive to the choice of
the reference view. In contrast, we introduce a matching-based strategy to incorporate
geometric priors without requiring cost volumes or 3D CNNs.

3. Methods

To effectively represent large-scale scenes, we propose MM-NeRF, which combines
the expertise of grid representation-based methods and prior feature-based methods. We
leverage multi-resolution hash grids to capture as much 3D detail as possible, then we let
the views encoder supplement the missing prior information and finally produce high-
quality renderings with NeRF.

Figure 1 illustrates our overall pipeline. Our method comprises two branches, namely
the multi-resolution hash feature branch and the multi-view priors feature branch. First,
we sample 3D points along rays cast from pixels. Second, the sampling points undergo
the multi-resolution hash branch to obtain multi-resolution grid features with geometric
significance. Simultaneously, they pass through the multi-view prior branch to obtain prior
features. These features, along with position encoding (PE), are then fed into the decoder,
which predicts density σ and color values c. Finally, the image colors can be computed
through volume rendering.

In Section 3.1, we describe the feature branch of multi-resolution grid representation.
In Section 3.2, we introduce the prior feature extraction branch based on the image encoder
and attention mechanism. Finally, Section 3.3 provides detailed insights into how NeRFs
implement the rendering output.
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Figure 1. Overview. Our method involves two branches: a multi-resolution hash grid feature branch
and a multi-view prior feature branch, the output of which is combined with position encoding (PE)
and is fed into in the decoder to predict density σ and color value c.

3.1. Multi-Resolution Hash Grid Feature

Recall that NeRFs predict point density and color by passing point coordinates’ posi-
tion encoding (PE) [5] into an 8-layer MLP. The compact model encodes the entire scene
content in an MLP that takes PE embeddings as input, but it is difficult to expand the scene
due to the limitation of the model capacity. In contrast, the multi-resolution hash grid [12]
is an efficient data structure, which divides space into closely adjacent small cubic cells,
similar to a voxel grid. However, the features of each unit area are not stored on the cube’s
vertices but instead stored centrally in the form of a hash table. And the space is repeatedly
divided at different resolutions. Therefore, unlike mapping 3D points to a fixed-size voxel
grid, a multi-resolution hash grid does not significantly increase the number of parameters
when dealing with an increase in the scale of the scene.

The number of parameters of the multi-resolution hash grid is bounded by L · T · F,
where L is the number of resolutions and T and F are the hash table size and feature
dimension of each resolution. We set L = 16, T = 219, and F = 2 to balance the trade-
off between capacity and efficiency, so the total number of parameters is 224. Figure 2
illustrates the steps for obtaining features for our multi-resolution hash grid. For a given
input coordinate x, first, obtain the indices V = {(pi)

8
i=1 | pi ∈ R3} of surrounding

voxel vertices under the grid at different resolutions (red and blue in Figure 2 represent
two different resolutions). According to the hash function h : V → Y, fetch the features
from the hash table and perform linear interpolation based on the relative position of x
in different resolution grids. Then, we concatenate the results of each level together to
form multi-resolution hash features y of point x, as one of the branch inputs of NeRFs.
For a vertex p = (px, py, pz), we adopt the hash function and resolution settings used in
Instant-ngp [12]:

h(p) = (⊕ piπi) mod T, i = x, y, z, (1)

where ⊕ represents the bitwise XOR operation and πi is the unique large prime number,
πx = 1, πy = 2,654,435,761, and πz = 805,459,861, respectively. The resolution of each
level is chosen to be a geometric progression between the coarsest and finest resolutions
[Nmin, Nmax]:

Nl =
⌊

Nmin · bl
⌋

, (2)

b = exp(
ln Nmax − ln Nmin

L− 1
). (3)
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Figure 2. Illustration of multi-resolution hash features. For a given input coordinate x, we locate
surrounding vertices at different resolution levels and fetch their F-dimensional feature vectors in a
hash table then linearly interpolate to obtain the features of x. The features of the vertices are updated
via the gradients returned by the MLP.

Some works [12,36] have shown that multi-resolution hash grid representation is sig-
nificantly better than dense voxel representation when dealing with scene scale expansion.
However, due to collision issues in hash mapping, the interpolated features inevitably
contain information from multiple distinct surface points, limiting the performance of
the NeRF model. An intuitive solution is to increase the hash table size T to achieve im-
provements, at the cost of a significant increase in the number of parameters and a longer
optimization time. This result prompted us to introduce an effective strategy to enhance
the hash grid features for large-scale scenes by introducing prior information.

3.2. Multi-View Priors Feature

Previous generalized NeRF [13–16,24,37,38] methods typically used the CNN+MLP
architecture. The CNN serves as an encoder for extracting 2D features from input views.
These features are then aggregated in various ways and propagated backward [13–16] or
used to construct an intermediate product [24,37,38] (e.g., a cost volume). MLP works
as a decoder to output color and density. Our goal is to develop a similar architecture,
but, different from others, we propose to use the Transformer for cross-view interactions
for CNN features, followed by projecting 3D points onto them for interpolation. The
lower branch in Figure 1 shows the specific details of our framework, which consists of an
encoder fθ consisting of a CNN and a Transformer to extract cross-view aligned features.
The decoder gϕ adopts the structure of IBRNet [14], including MLP and the Transformer,
which predict color and density, respectively, for volume rendering.

Regarding the encoder, we first use a weight-shared CNN [39] to extract down-
sampled convolutional features {Fc

i }N
i=1 from N input views {Ii}N

i=1. Features between
different views are interacted with through a Transformer with cross-attention to further
enhance the feature quality. The process can be described as follows:

T : (Fc
1, Fc

2, · · · , Fc
N)→ (F1, F2, · · · , FN), (4)

where T represents the Transformer. For its structure, we followed GMFlow [40]. The
convolutional features {Fc

i }N
i=1 are input to the Transformer through shift windows. To

mitigate the impact of noise, we perform a summation followed by averaging on the
Transformer features. As shown in Figure 3, for a given 3D point position x, we first
project it onto the 2D Transformer features {Fi}N

i=1 of the views {Ii}N
i=1 using the camera

parameters {Mi}N
i=1 and then perform bilinear sampling to obtain features {fi}N

i=1. We
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divide the feature vectors {fi}N
i=1 into G groups along the channel dimension and then sum

and average the features of each group:

z =

G
∑

g=1

N
∑

i=1
f(g)

i

N · G , (5)

where z represents the cross-view feature of 3D point x, which is used as a prior in our
method to capture view-consistent matching information.

Figure 3. The encoder generates 2D features for cross-view interaction on N input images. Project 3D
points onto 2D feature planes for bilinear sampling. Aggregating the sampled features of different
views in the channel direction forms a prior fed to the MLP.

3.3. NeRF Render Network

For the original input of the render network, we are the same as the vanilla NeRF [5],
which involves hierarchical sampling and positional encoding (PE). Building upon this,
we added the grid feature y from Section 3.1 and the prior z from Section 3.2 as additional
inputs to the decoder gϕ for predicting the color and density of 3D point x. y and z represent
the features in 3D space and the features of the 2D view, respectively. By fusing these two
features we are able to not only capture the three-dimensional structure in space but also
obtain prior information in the 2D perspective. The input–output representation of the
decoder can be expressed as follows:

gϕ : (d̃, x̃, y, z)→ (c, σ), (6)

where x̃ and d̃ represent the high-frequency encoding results of the 3D point and the
viewing direction, y denotes the multi-resolution hash-grid features, and z is the prior
capturing view-consistent information. The output is a pair of color c and density value σ.

Considering the limited decoding capabilities of a simple MLP, we construct a render-
ing network including both MLP and a Transformer, following the previous work [14]. As
shown in Figure 1, the Transformer can introduce cross-point interactions by fusing the
rendered information along a ray, predicting the density σ. And the MLP predicts color
c. Using the predicted color c and volume density σ from the decoder, a new view can be
synthesized via volume rendering. Volume rendering calculates the color C for a pixel by
accumulating colors according to the density for all sampling points on the corresponding
rays passing through the pixel:
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C =
K

∑
i=1

Ti(1− exp(−σiδi))ci, (7)

Ti = exp(−
i−1

∑
j

σiδi), (8)

where ci and σi refer to the color and density of the i-th sampled 3D point on the ray. Ti is
the volume transmittance, and δi denotes the distance between adjacent points. K is the
total number of 3D points sampled on a ray.

We train the model end-to-end using only the photometric loss function, without
requiring any other ground-truth geometric data:

L = ∑
p∈P
∥Cp − C̃p∥2

2, (9)

where P denotes the set of pixels within one training batch and Cp and C̃p refer to the
rendered color and the ground-truth color of pixel p, respectively.

Algorithm 1 shows the pseudocode of our proposed algorithm to better understand
our method and implementation process.

Algorithm 1 Optimization process of MM-NeRF.

Input: multi-view images {Ii}N
i=1, camera poses {Mi}N

i=1, system initialization parameters
S

Parameter: number of sampling points N, max frequency for PE M f , angle threshold of
the reference view θ, hash parameter L, T, F, grid resolutions range Nmin, Nmax

1: {Nl} ← Nmin, Nmax ▷ Formulas (2) and (3)
2: {o, d, t} ← {Mi}N

i=1 ▷ Ray parameters
3: for iter=1,2,. . . do
4: {x} ← {o, d, t} ▷ Sampling points
5: V ← x ▷ Surrounding voxel vertices
6: FV ← hash(V) ▷ Formula (1)
7: y← FV ▷ Grid Feature
8: (I j, M j)

K
j=1 ← ({Ii}N

i=1, {Mi}N
i=1, θ) ▷ Reference views

9: {Fc
j}K

j=1 ← CNN({I j}K
j=1)

10: {F j}K
j=1 ← T ({F

c
j}K

j=1) ▷ Formula (4)

11: z← (F j, M j)
K
j=1 ▷ Priors feature

12: d̃, x̃ = PE(d, x) ▷ Position encoding
13: c, σ← (d̃, x̃, y, z) ▷ Formula (6)
14: I′i ← (c, σ) ▷ Formulas (7) and (8)
15: L ← ({Ii}N

i=1, {I′i }N
i=1) ▷ Formula (9)

16: S ← S +∇SL
17: end for
Output: {I′i}N

i=1

4. Results
4.1. Data

To evaluate our proposed method, we used the public large-scale dataset provided
by BungeeNeRF [6]. The dataset was synthesized using Google Earth Studio, capturing
multi-scale city images from drone to satellite height using specified camera positions. And
the data quality is sufficient to simulate real-world challenges. We used two of these scenes
for experiments.

To further verify our method’s generalizability in the real world, we conducted experi-
ments on three real-world scenes of the UrbanScene3D dataset [41]. In addition, we also
created our dataset, which includes multi-view images of four architectural scenes, each
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taken at a different height range. Please see Table 1 for details. We employed COLMAP [42]
to obtain the initial camera pose.

Table 1. Details of the real-world scene dataset we created: all four scenes were captured at various
heights from the drone perspectives, and then the video was framed to obtain a certain number of
views. Finally, we used COLMAP to estimate camera poses.

Scene 1,2 Building
Height (m)

Viewing
Height (m)

Number of
Views

Aerospace Information Museum, Jinan 21 20–30 65
Yellow River Tower, Binzhou 55.6 10–80 153

Meixihu Arts Center, Changsha 46.8 60–80 81
Greenland Xindu Mall, Hefei 188 100–200 169

1 In the following, AIM, YRT, MAC, and GXM are used to refer to the Aerospace Information Museum, Yellow
River Tower, Meixihu Arts Center, and Greenland Xindu Mall, respectively. 2 AIM is derived from our drone
collection, while YRT, MAC, and GXM are sourced from internet videos.

4.2. Evaluation

To assess the effectiveness of our method, we employed three metrics: the PSNR,
SSIM [43], and LPIPS [44]. The results are presented in Tables 2–4. We first compared
our method with the classical NeRF [5] and Mip-NeRF [18]. As expected, these general
methods, not specifically optimized for large scenes, fall short compared to ours.

We then compared it with large-scale NeRF variants (BungeeNeRF [6], Mega-NeRF [8]).
Compared to these purely MLP-based methods, our method brings sharper geometry and
finer details. In particular, due to the inherent limitations in the capacity of MLP, it of-
ten fails to simulate rapid and diverse changes in geometry and color, such as building
exterior walls with multiple textures. Although dividing the scene into small regions (Mega-
NeRF [8]) or increasing the structure size of MLPs (BungeeNeRF [6]) can be somewhat
helpful, the rendered results still appear overly smooth. In contrast, guided by the learned
grid features, the sampling points are effectively compressed close to the scene surface and
coupled with multi-view priors, providing rich geometric and surface information and
supplementing the missing scene details in grid features.

In addition, we also extended the comparative analysis to a wider range of non-NeRF
methods [11,45] to verify the superiority of our method. The results are shown in Tables 2–4.

For Google scenes, as shown in Table 2, our method outperforms other methods
in PSNR, LPIPS, and SSIM. Specifically, our method achieves 24.963 dB and 24.778 dB
values for the PSNR for 56Leonard and Transamerica, respectively, which is an average
improvement of 2.5 dB compared to the optimal method. The rendering results presented
in Figure 4 indicate that our method produces more refined novel views. For large urban
scenes with either a distant (top row in Figure 4) or a closer view (bottom row in Figure 4),
the results from other methods could exhibit blurriness, while our method ensures detail
preservation, resulting in clearer, less noisy outcomes that excel in overall quality and detail.

For real-world scenes, Tables 3 and 4 outlines the metrics for our method and others.
We still outperform others across three metrics. Specifically, our method achieves an
average PSNR of 24.296 dB. There is an average improvement of 1 dB compared to the
optimal method. In Figures 5 and 6, we present the rendering results for real-world scenes,
showcasing the notable superiority of our method in terms of details compared to other
methods. As shown in the figures, BungeeNeRF and Mega-NeRF generate blurry textures
and smooth boundaries. In contrast, our method can synthesize novel views with finer
textures and clear boundaries that are very close to the ground truth.
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Table 2. Quantitative comparison on Google scenes dataset. We report PSNR (↑), LPIPS (↑), and SSIM
(↓) metrics on the test view. We highlighted the best and second-best results.

56Leonard (Avg.) Transamerica (Avg.)
PSNR↑ 1 LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

NeRF [5] 21.107 0.335 0.611 21.420 0.344 0.625
Mip-NeRF [18] 21.642 0.299 0.695 21.820 0.331 0.687

DVGO [11] 21.317 0.323 0.631 21.467 0.337 0.606
TensoRF [45] 22.289 0.310 0.658 22.023 0.303 0.664

Mega-NeRF [8] 22.425 0.372 0.680 22.546 0.283 0.707
BungeeNeRF [6] 23.058 3 0.245 0.736 23.232 0.232 0.721
MM-NeRF (ours) 24.963 2 0.182 0.814 24.778 0.197 0.802

1 The upward arrow indicates that the higher the metric, the better. The downward arrow indicates that the lower
the metric, the better. 2 Bold indicates the best results. 3 Underlined indicates the second-best results.

Figure 4. A qualitative comparison between our method and others. The MLP-based methods
(BungeeNeRF and Mega-NeRF) suffer from severe blurring in different distances of views. Our
method achieves a photorealistic quality at novel views compared to ground-truth images.

Table 3. Quantitative comparison on UrbanScene3D dataset. We report PSNR(↑), LPIPS(↑), and
SSIM(↓) metrics on the test view. We highlighted the best and second-best results.

UrbanScene3D-Campus UrbanScene3D-Residence UrbanScene3D-Sci-Art
PSNR↑ 1 LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

NeRF [5] 21.276 0.357 0.579 20.937 0.415 0.528 21.104 0.456 0.580
Mip-NeRF [18] 21.322 0.298 0.607 21.193 0.394 0.585 21.284 0.418 0.542

DVGO [11] 22.105 0.254 0.643 21.919 0.344 0.628 22.312 0.427 0.629
TensoRF [45] 22.683 0.228 0.689 22.563 0.270 0.680 22.425 0.337 0.618

Mega-NeRF [8] 23.417 3 0.171 0.751 22.468 0.243 0.673 22.861 0.244 0.711
BungeeNeRF [6] 22.917 0.189 0.722 22.342 0.285 0.598 22.632 0.308 0.620
MM-NeRF (ours) 24.126 2 0.158 0.807 23.514 0.164 0.757 23.965 0.166 0.802

1 The upward arrow indicates that the higher the metric, the better. The downward arrow indicates that the lower
the metric, the better. 2 Bold indicates the best results. 3 Underlined indicates the second-best results.

We compared MM-NeRF with other methods in the mentioned scenes. Unlike other
NeRF methods that lack 3D grid features for explicit geometry learning, MM-NeRF avoids
local geometric deformation issues. For instance, in row 2 of Figure 4, BungeeNeRF and
MegaNeRF exhibit misaligned building exterior walls. This error is even more noticeable in
the enlarged view of a street lamp in row 3 of Figure 6. In addition, due to large-scale scenes
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with limited views and substantial view differences, methods without a priors feature input
struggle to synthesize new view RGB values, resulting in numerous artifacts, especially in
complex texture areas (e.g., Figure 5, rows 2 and 3).

Figure 5. Qualitative comparison shows that our method achieves better visual quality and is more
photorealistic in three UrbanScene3D scenes.

Table 4. Quantitative comparison on our real-world scenes dataset. We report PSNR(↑), LPIPS(↑),
and SSIM(↓) metrics on the test view. We highlighted the best and second-best results.

AIM (Avg.) YRT (Avg.) MAC (Avg.) GXM (Avg.)
PSNR↑ 1 LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

NeRF [5] 21.390 0.259 0.666 21.577 0.223 0.603 22.580 0.193 0.701 20.976 0.279 0.523
Mip-NeRF [18] 22.257 0.202 0.696 21.624 0.241 0.650 22.518 0.199 0.710 22.976 0.183 0.714

DVGO [11] 22.190 0.227 0.629 21.997 0.242 0.655 23.140 0.188 0.723 23.428 0.177 0.760
TensoRF [45] 22.374 0.211 0.729 22.224 0.189 0.715 23.304 0.177 0.731 23.576 0.169 0.784

Mega-NeRF [8] 22.612 0.172 0.769 22.641 0.209 0.677 23.381 0.174 0.726 24.316 0.156 0.807
BungeeNeRF [6] 22.955 3 0.185 0.716 23.525 0.147 0.774 23.465 0.167 0.742 24.119 0.161 0.814
MM-NeRF (ours) 24.125 2 0.152 0.834 24.872 0.150 0.801 24.322 0.133 0.884 25.149 0.137 0.844

1 The upward arrow indicates that the higher the metric, the better. The downward arrow indicates that the lower
the metric, the better. 2 Bold indicates the best results. 3 Underlined indicates the second-best results.

Contrastingly, MM-NeRF’s grid features focus on geometry learning, while the prior
feature branch encodes texture space. Utilizing both as additional inputs ensures accurate
and consistent rendering, yielding precise geometry and detailed texture colors. Row 2
of Figure 6 illustrates MM-NeRF’s ability to restore detailed information in distant, dense
buildings, significantly enhancing the rendering quality for complex areas.
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Figure 6. Qualitative comparisons show that our method still performs best on the four real-world
scene datasets we created.

4.3. Ablation

To validate the effectiveness of our network, we conducted ablation experiments on
Google scenes. First, we proved the impact of the resolution hash grid (Table 5). Further,
we studied the effect of the hash grid resolution parameter L (Table 6). Then, we analyzed
the impact of multi-view prior features (Table 7). In addition, we also explored the effect of
the number of reference views on multi-view prior features (Table 8).

In Table 5, we performed ablation experiments on multi-resolution hash grid features.
Figure 7 clearly shows that our proposed multi-resolution hash grid branch can match local
scene content explicitly and accurately. Experiments show that NeRFs can benefit from
the local features encoded in grid features, and the PSNR is improved by about 1 dB. This
result confirms the effectiveness of our multi-resolution hash features in improving the
quality of radiation field rendering.

Table 5. Comparison with and without multi-resolution grid feature on Google scenes.

PSNR↑ 1 LPIPS↓ SSIM↑

Without multi-resolution grid feature 22.947 0.261 0.599
With multi-resolution grid feature 23.879 0.205 0.735

1 The upward arrow indicates that the higher the metric, the better. The downward arrow indicates that the lower
the metric, the better.
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Figure 7. Visualization of branches with/without multi-resolution grid. Adding multi-resolution
grid can render more details.

To enhance the stability of multi-resolution hash grids, we explore the impact of
different resolution grids on the results. Table 6 illustrates the impact of the grid resolution
on rendering results. We find that a higher grid resolution does not necessarily lead to
better results, as convergence issues may arise with an increasing resolution. During our
experiments, the optimal resolution was L = 16, which can better balance the rendering
quality of the training time.

Table 6. Impact of different hash resolution grid settings on Google scenes.

PSNR↑ 1 LPIPS↓ SSIM↑

L = 2 22.866 0.301 0.563
L = 4 22.890 0.289 0.616
L = 8 23.496 0.253 0.688

L = 16 23.879 0.205 0.735
1 The upward arrow indicates that the higher the metric, the better. The downward arrow indicates that the lower
the metric, the better.

To effectively utilize the features existing in multi-view images, we designed a multi-
view prior feature branch. Experimental results confirm the benefits of adding multi-view
prior features. The quantitative comparisons provided in Table 7 strongly support the
superior performance achieved by integrating multi-view prior features into our method.
There is a gain of approximately 1.5 dB in the PSNR.

Table 7. Comparison with and without multi-view prior feature on Google scenes.

PSNR↑ 1 LPIPS↓ SSIM↑

Without multi-view prior feature 22.518 0.288 0.629
With multi-view prior feature 24.079 0.193 0.791

1 The upward arrow indicates that the higher the metric, the better. The downward arrow indicates that the lower
the metric, the better.

Further, we explore the performance of the network under different numbers of
reference views. Table 8 presents the quantitative results of this experiment, demonstrating
that the more reference views within a certain angular range, the better the performance.
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Table 8. Impact of different number of reference view settings within 120◦ viewing angle on Google
scenes.

PSNR↑ 1 LPIPS↓ SSIM↑

n = 1 23.264 0.279 0.702
n = 2 23.613 0.255 0.691
n = 3 23.892 0.223 0.727
n = 4 23.950 0.214 0.751

1 The upward arrow indicates that the higher the metric, the better. The downward arrow indicates that the lower
the metric, the better.

5. Discussion

Previous NeRF methods [6–9] have certain limitations in large scene view synthesis,
including insufficient detail and the need for a large amount of view source data. To
address these challenges, we introduce a multi-resolution hash grid feature branch and a
multi-view prior feature branch into the classic NeRF framework. The multi-view prior
feature branch maximizes the ability to extract as much information as possible from 2D
images and then uses multi-resolution grids with geometric properties for modeling, which
improves the overall representation ability of large scene NeRF.

Our method can be applied well in real-world scenes. For example, in terms of
virtual tourism, by creating realistic digital twins of attractions, users can learn about the
destination through a virtual travel experience without actually going there. In the dataset
we created, YRT is a tourist attraction, and using our method can generate realistic views
from any angle, allowing users to freely tour the virtual environment. Furthermore, our
method can be applied to the metaverse. Based on the current local area modeling, it can
be expanded to the city level in the future to build a three-dimensional model of the entire
city as a digital map of the metaverse.

In addition, since the multi-resolution hash grid stores explicit geometric information
and texture feature characteristics, the mesh and texture can be generated by combining
classic algorithms (e.g., Marching cubes [46]) and 3D tools (e.g., Xatlas [47]), which can
integrate well with existing 3D rendering pipelines, expanding their use in downstream
applications.

6. Conclusions

The method we propose, MM-NeRF, represents an advancement in the field of large-
scale scene modeling for NeRF. Previous methods of handling large-scale reconstructions
often employed divide-and-conquer strategies or increased the network size. In contrast,
we propose a novel architecture that integrates efficient hybrid feature input based on the
NeRF architecture, including 3D mesh features based on explicit modeling and scene priors
obtained from multi-views. The injection of these mixed features into the NeRF network
brings supplementary information, which makes up for the limitations of the general NeRF,
such as low fitting and insufficient refinement due to the sparsity of large scene views. We
addressed several key challenges and made several contributions:

(1) We combined an MLP-based NeRF with explicitly constructed feature grids and
introduced a multi-resolution hash grid feature branch to effectively encode local and
global scene information, significantly improving the accuracy of large-scale scene
modeling.

(2) We noticed that previous NeRF methods do not fully utilize the potential of multi-view
prior information. We designed a view encoder to extract and integrate features from
multiple views to obtain better results.

Despite the fact that our proposed method improves the rendering quality to a certain
extent, our model inherits some limitations of NeRF-based methods:
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(1) A slow training phase: although hash mapping is faster than MLP queries, the entire
system requires more training epochs (about 200–300 epochs for different scenes)
since the other feature branch has a more complex encoder structure.

(2) Handling a large number of high-resolution images: we adopt the existing mixed-ray
batch sampling method for training, which is very inefficient without distributed
training.

In conclusion, we propose a new variant of optimized NeRF, MM-NeRF, specifically
designed for large-scale scene modeling, which takes a step forward in solving the chal-
lenges of the large-scene NeRF. MM-NeRF combines a multi-resolution hash grid and
cross-view prior feature acquisition to solve the problems of previous methods that are
not precise enough in large scenes and rely on a large number of views. But MM-NeRF
can be further explored and improved. For example, by capturing and modeling dynamic
objects in a scene or exploring the use of prompts to enable controllable view synthesis,
these studies could help improve the overall usability of NeRF in large scenes.
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