
Citation: Ren, Q.-D.-E.-J.; Wang, L.;

Ma, Z.; Barintag, S. Offline Mongolian

Handwriting Recognition Based on

Data Augmentation and Improved

ECA-Net. Electronics 2024, 13, 835.

https://doi.org/10.3390/

electronics13050835

Academic Editor: Daniel Riccio

Received: 18 January 2024

Revised: 10 February 2024

Accepted: 20 February 2024

Published: 21 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Offline Mongolian Handwriting Recognition Based on Data
Augmentation and Improved ECA-Net
Qing-Dao-Er-Ji Ren 1 , Lele Wang 1,* , Zerui Ma 1 and Saheya Barintag 2

1 School of Information Engineering, Inner Mongolia University of Technology, Hohhot 010051, China;
renqingln@imut.edu.cn (Q.-D.-E.-J.R.); 20221800122@imut.edu.cn (Z.M.)

2 School of Mathematics Science College, Inner Mongolia Normal University, Hohhot 010028, China;
saheya@imnu.edu.cn

* Correspondence: wangll@imut.edu.cn

Abstract: Writing is an important carrier of cultural inheritance, and the digitization of handwritten
texts is an effective means to protect national culture. Compared to Chinese and English handwriting
recognition, the research on Mongolian handwriting recognition started relatively late and achieved
few results due to the characteristics of the script itself and the lack of corpus. First, according to the
characteristics of Mongolian handwritten characters, the random erasing data augmentation algo-
rithm was modified, and a dual data augmentation (DDA) algorithm was proposed by combining the
improved algorithm with horizontal wave transformation (HWT) to augment the dataset for training
the Mongolian handwriting recognition. Second, the classical CRNN handwriting recognition model
was improved. The structure of the encoder and decoder was adjusted according to the characteristics
of the Mongolian script, and the attention mechanism was introduced in the feature extraction and
decoding stages of the model. An improved handwriting recognition model, named the EGA model,
suitable for the features of Mongolian handwriting was suggested. Finally, the effectiveness of the
EGA model was verified by a large number of data tests. Experimental results demonstrated that
the proposed EGA model improves the recognition accuracy of Mongolian handwriting, and the
structural modification of the encoder and coder effectively balances the recognition accuracy and
complexity of the model.

Keywords: attention mechanism; character recognition; data augmentation; neural network

1. Introduction

Writing, which records human history and inherits human civilization, is a unique
skill and cultural symbol of human beings. In the Inner Mongolia region of China, the
traditional Mongolian script used in Inner Mongolia is the Uighur-Mongolian script and
plays an important role in the local historical record and cultural inheritance. Digitizing
Mongolian handwriting in bulk using character recognition technology is an important
way for Mongolian culture to keep pace with the times.

Training character recognition models by using deep neural networks is a common
practice in the current character recognition field, and it has a significant effect on Chinese
and English recognition. The LeNet5 CNN model proposed by Lecun et al. [1] in 1998
is regarded as an early classical model in the field of character recognition. After data
augmentation, the LeNet5 CNN recognized handwriting in the MNIST dataset with 99.2%
accuracy. In 2011, scholars from IDSIA Labs used GPUs to train CNNs, opening the
application of neural networks in large-class (1000-class) Chinese handwriting recognition.
Cire et al. [2] integrated multiple CNNs with various input scales and trained the model
with the NIST SD19 dataset (having 800,000 samples), achieving a recognition accuracy
of 89.12%. The recognition accuracy on the MNIST dataset was even better, reaching
99.72%. In 2015, Shi et al. [3] used CNN to extract the entire input image features and then
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converted the extracted feature map into a feature sequence input to RNN to predict the
output sequence. They calculated the sequence output probability with the connectionist
temporal classification (CTC). This end-to-end trainable neural network based on image
sequence recognition is a classical convolutional recurrent neural network (CRNN). CRNN
not only has outstanding achievements in popular character recognition such as Chinese
and English script, but also shows excellent recognition performance in various ethnic
minority character recognition tasks. In 2021, CRNN was applied to scanned Uyghur
character recognition [4], with a recognition accuracy of more than 90%. In the same year,
CRNN was also used in recognizing the script of The Book of Changes [5] and Tibetan-
Chinese bilingual text [6], and both achieved reasonable recognition results. In 2020, the
Baidu Flypaddle team proposed a lightweight character recognition system: PP-OCR [7].
The overall size of the system model is only 3.5 MB and it can recognize 6622 Chinese
characters and 63 alphanumeric symbols. After training, the model also showed good
performance in character recognition for several other languages (French, Korean, Japanese,
and German). Since 2020, researchers have extended the “transformer” to computer vision
tasks. In 2020, Dosovitskiy et al. [8] proposed a Vision Transformer (ViT), which applies a
standard Transformer directly to images, with the fewest possible modifications, inspired
by the Transformer scaling successes in NLP. In addition, ViT has reached or exceeded the
latest level on many image classification datasets, showing superior performance. In 2021,
Liu et al. [9] of Microsoft Research Asia proposed a new type of vision transformer, Swin
Transformer, that can be used as a general-purpose backbone network for computer vision.
Experimental results have shown that the self-attention mechanism based on the shifted
window introduced in the algorithm is an effective method to solve the visual problem.
In 2022, Riaz Nauman et al. [10] proposed the CNN-transformer architecture to solve
the problem of offline Urdu handwriting recognition. The effectiveness of the proposed
method was verified on the public NUST-UHWR dataset. In 2023, Dan Yongping et al. [11]
introduced the particle swarm optimization method into the design of CNN handwritten
Chinese character recognition, which reduced redundant calculations in the network and
achieved good experimental results.

Traditional Mongolian is a kind of script that is written from top to bottom, and the
handwritten Mongolian script has the characteristics of diverse styles and flexible glyphs,
and it is difficult to divide the morphemes. In 2017, Fan et al. conducted research on
Mongolian handwriting recognition based on grapheme segmentation and implemented
a handwriting recognition system by using a small-scale font library in the HTK (hidden
Markov model toolkit) environment [12]. The experimental results showed that short
graphemes have better performance than long graphemes. In recent years, Mongolian
handwriting recognition based on whole words has begun to emerge. In 2019, Liu [13]
proposed a sequence-to-sequence offline handwriting Mongolian whole-word recognition
model with an attention mechanism. On large-scale datasets, the recognition accuracy
of the model reached 81.56%. In 2020, Wei [14] proposed an end-to-end handwritten
Mongolian whole-word recognition method and the experimental results showed that the
method is superior to the traditional ones based on morpheme segmentation. This method
not only achieved the optimal recognition effect at that time, but also alleviated the out-
of-vocabulary (OOV) problem. In 2021, Yang [15] built an online Mongolian handwriting
recognition cloud service system, providing online Mongolian handwriting recognition
services via a service interface.

Data augmentation (DA) is an important means to improve the training effect of neural
network models by augmenting the training set. DA algorithms for character recognition
research have appeared for Chinese, English, and other languages. With the application of
machine learning and neural networks in many fields, DA technology has also been greatly
developed. In 1998, Lecun et al. [1] developed data augmentation for the MNIST database
by using various operations, such as scaling, rotation, and stretching, to effectively improve
the recognition accuracy of the character recognition model. Experimental results have
shown that the elastic deformation data augmentation method [16] proposed for sequence
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character recognition can help improve the efficiency of character recognition models. In
2017, Zhong et al. [17] proposed a random erasing data augmentation (REDA) algorithm
for the target detection task. By erasing random areas in the target image, random erasing
data augmentation algorithms can improve the robustness against occlusion and realize
data augmentation. In 2021, Han et al. [18] used generative adversarial networks (GANs)
to enhance the data of ancient characters, reconstruct the region-specific information of the
character, and improve the ability of the model to extract image features. It can be seen
that in the field of character recognition, it is theoretically feasible to augment the data of
character images for training.

The abovementioned research indicates that the use of deep neural networks to achieve
Mongolian handwriting recognition has a sufficient theoretical basis, but directly pouring
traditional Mongolian corpus into the character recognition models for popular languages
such as English and Chinese may not be feasible, since the recognition performance may be
very poor. Therefore, we need to fully explore the unique features of traditional Mongolian
on the basis of sufficient handwritten character corpus and build a model suitable for Mon-
golian handwritten script. Moreover, the traditional Mongolian handwriting recognition
research started late, and the public datasets are relatively scarce; therefore, it is imperative
to use the DA algorithm to augment the Mongolian handwriting recognition dataset.

In summary, to overcome the obstacles to the current Mongolian handwriting recogni-
tion method, such as imperfect data foundation and low prediction accuracy, this paper
proposes an improved handwriting recognition model suitable for Mongolian handwriting
characteristics. The main contributions of this paper are as follows: horizontal wave trans-
formation (HWTDA) and random erasing data augmentation (REDA) algorithms were
studied and used to augment Mongolian handwritten data. In model training, ECA, GRU,
and Attn modules were used to encode and predict Mongolian handwriting to fully explore
the local and global features of character data to improve the prediction performance of
our model.

2. An Improved Dual Augmentation Algorithm

The current mainstream handwriting recognition methods, especially the methods
represented by deep neural network models, need to be based on a large amount of data,
and small-scale data sets cannot optimize the parameters of the training model. Research
shows that when the amount of data in the dataset is small, selecting the appropriate
data augmentation method can improve the efficiency of model training to a certain
extent [19–22].

Random erasure data augmentation algorithm is a commonly used data augmentation
method that can generate more training data by randomly erasing a part of the input image.
However, this algorithm may lose some key information, resulting in the performance
degradation of the model. Therefore, we modified this algorithm so that it can better adapt
to the challenges related to Mongolian handwriting recognition.

The DA method should be selected based on the characteristics of the Mongolian
handwritten script. First, the traditional Mongolian script consists of letters, and each
letter exhibits different beginning, middle, and ending writing formats in words. Therefore,
random clipping data augmentation will destroy the Mongolian format and have a negative
impact on model training. Second, traditional Mongolian script follows a fixed writing rule,
with letters going from top to bottom and lines running from left to right. Therefore, the
samples formed using simple rotation, flipping, etc. are not in line with real ones and are
difficult to function. Third, traditional Mongolian script belongs to the phonetic scripts, the
characters are seamlessly connected, the position of the characters is relatively free when
writing, and the phenomenon of consecutive strokes and omissions is quite common, which
provides room for selecting DA algorithms. Finally, in daily life, handwritten characters
often have some writing stains due to poor writing habits or low writing instrument
quality, and if the model cannot improve the stain inclusiveness, it will inevitably affect its
practical performance.
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Based on the above practical requirements and the analysis of Mongolian handwriting
recognition datasets, the augmentation of Mongolian handwriting data is achieved from
the following two aspects:

(1) From the perspective of handwriting image morphology, the HWT algorithm is used
for augmenting the Mongolian handwriting data. The algorithm is softer and more
flexible in processing the sample of the raw image. The obtained image samples
with complete character structure follow the traditional Mongolian writing format,
and the augmentation effect is diverse. Moreover, it can further enhance the details
of the image and reduce the information lost due to the erasure operation, thereby
enhancing the robustness of the model.

The normalized original image is used to perform horizontal wave transformation in
the HWTDA algorithm, which can ensure that the parameters are universal for the image.
The direction, range, and amplitude of the transformation are determined by parameter
values. HWT can change pixels in an image into a horizontal sine wave shape with a
given amplitude and frequency; therefore, the conversion parameters, i.e., the conversion
frequency N and the magnitude R, need to be specified in advance. Each point in the image
follows the transformation rules of Equations (1) and (2).

T(x) = x (1)

T(y) = y + (±)R ∗ sin(Nπ ∗ y) (2)

From the above formula, HWT does not produce any distortion on the x-coordinate of
a pixel. In Equation (2), the parameter R is used to control the amplitude of the sine wave,
N is used to control the frequency of the transformation, (T(x), T(y)) is the transformation
value of pixel (x, y), and (±1) denotes the direction of the image transformation. The effect
of HWTDA is shown in Figure 1.
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image processed by HWTDA with R = 5, 15, 25, 35, and 45 from left to right.

(2) From the perspective of image appearance, an improved random erasing data aug-
mentation algorithm suitable for Mongolian handwritten characters is proposed in
this work. The random erasure algorithm is changed to selectively erase the pixels in
the image within the specified range in order to retain more important information.
In addition, according to the actual application scenario, the random erasure area is
set as an oval. These modifications can improve the quality of the model training data
to a certain extent, thereby improving the model’s performance.

First, in the existing random erasing data augmentation algorithms, the content to be
erased is determined by two random values: the randomly selected point P = (xt, yt) in
the image range and the random area ratio of the region to be erased to the whole image.
For the object detection task, as long as the detection subject in the image is not blocked by
a large area, the detectability of the image can be maintained, but the character recognition
task has its own particularities, especially for the traditional Mongolian script. Since the
writing format of letters is closely related to the location in traditional Mongolian script, if
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the occlusion area generated by the random erasing data augmentation algorithm covers
the main part of the image to be recognized, it is difficult to accurately distinguish the text,
even manually. Therefore, the hasty use of random erasing data augmentation algorithm
to augment Mongolian handwritten images may be not suitable for model training and
may fail. Second, the stains that appear in handwritten characters are usually caused by
ink, which is generally round or elliptical, but the random erasing data augmentation
algorithm is originally applied to handwritten characters with square noise, which is not in
line with reality.

This article has made the following improvements to overcome the above problems.
First, the selection range of random points is specified to ensure that the occlusion caused
by erasing will not affect the handwriting recognition of the image. Second, in order to
make the occlusion area similar to the real ones and ensure the diversity of the random
erasing area, the rectangle in the existing random erasing data augmentation algorithm is
replaced by an ellipse. Through the dual data augmentation algorithm, more high-quality
training data can be generated to improve the performance of the Mongolian handwriting
recognition model.

The flow of the improved REDA algorithm is as follows:
Step 1: Enter an input image and initialize the algorithm parameters. Let the input

image be I, with a size of S, and S = W ∗ H, where W and H represent the width and height
of image I, respectively. Set the erasing area ratio range [Sl , Sh] and the erasing major to
short axis ratio range [ra, rb] and initialize the erasing probability p.

Step 2: Select an elliptical region with a random area. Let the area of the elliptical
region It be St and the ratio of the major axis a to the minor axis b be rt. They are randomly
initialized to St and rt, with St/S within range [Sl , Sh] and rt within range [ra, rb]. The
formula for calculating the major and minor axes is as follows.

a = 2

√
Strt

π
(3)

b = 2

√
St

πrt
(4)

Step 3: Determine the random erasing location. A location point P = (xt, yt) in
the image I is randomly generated and it satisfies the requirements a

2 ≤ xt ≤ αW or
(1 − α)W ≤ xt ≤ W − a

2 , b
2 ≤ yt ≤ H − b

2 , with 0 < α < 0.5. A parameter of α is used to
ensure that the occlusion caused by erasing will not affect the recognition of Mongolian
characters in the image.

Step 4: For the selected elliptical area It, erase its pixels according to a probabilistic
random value p.

The performance of the improved REDA algorithm is shown in Figure 2.
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Figure 2. Experimental test of Improved Random Erasing Data Augmentation. (a) The original image;
(b) the original REDA algorithm processes images through rectangular areas; (c) the improved REDA
algorithm processes images through elliptical areas.
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This paper proposed an improved dual data augmentation (DDA) algorithm by
combining the above two data augmentation methods, and its flow is presented in Figure 3.
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Figure 3. Flow of the Dual Data Augmentation Algorithm.

As shown in Figure 3, first, the Mongolian handwriting data are input into the model
and then normalized. Second, a random value within [0, 1] is assigned by the system, and
if the random value is greater than 0.4, only use the HWTDA method and output data;
otherwise, the DDA method is adopted, that is, the input image data are randomly erased
and then, the HWTDA is performed to output the final data augmentation result. In this
method, data augmentation of an image is determined by a random value, which alleviates
the problem that the similarity between the randomly erased image and the original image
is too high. The method of random erasing first and then using horizontal wave transform
can also give richer image occlusion noise, which helps improve data richness.

3. Improved Mongolian Handwriting Recognition Model: EGA Model

CRNN can realize end-to-end character recognition and is a landmark model in the de-
velopment of character recognition. However, a large number of experimental results have
shown that CRNN has low recognition accuracy when performing Mongolian handwriting
recognition tasks; therefore, it is difficult to be used practically. So, this paper presents an
ECA-Net-GRU-Attn (EGA) Model based on the characteristics of Mongolian handwriting.

3.1. Training Process of the EGA Model

Since the proposed EGA model is constructed by improving the CRNN, it follows
the CRNN network structure and consists of an ECA-Net for feature extraction, a BiGRU
encoder and a BiLSTM decoder for processing feature sequences, and an attention module
to enhance sequence prediction performance.

The processing flow of an input image in the EGA model is shown in Figure 4.
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Figure 4. EGA Model Training Process.

First, compared to English handwritten script, the structure of traditional Mongolian
handwritten script is more complex and flexible, which means that the feature extraction of
images is more essential and difficult. The channel attention mechanism introduced in the
feature extraction stage can grasp more detailed features of Mongolian handwriting images
in a more directional way, improving the recognition accuracy of the model in recognizing
Mongolian handwriting. In the EGA model, an ECA module, which is a channel attention
module without dimensionality reduction, is utilized in the feature extraction stage of char-
acter recognition, which can overcome the shortcomings of insufficient feature extraction
and insufficient processing of key areas. The ECA-Net has good experimental results in
large-scale image classification, object detection, and instance ImageNet and MS segmen-
tation [23], but we try to apply the technique in character recognition for the first time.
Considering the complexity of the model, an ECA-Net model is designed by combining the
ECA module with ResNet34 to extract the feature of Mongolian handwritten images.

Second, to balance the relationship between model recognition accuracy and complex-
ity, the EGA model uses the BiGRU encoder instead of the BiLSTM encoder in the CRNN
baseline model, which helps to reduce the overall complexity of the model. GRU and LSTM
belong to recurrent neural networks based on the working mechanism of gating, and GRU
is an evolved version of LSTM, reducing the original three gating to two. The diagrams of
their structures are shown in Figures 5 and 6, respectively.
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From the comparison, it is clear that the structure of the GRU is significantly simpler.
In addition, the EGA model performs the task of single-word recognition, and the training
image used is homemade standard Mongolian handwriting recognition images by our
laboratory; although data augmentation is added, the overall complexity of images is
still low; therefore, GRU is fully qualified for encoding. The decoder follows the BiLSTM
structure in CRNN, which has a more powerful ability to contact the context, helping to
ensure the decoding quality.
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Finally, unlike English, Cyrillic Mongolian and other scripts, such as traditional Mon-
golian script, are in the form of a conjunction of letters from top to bottom and the begin-
ning, middle, and ending writing formats of each letter in words are not exactly the same.
Therefore, whether the context relationship of the training sample can be fully learned is
crucial for the performance of traditional Mongolian handwriting recognition. The EGA
model incorporates the attention mechanism into the encoder and decoder modules, which
has good contextual analysis ability; therefore, introducing the attention mechanism in
the output sequence prediction process can achieve further improvement of the CRNN
model, which is helpful to increase the recognition accuracy of the model for Mongolian
handwritten images.

3.2. Network Structure of the EGA Model

Process analysis of the EGA model can provide a more comprehensive understanding
of the design concept of the model, and structural analysis of the network can deeply reveal
the working principle of the model. The network structure of the EGA model is presented
in Figure 6, and the way information is transmitted by each module of the EGA model can
be seen more clearly through the network structure.

As shown in Figure 6, the ECA-Net is used to extract the input image features in the
EGA model and the backbone network of the ECA-Net is the ResNet34, which consists of
33 convolutional layers as well as one maximum pool layer. Except for the first convolu-
tional layer, every two convolutional layers form a residual unit and the Relu() function is
executed between the residual elements as an activation function. The Mongolian hand-
written input image is rotated 90 degrees to the left to form a rectangular structure with
an aspect ratio of 75:40. The sliding window size of the pool layer in the ECA-Net is set to
2 × 3 to better collect image information.

The ECA module, which is a channel attention mechanism, can improve the model’s
attention to important channel features, thereby improving the generalization ability of
the model on training and testing data. By considering the weights of different channels,
the model can better capture the important features of Mongolian handwritten characters
and improve the model’s performance. Specifically, the channel attention mechanism
can collect the interaction information between each channel and its k adjacent channels
in a non-dimensionality-reducing manner and calculate the weight of the channel. In
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the subsequent training process, the channel attention weight parameters learned by the
module are represented by a matrix Wk and the expression of Wk is given in (5):

w1,1 · · · w1,k 0 0 · · · · · · 0
0 w2,2 · · · w2,k+1 0 · · · · · · 0
...

...
...

...
. . .

...
...

...
0 · · · 0 0 · · · wC,C−k+1 · · · wC,C

 (5)

The matrix Wk consists of k ∗C parameters and C represents the size of the input image
feature matrix, i.e., the number of output channels passing through the previous residual
unit. The weight calculation formula for the image channel yi is shown in (6):

ωi = σ

(
k

∑
j=1

wj
iy

j
i

)
, yj

i ∈ Ωk
i (6)

where yj
i represents the j-th neighboring channel of yi, wj

i represents the weight of yj
i , and

Ωk
i represents the set of k adjacent channels of yi. The dynamic value of k is proportional

to C, as shown in (7):
C = ϕ(k) = 2(γ+k−b) (7)

The values for C and k are adaptively adjusted according to Equation (8):

k = ψ(C)
∣∣∣∣ log2(C)

γ
+

b
γ

∣∣∣∣
odd

(8)

where |x|odd represents the nearest odd number of x, and γ and b are set to be fixed
constants. Due to the mapping function ψ, high-dimensional channels have a longer range
of interactions, while low-dimensional channels experience a shorter range of interactions.

The ECA-Net adopts a global average pool layer at the end to connect a fully connected
layer, passes the extracted Mongolian handwritten image feature map to the Map-to-
Sequence layer through this fully connected layer, and converts it into a feature sequence.
The feature vectors in the feature sequence are passed to the RNN as encoder input values.

The proposed EGA model has an encoder-decoder structure in the RNN. The con-
figuration of the BiGRU encoder and the BiLSTM decoder can balance the complexity
and the recognition accuracy of the Mongolian handwriting recognition model. Like the
baseline CRNN model, the function of the cyclic layer in the EGA model is to predict the
label distribution of each feature vector in the feature sequences, and the errors of the
loop layer are backpropagated, converted into a feature sequence, and then fed back to the
convolutional layer.

The input content of the GRU contains the input of the current timestep xt and the
hidden state ht−1 of the output of the previous timestep, and the hidden state contains the
relevant information of the previous node. With xt and ht−1, the GRU can calculate the
model output for the current timestep and the hidden state that will be passed to the next
timestep. Specifically, this is achieved through the following steps:

(1) The gating status of the reset gate and the update gate are obtained by using ht−1 and
xt and are then normalized through the sigmoid function so that it acts as a gating
signal. The operation of the reset gate in GRU is given in Equation (9):

r = σ
(

Wrxt + Urht−1
)

(9)

where σ represents the sigmoid function and Wr and Ur are the weights learned in the reset
gate. The calculation method for the update gate is shown in Equation (10):

z = σ
(

Wzxt + Uzht−1
)

(10)
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Wz and Uz are the weights learned in the update gate.

(2) The hidden state of the current timestep t is calculated by Equation (11):

ht = zht−1 + (1 − z)
∼
h

t
(11)

where
∼
h

t
contains the input of the current timestep and at the same time, the hidden state

of the hidden unit of the previous timestep is added into the current hidden state; the
calculation formula is shown in (12):

∼
h

t
= ϕ

(
Wxt + U

(
r
⊙

ht−1
))

(12)

where W represents the weight of the current input and U represents the weight of the
hidden state of the hidden unit in the previous timestep.

In the GRU, when the update gate approaches 0, the hidden state ignores the previous
hidden state and updates only with the current input, which ensures that the hidden
state selectively retains relevant important information and that the information can be
expressed more compactly.

In summary, in the model training process, the hidden state ht−1 passed down from
the previous timestep and the input xt of the current timestep are used as the input of
BiGRU. On one hand, it obtains the two gating states of the reset gate and the update gate
and normalizes the obtained information through the sigmoid function to make it act as a
gating signal. On the other hand, the image feature sequence is converted into a context
vector Ct as the output.

This work introduces an attention mechanism to the encoder-decoder structure to give
weights to the output of the encoder. The main implementation details of the attention
mechanism are as follows: first, the input data are fed through a feedforward neural
network to generate query vectors and key vectors. Then, the similarity between the query
vectors and key vectors is calculated and the resulting scores are normalized to obtain the
final attention weights. Finally, the attention weights are applied to the value vectors and
summed up to obtain the weighted sum as the output feature vector. Through this process,
the attention mechanism can learn the importance of different parts of the input data and
enable the decoder to better utilize the information from the encoder. It also has strong
interpretability and generalization ability.

Specifically, the attention mechanism learns a special attention weight by adding an
additional feedforward neural network to the network structure αte ,td , where te and td
represents the t-th timestep of the encoder and decoder, respectively. The introduction of
this weight into the neural network helps to further reconcile the relationship between the
hidden states in the encoder and decoder to highlight the focus of model training. The
context vector Ct of the output of the t-th timestep encoder can be assigned by Equation (13):

Ct =
T

∑
te=1

αte ,td hte (13)

At the t-th timestep of the decoder, Ct is the weighted sum containing all encoder
hidden states and their corresponding attention weights.

The structure of the decoder BiLSTM is similar to that of the encoder. When calculating
the prediction sequence, the input values accepted by the decoder are the context vector Ct
weighted by the attention mechanism, the system state St−1 of the output of the decoder at
the previous timestep, and the hidden state St−1 of the decoder at the previous timestep.
With the help of such information, the decoder can calculate the hidden state ht of the
current time node and the probability distribution of the output sequence of the node
according to the probability calculation formula, as shown in (14).
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p(St|St−1, St−2, · · · , S1, Ct) = g(ht, St−1, Ct) (14)

where g represents the given activation function. The softmax is used as the activation func-
tion for this stage in the EGA model. The largest output value of p(St|St−1, St−2, · · · , S1, Ct)
is treated as the output value of the t-th timestep. Ultimately, the output values of each
timestep make up the output sequence of the model.

4. Data Experimental
4.1. Experimental Data

The dataset used in this article comes from the Inner Mongolia Normal University
and includes 9479 handwritten Mongolian characters, totalling 47,395 images. The dataset
covers various handwriting styles and samples from different writers, with a wide variety
of fonts, and each character has a clear shape, which is highly representative and can truly
reflect the features of Mongolian handwriting styles. Furthermore, the dataset is balanced,
i.e., the number of images per character is similar among them. All these characters
are carefully handwritten and drawn by writers, closely related to practical application
scenarios and are highly authentic and practical, making them suitable for data training and
testing for handwriting character recognition tasks. Some offline Mongolian handwriting
sample images of the dataset are shown in Figure 7.
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4.2. Model Training Platform

According to the training requirements of the Mongolian handwriting recognition
model, the model training environment built in this paper is shown in Table 1.

Table 1. Model Training Platform Parameters.

Name Parameters

CPU Intel Core i7-6700 CPU@3.40 GHz
GPU Nvidia Tesla P100 + Huawei GPU Server

Operating system Ubuntu 16.04.6
Programming language Python 3.7

Deep learning framework Pytorch 1.9.0

4.3. Indicators for Model Performance Evaluation

The quality of the Mongolian handwriting recognition model is primarily measured
during the training process from two aspects: the recognition accuracy for the test set and
the complexity of the trained model.
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(1) Accuracy is the primary criterion to measure the effectiveness and practicality of
Mongolian handwriting recognition models and it can be calculated by the confusion
matrix, in which the prediction accuracy of the classification algorithm is evaluated
by the relationship between the true category of the sample and the predicted value
of the model, as shown in Table 2.

Table 2. Confusion Matrix.

Forecast Category

Real category Positive category Negative category
Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

In the confusion matrix, TP and TN represent the situation where the predicted
category matches the real category and the classification if the predicted value is correct;
FP and FN represent the situation where the predicted category does not match the real
category and the classification is wrong. The accuracy is defined by the proportion of
correctly classified data to the total test set and calculated by Equation (15).

Accurary =
TP + TN

TP + TN + FP + FN
(15)

In Mongolian handwriting recognition, predicted value classification is more diverse
and not limited to positive and negative categories, and the correct classification represents
the situation where the sequence output of the model is consistent with the sequence of
image labels.

(2) Model complexity is another important criterion for measuring model quality. Under
the condition of the same test platform and data, the model training time, the number
of model parameters generated during the training process, and the size of the trained
model are used as indicators to evaluate the model’s complexity in this work.

4.4. Data Test of the Dual Data Augmentation Method and Result Analysis

The dual data augmentation algorithm combines random erasing with horizontal
wave transformation, and its parameters also need to be uniformly initialized. The test
parameters of dual data augmentation are listed in Table 3. The optimal hyperparam-
eter values mentioned above were used to ensure the sample quality of the proposed
data augmentation.

Table 3. Dual Data Augmentation Hyperparameter.

Hyperparameter Name Hyperparameter Meaning Hyperparameter Value

p A random value that determines the
image data augmentation method [0, 1]

W Image width 800
H Image height 1500

Sl
For random erasing, the minimal

erasing area ratio 0.01

Sh
For random erasing, the maximal

erasing area ratio 0.06

ra
The minimal ratio of the major to

minor axes of the erasing area 0.5

rb
The maximal ratio of the major to

minor axes of the erasing area 2
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The effect of using dual data augmentation to achieve data augmentation is shown in
Figure 8. The images are, from left to right, the original image, the image processed only by
HWTDA, and the image processed by DDA.
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After DDA, the Mongolian handwriting recognition data have been effectively aug-
mented, and the data before and after the augmentation are evenly mixed and randomly
distributed to the training set and test set with a number ratio of 7:3 to form datasets for
Mongolian handwriting recognition. The data augmentation and dataset segmentation
results are summarized in Table 4.

Table 4. Dataset Segmentation after Dual Data Augmentation.

Data Type
Raw Data

(Wordage × Frame
Number)

Dual Data Augmentation
(Wordage × Frame Number) Total Data

(Wordage × Frame
Number)

Unit
Horizontal Wave
Transformation

Horizontal Wave
Transformation +
Random Erasing

Training set 33,175 33,175 13,512 79,862
sheets(6635 × 5) (6635 × 5) (6635 × 2) (6635 × 12)

Test set
14,220 14,220 5791 34,231

sheets(2844 × 5) (2844 × 5) (2844 × 2) (2844 × 12)

Total
47,395 47,395 19,303 114,093

sheets(9479 × 5) (9479 × 5) (9479 × 2) (9479 × 12)

The direct purpose of designing and using dual data augmentation is to produce
Mongolian handwritten images with more diverse forms and richer content, but the
fundamental purpose is to deepen the understanding of Mongolian handwriting for the
neural network model and improve the accuracy of Mongolian handwriting recognition
through continuous learning of a large amount of data.

As shown in Figure 9, the CRNN model is trained separately by using the dataset
before and after data augmentation, and the impact and significance of data augmentation
can be better highlighted by comparing the training accuracy of the model. In Figure 9,
the coordinate horizontal axis represents the model training epochs. The vertical axis
represents the recognition accuracy (%) of the test set by the model during training.

From the accuracy curve, it can be seen that after 15 epochs of training, the recognition
accuracy of the CRNN model trained using the raw dataset gradually converged to 56.2%.
The growth rate of recognition accuracy of the CRNN models using data-augmentation
datasets gradually slowed down but still showed an upward trend, and the recognition
accuracy rate was 69.3%. The experimental results showed that DDA can help improve the
recognition accuracy of the Mongolian handwriting recognition model.
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This is also confirmed by the loss value curve of the model. Based on the loss values
of each epoch for the test set, the model loss function curves are plotted in Figure 10. In
the figure, the horizontal axis represents the model training epochs and the vertical axis
represents the loss values of the model for the test set.
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It can be seen from the change trend of the loss value curve that after the model
was trained for 15 epochs, the convergence speed of the CRNN model trained with the
raw data and the dual data augmentation dataset gradually slowed down and the loss
function converged to a lower value in the model with the dual data augmentation dataset,
indicating that the dataset is more adequate for model training. The experimental results
showed that the dual data augmentation effectively augmented the model training dataset
and improved the recognition accuracy of the Mongolian handwriting recognition model.

4.5. Data Test for the EGA Model and Results

To ensure the training quality of the EGA model, we use the dataset augmented by
DDA for model training.

The curves of the training loss value and the test loss value of the EGA model are
presented in Figure 11, and the horizontal axis represents the model training epoch. The
vertical axis represents the model loss values.

It can be seen that, with the increase in the number of iterations, the loss value of
the training set and the test set of the model gradually decreased, and when the iteration
reached about 25 epochs, the decrease in the loss value of the training set and the test
set slowed down and gradually stabilized and the loss function of the test set converged
to about 0.3. To prevent the model from being overfitted due to too many iterations, the
training of the model was stopped.
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In order to verify the improvement performance of the model, the EGA model of the
experimental group and the CRNN baseline model of the control group were trained in the
same experimental platform and parameter settings. Table 5 compares the performance of
the EGA model and the CRNN model from the perspective of recognition accuracy and
model complexity. The unit of the model scale is MB, the unit of the number of model
parameters is M, the unit of accuracy is %, and the unit of the model training time is s.

Table 5. Performance Comparison Between EGA Model And CRNN.

Model Model Size
(MB)

Parameter
Number (M) Accuracy (%) Time (s)

ECA-Net-GRU-Attn
188.6 49.3154 89.322 215,112.2(EGA)

CRNN 39.8 10.2280 74.307 196,519.8

With the recognition accuracy (%) of the model test set on the vertical axis and the
model training epochs on the horizontal axis, the recognition accuracy curves of the EGA
model and the CRNN model are shown in Figure 12. The recognition accuracy of the EGA
model in the Mongolian handwriting recognition test set was better than that of the CRNN
model, achieving the expected effect of the experiment.
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From the perspective of model complexity, the size of the CRNN model and the
number of parameters were small, the size of the EGA model was about 4.7 times that of
the CRNN model, and the amount of parameters was about 4.8 times that of the CRNN
model. In terms of training time, the training time of the CRNN model and the EGA model
was 196,519 s and 215,112 s, respectively, indicating an increase of 18,592.4 s for the training
time of the EGA model. It can be seen that with the increase in model depth, the model
training efficiency decreases.



Electronics 2024, 13, 835 16 of 18

4.6. Comparison Test of Different Models and Result Analysis

In order to measure the impact of each module in the EGA model on performance and
to demonstrate the advantages of the EGA model, comparative experiments for important
modules of ECA, GRU, and Attn were conducted to test the recognition rate and training
time of each model on the Mongolian handwriting dataset. The experimental results are
summarized in Table 6.

Table 6. Comparison of Experimental Results of Each Model.

Model Model Size (MB) Parameter Number (M) Accuracy (%) Time (s)

ECA-Net-GRU-Attn (EGA) 188.6 49.3154 89.322 215,112.2
ResNet-GRU-Attn (RGA) 186.8 49.3153 85.496 207,709.5

ECA-Net-LSTM-Attn (ELA) 189.4 49.9728 90.846 223,211.8
ECA-Net-GRU-CTC (EGC) 184.3 48.2845 84.303 218,604.7

CRNN 39.8 10.2280 74.307 196,519.8
ResNet-GRU-Featfusion (RGF-CRNN) 115.4 30.1 85.905 215,112.7

Featfusion-ViT
97.6 25.4 87.417 159,604.5(F-ViT)

As shown in Table 6, from the perspective of the impact of the ECA module on the
model recognition efficiency, the EGA model has a large scale, a large number of parameters,
and a high recognition accuracy, with slightly longer model training time. Compared to the
RGA model, the accuracy of Mongolian handwriting recognition was improved by 3.826%,
and the model training time was increased by 7,402.7 s for the EGA model, indicating
that, under the same experimental conditions, the introduction of the ECA module can
improve the accuracy of handwriting recognition to a certain extent and prolong the model
training time.

From the perspective of the impact of the GRU module on model recognition effi-
ciency, compared to the ELA model, the model size and parameter amount are small, the
Mongolian handwriting recognition accuracy was reduced by 1.524%, and the training
time was increased by 8,099.6 s, indicating that the simplified GRU encoder module can
reduce the complexity and training time of the model to a certain extent.

From the perspective of the impact of the Attn module on model recognition efficiency,
compared to the EGA and EGC models, the EGA model has a larger scale and more
parameters, the recognition accuracy was increased by 5.019%, and the training time was
reduced by 3,492.5 s, showing that the introduction of the Attn module can improve the
overall recognition efficiency of the model.

Furthermore, the experimental results in Table 6 demonstrate that the EGA model
has certain advantages over three other models—CRNN, RGF-CRNN, and F-ViT—in
the Mongolian handwritten characters recognition task. On the test set, the EGA model
achieved the highest accuracy (89.322%) and showed significant improvement compared
to the other three models. This indicates that the EGA model is more efficient at capturing
the features of Mongolian characters.

In summary, introducing the ECA, GRU, and Attn modules can improve the recog-
nition efficiency of the model to varying degrees, validating the effectiveness of the EGA
model. From the perspectives of model size, parameters, accuracy, and training time, the
EGA model has better recognition performance than the baseline model and performs
well on data from different handwriting styles and writers, which is the main advantage
of the model. However, the limitation of the model lies in its relatively larger parameter
size and longer training time, which may occupy more storage space and consume more
computing resources.

5. Conclusions

In this paper, Mongolian handwriting data were used as the research object, two
methods were adopted to augment the Mongolian handwriting dataset, the CRNN model
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and training set were used to establish a Mongolian handwriting recognition model, and the
tests were conducted to evaluate the performance of the proposed model. The experimental
results demonstrated that the overall accuracy of the CRNN handwriting recognition model
was about 74.307% and the model training time was 196,519.8 s. In order to further improve
the recognition performance of the CRNN model, we proposed an EGA model, which uses
ECA-Net to realize feature extraction, a BiGRU encoder and BiLSTM decoder to process
feature sequences, and an attention module to improve sequence prediction performance.
The experimental results of each model were compared and analyzed on the augmented
dataset. The EGA model can effectively improve the accuracy of Mongolian handwriting
recognition. The size of the obtained EGA model was 188.6 MB, the number of parameters
was 49.3154 M, the accuracy rate was 89.322%, and the model training time was 215,112.2 s
in Mongolian handwriting recognition.

Although the performance of the Mongolian handwritten characters recognition model
can be improved to some extent by using data augmentation methods and improving
the network structure, the model has certain limitations due to restrictions in dataset
size and structure. For example, the model has inadequate robustness for erroneous
or exceptional characters and insufficient adaptability for multi-task or multi-scenario
applications, and the prediction accuracy and the model performance still need to be
further improved on larger datasets. In the future, we will optimize the EGA model based
on the following two aspects: obtaining more data by collecting more datasets, such as
introducing various data augmentation methods or considering the combined use of GANs
and other generative models to generate more diverse and realistic Mongolian handwritten
data, which can strengthen model training and improve recognition accuracy. In terms of
model improvement, multi-task learning can be used, or more efficient feature fusion and
model combination methods or training on large datasets can be adopted to enhance the
model’s performance and generalization ability. Using deep neural network structure to
mine more valuable data information and shortening training time while maintaining the
training effect is the focus of future research.
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