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Abstract: Deep Joint transmitter-receiver optimized communication system (Deep JTROCS) is a
new physical layer communication system. It integrates the functions of various signal processing
blocks into deep neural networks in the transmitter and receiver. Therefore, Deep JTROCS can
approach the optimal state at the system level by the joint training of these neural networks. However,
due to the non-differentiable feature of the channel, the back-propagation of Deep JTROCS training
gradients is hindered which hinders the training of the neural networks in the transmitter. Although
researchers have proposed methods to train transmitters using auxiliary tools such as channel models
or feedback links, these tools are not available in many real-world communication scenarios, limiting
the application of Deep JTROCS. In this paper, we propose a new method to use undertrained Deep
JTROCS to transmit the training signals and use these signals to reconstruct the training gradient
of the neural networks in the transmitter, thus avoiding the use of an additional reliable link. The
experimental results show that the proposed method outperforms the additional link-based approach
in different tasks and channels. In addition, experiments conducted on real wireless channels validate
the practical feasibility of the method.

Keywords: Deep JTROCS; deep neural network; neural network training; deep learning

1. Introduction

Artificial intelligence (AI) is widely acknowledged as a pivotal technology for future
6G, with the potential to significantly impact the performance of wireless communication
systems. This will further leverage the performance capabilities of communication systems
to meet the requirements of future 6G applications, encompassing high reliability, high
speed, low latency, and extensive connectivity.

As a promising solution for combining AI with communication systems, the Deep
Joint Transmitter-Receiver Optimized Communication System (Deep JTROCS) reshapes
the structure of wireless communication systems at the physical layer. In Deep JTROCS,
some or all of the digital signal processing functional modules in the transmitter and
receiver, such as source coding, channel coding, modulation, source decoding, channel
decoding and demodulation, etc., are integrated into a channel-spanning autoencoder
consisting of deep neural networks, as shown in Figure 1, where the neural networks in
the transmitter and the receiver are referred to as the encoder and decoder, respectively.
During training, the encoder and decoder located at the two ends of the system’s working
channel collaborate with each other to sense the channel and jointly adjust their parameters
based on the channel state so that the communication system achieves better performance
on its operating channel.

Deep JTROCS flexibly adapts to different communication scenarios and gains perfor-
mance improvements, such as semantic communication [1], orthogonal frequency division
multiplexing (OFDM) [2], multiple input multiple output (MIMO) [3–5], non-orthogonal
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multiple access (NOMA) [6], constellation shaping [7] and fiber optic communication
systems [8].

Figure 1. The Deep Joint Transmitter-Receiver Optimized Communication System (Deep JTROCS).

However, how to train Deep JTROCS is a difficult problem. The channel and some
hardware device components, such as the antenna and the RF front-end, are non-differentiable,
which block the back-propagation of the training gradients from the decoder to the encoder.
Consequently, the encoder cannot be updated during training due to the unavailability of
the gradients.

In some of the existing research, it is common to train Deep JTROCS using differen-
tiable channel models instead of real channels to evaluate the performance of Deep JTROCS
on different tasks. Ref. [9] adds a noise vector to the input data of the receiver to simulate
the channel interference to the modulation signal, which establishes a complete end-to-end
trainable communication system model. However, the channel model is so simple that it
ignores the more complex impact of the channel on signals. Refs. [10,11] propose to insert
the non-trainable but differentiable additive white Gaussian noise (AWGN) layer between
the receiver and transmitter as a channel model. The additional layer has adjustable param-
eters related to noise variance, which makes the description of the ratio of energy per bit to
noise power spectral density more accurate. This model reliably describes the effect of the
AWGN channel on signal, but it is not suitable for other types of channels. Ref. [12] follows
the conventional idea [13] which views the channel model as a time-varying linear system
with additive noise. They use a neural network layer and an additive noise layer to imple-
ment the channel model. After the training, the channel model simulates different types of
channels. In addition, the conditional generative adversarial networks (CGAN) [14] have
been used to simulate different channel effects in [15,16]. Ref. [17] also proposes a residual-
assisted GAN (RA-GAN) based training scheme for mitigating gradient vanishing and
overfitting in GANs. In addition, Ref. [16] constructs an interesting method for transceiver
systems that inserts a CGAN between the transmitter and receiver of each user or base
station to simulate the channel. The method causes both transmitters and receivers to
converge in training, which allows this system to achieve better results in channels where
the uplink and downlink are similar. However, in most real-world low-signal-to-noise
communication scenarios, the uplink and downlink have large differences so the method is
only applicable to certain scenarios.

Using the channel model to train Deep JTROCS offers a major advantage: The training
gradient that passes through the model provides enough information for the encoder in
the transmitter to obtain complete channel state information (CSI). This allows the encoder
to tune itself based on the entire CSI, resulting in improved performance. Nevertheless,
building a channel model for a real channel is a daunting task. Modeling a communication
channel in practice is challenging, as it involves transmitting and collecting massive signals
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from both ends of the real-world channel. If the collected signals lack sufficient channel
change states, it may result in neural network over-fitting, leading to the poor performance
of Deep JTROCS on real working channels. The acquisition of these signals and the
construction of channel models necessitate substantial financial and human resources,
leading to a diminished interest among technology developers in integrating Deep JTROCS
into actual communication systems. Therefore, Deep JTROCS training based on channel
models is not an ideal solution.

To solve the above problem, researchers also propose some approaches that directly
train Deep JTROCS without a channel model. Ref. [18] proposes a reinforcement learning-
based approach to train encoders in Deep JTROCS. Ref. [19] investigates a gradient-free
training method based on a cubic Kalman filter to perform geometric constellation shaping.
Ref. [20] proposes two solutions, signal reduction and signal prediction, and verifies the fea-
sibility of both solutions in practical wireless communication systems with super-exotropic
architectures, band-pass channel noise and quantization noise. Ref. [21] proposes the use
of random perturbation techniques to train deep learning-based communication systems
in real channels without assuming channel models. Ref. [22] eliminates the limitation of
joint training through meta-learning. In this method, online gradient meta-learning of the
decoder is combined with joint training of the encoder through pilot transmission and the
use of feedback links. Ref. [23] utilizes a neural estimator of mutual information that relies
only on channel samples to optimize the encoder for maximizing mutual information.

Although the above methods allow Deep JTROCS to be trained on real channels, the
encoder in the Deep JTROCS transmitter must be updated with the necessary training
information available in the receiver, such as the decoder’s loss function or the receiver’s
received signals. The training information must be feedback to the transmitter via an
additional and reliable low-error communication link. Hence, the practical utility of Deep
JTROCS is constrained by the dependence on a low error feedback link. If a conventional
communication system is used to provide training information as the feedback link, the
question would arise as to why Deep JTROCS, which is complex to train, should be used if
the conventional system works appropriately. In addition, untrained Deep JTROCS is not
suitable for use as feedback links in these methods due to its large transmission errors.

In this paper, we propose a new training method to solve the above problem. Its main
feature is that it can employ untrained and unreliable Deep JTROCS to transmit training
signals and employ these signals to reconstruct the training gradient of the encoder. The
update of the Deep JTROCS encoder thus is independent of the training information of the
receiver, making it feasible to train the transmitter without requiring a feedback link.

Specifically, we first combine two Deep JTROCS into a dual-node intelligence com-
munication system (DNICS), as shown in Figure 2, where each node has a neural network-
based transmitter and receiver. Then, the nodes send training signals to each other and
forward the received training signals. Finally, these direct and forwarded training signals
are used to estimate the channel state and to reconstruct the training gradients of the
transmitters in the nodes.

Figure 2. The dual-node intelligence communication system (DNICS) consisting of two Deep JTROCS.

The proposed training method can effectively train DNICS without the need for
auxiliary tools such as channel models or reliable feedback links. This allows for the
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training of two communication nodes to adapt to the communication environment without
the reliance on channel models or training information from the receiver, irrespective of
their location, distance, or the complexity of the communication environment.

Additionally, we also implement real-time online training of a DNICS on a real-world
channel in the experiment, which indicates that the proposed method has solved the
training problem of Deep JTROCS. Deep JTROCS, therefore, has the basis to be applied in
real communication scenarios.

The main contributions of our work are summarized as follows:

• We propose a new Deep JTROCS training approach, which combines two Deep
JTROCS into a DNICS and allows the unreliable Deep JTROCS to transmit and forward
training signals to evaluate the channel state and reconstruct the training gradient of
the transmitter.

• The experimental results show that the proposed method can work with different
types of sources and channels. When the difference between uplink and downlink is
large, the proposed method can still work well.

• We implement a DNICS, which can be trained online in real-time without any auxiliary
tools, on a real-world channel.

The rest of this paper is organized as follows. In Section 2, we describe the problem
to be solved in this paper. Section 3 introduces our solution. Sections 4 and 5 show the
experiments on simulated and real channels, respectively. Finally, Section 6 concludes
the work.

2. Problem Description

The transmitting signal M of Deep JTROCS is a number or sequence that comes from
a discrete set {0, 1, 2, · · · , m}, m ∈ N, which is encoded by the Deep JTROCS transmitter,

x = fθT (M), (1)

where f , θT and x denote the neural network-based encoder in the transmitter, the encoder
parameters and the encoder output, respectively.

x then is sent into the channel,

y = h(x) + n, (2)

where h and bmn are two stochastic variables that denote the channel response and additive
noise, respectively. Note, that the channel described in (2) is a broad definition that also
includes the physical devices that interfere with the training of the neural network, such as
antennas and RF-front ends, etc.

y is a damaged version of x, the Deep JTROCS receiver uses it to rebuild the source
signal,

M̂ = gθR(y), (3)

where the M̂, g and θR represent the reconstruction signal, the neural network-based
decoder in the receiver and the decoder parameters, respectively.

In a reliable communication system, the reconstructed signal M̂ must be sufficiently
similar to M. We, therefore, need to adjust the parameters of the neural network in the
transmitter and receiver to minimize the impact of the channel on Deep JTROCS in training.

(θ∗T , θ∗R) = arg min Loss
(

M̂(θT , θR), M
)

(4)

where Loss is the loss function of the receiver which describes the overall system error.
However, the real channel is non-differentiable and the neural network in the trans-

mitter does not have the training gradient available. The system can be trained by (4) when
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only the channel model is used in place of the real channel. Therefore, only the decoder in
the receiver is trained by the supervised learning directly, as shown in (5).

θ∗R = arg min Loss
(

M̂(θR), M
)

(5)

To train the transmitter on the real channels, an efficient idea is to use the loss function
of the decoder to reconstruct the gradient of the encoder, which makes the transmitter know
the error of the whole system; Ref. [18] gives a feasible and specific way to implement this,
as shown in (6),

∇θT L =
1
S

S

∑
k=1

Loss(M̂i, M)∇θT D(xi), (6)

where S, Loss(M̂, M) and ∇θT D(xi) are the batch size, the loss function of the receiver and
the gradient of the output of the encoder after relaxation (26), respectively.

Nevertheless, this approach is not available in many real-world scenarios because
it requires an additional reliable link to transmit Loss(M̂, M) from the receiver to the
transmitter, but such a low-error reliable link does not exist in many scenarios.

3. The Proposed Training Approach

An effective way to avoid the use of additional communication links in the encoder
training is to find an alternative function that is available at the transmitter side to replace
the Loss(M̂, M) in (6).

The common communication system usually consists of multiple user nodes that
contain both transmitters and receivers, and signals are transmitted and forwarded between
these nodes. We can use these transmitted and forwarded signals to find the alternative
function of Loss(M̂, M). Therefore, we build the DNICS based on Deep JTROCS to analyze
the transmission and forwarding of the signals in the node-based communication system.

3.1. The Dual-Node Intelligence Communication System Model

The DNICS, as shown in Figure 2, is a minimal model of the node-based communica-
tion system that describes the system with only two nodes. In DNICS, the transmitter and
the receiver from different Deep JTROCS are constituted to be a node, which represents a
single user or a network with multiple users.

The signals in DNICS can be transmitted between Node-0 and Node-1 to each other.
According to (1)–(3), the direct reconstruction signals M̂0 and M̂1 in Figure 3 can be
described as

M̂0 = g(1)θR

(
h0

(
f (0)θT

(M)
)
+ n0

)
, (7)

M̂1 = g(0)θR

(
h1

(
f (1)θT

(M)
)
+ n1

)
, (8)

Figure 3. The signal transmission in DNICS.
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For a practical communication system, the reconstructed signals should be as similar
as possible to the source signals, and the similarity is described by the loss functions
(9) and (10). The smaller the loss function, the more stable the communication system.

L0 = Loss(M̂0, M) (9)

L1 = Loss(M̂1, M) (10)

The loss is calculated from the cross entropy (CE) (11) of the digital signals or the mean
square error (MSE) (12) of the analog signals, respectively.

CE (z, ẑ) = −
N
∑

k=1
p(zk) log

(
p(ẑk)

)
(11)

MSE (z, ẑ) = 1
N

N
∑

k=1

(
ẑk − zk

)2
, (12)

where k, p and N denote the sample point index of z and ẑ, the probability distributions,
and the length of the samples.

In DNICS, M̂0 and M̂1 are also forwarded back to their source nodes and are recon-
structed as M̂0,1 and M̂1,0, as shown in Figure 4.

ˆ̂M0,1 = g(0)θR

(
h1

(
f (1)θT

(M̂0)
)
+ n1

)
(13)

ˆ̂M1,0 = g(1)θR

(
h0

(
f (0)θT

(M̂1)
)
+ n0

)
(14)

Figure 4. The signal forwarding in DNICS.

Obviously, we can use these signals transmitted and forwarded in DNICS to find the
desired alternative function.

3.2. The Alternative Function

To facilitate the analysis, we recopy (8) and (13) here.

M̂1 = g(0)θR

(
h1

(
f (1)θT

(M)
)
+ n1

)
, (15)

ˆ̂M0,1 = g(0)θR

(
h1

(
f (1)θT

(M̂0)
)
+ n1

)
(16)

Assuming that the channel is relatively stable, i.e., the changes in the distributions of h0
and n0 are not significant, and the encoder g and decoder f do not correct their parameters
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θT and θR during transmission of the signal, ˆ̂M0,1 will be constantly approaching M̂1, when
M̂1 is approaching M.

ˆ̂M0,1 → M̂1

∣∣∣∣
M̂0→M

, (17)

where → indicates that the vector to its left is constantly approaching the vector to its right.
(17) is also written as

Loss
(

M̂0, M
)
→ Loss

(
ˆ̂M0,1, M̂1

)∣∣∣∣
Loss(M̂0, M)→0

. (18)

The condition Loss(M̂0, M) → 0 in (18) is negligible because the training of Deep
JTROCS is the process it describes.

L0 = Loss
(

M̂0, M
)
≈ Loss

(
ˆ̂M0,1, M̂1

)
(19)

Therefore, Loss( ˆ̂M0,1, M̂1) is a desirable function that is used in place of the loss
function Loss(M̂0, M) to avoid transmitting the decoder loss function of Node-1, because
both ˆ̂M0,1 and M̂1 are available at Node-0, as shown in Figure 2. Similarly, the encoder in
Node-1 is trained by Loss( ˆ̂M1,0, M̂1).

L1 = Loss
(

M̂1, M
)
≈ Loss

(
ˆ̂M1,0, M̂0

)
(20)

Li (i ∈ [1, 0]) is an ideal function as the loss function for training the encoder in
Transmitter-i. It effectively characterizes an approximation of the error of Deep JTROCS on
Channel-i, with the difference between this approximation and the actual error attributed to
the varying states of Channel-j (j = 1 − i) at different times. Computing Li using ˆ̂Mi,j and
M̂j is equivalent to channel estimation for Channel-i, implicitly providing partial channel

state information for Transmitter-i when the acquisition times of ˆ̂Mi,j and M̂j are very close
(i.e., when the channel state does not change significantly).

3.3. Training of Encoders in DNICS

According to [18], the training gradient of the encoder in Node-i is obtained by finding
the partial derivative of the variable with respect to the loss function (21).

L = EM

{ ∫
Loss

(
g(j)

θR
(yj), M

)
· pi

(
yj| f (i)θT

(M)
)

dyj

}
, (21)

∇θT L = EM

{ ∫
Loss

(
g(j)

θR
(yj), M

)
·

∇θT f (i)θT
(M)∇xi pi

(
yj|xi

)∣∣
xi= f (i)θT

(M)
dyj

}
,

(22)

where EM, Loss(g(j)
θR
(yj), M) and pi(yj| f (i)θT

(M)) are the expectation, the loss value of
decoder in Node-j and the stochastic channel, respectively. (22) is also rewritten as (23).

∇θT L̂ =EM,xi ,yj

{
Loss

(
g(j)

θR
(yj), M

)
·

∇θT f (i)θT
(M)∇xi log

(
π̂xi ,σ(xi)

∣∣∣
x= f (i)θT

(M)

)}
,

(23)
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where ∇xi is the Dirac distribution approximated by the Gauss distribution with a very
small standard deviation σ.

πxi = δ(xi − xi), (24)

where xi and σ are the mean and standard deviation, respectively.
By the sampling of (23), the gradient of the encoder is obtained as (25),

∇θT L ≈ 1
S

S

∑
k=1

Loss
(

M̂i, M
)
∇θT D(xi) (25)

∇θT D(xi) = ∇θT f (i)θT
(M)∇xi log

(
π̂xi ,σ(xi)

∣∣∣
x= f (i)θT

(M)

)
. (26)

According to (19) and (20), we use ˆ̂Mi,j and M̂j, which are available at Node-i, to train
the encoder in Node-i, as shown in (27). The specific training procedure of the encoders is
given in Algorithm 1.

∇θT L ≈ 1
S

S

∑
k=1

Loss
(

ˆ̂Mi,j, M̂j)
)
∇θT D(xi) (27)

Algorithm 1 The training algorithm of encoders.

1: repeat
2: Sending a mini-batch of M by Transmitter-i.
3: xi = f (i)θT

(M)

4: Obtaining altered signal yj and generating the reconstructed signal M̂i by Receiver-j.
5: yj = hi(xi) + ni

6: M̂i = g(j)
θR
(yj)

7: Sending the reconstructed signal M̂i and M back to Receiver-i by Transmitter-j.
8: M̂j = g(i)θR

(
hj

(
f (j)
θT

(M)
)
+ nj

)
9: ˆ̂Mi,j = g(i)θR

(
hj

(
f (j)
θT

(M̂i)
)
+ nj

)
,

10: Approximating the gradient of the encoder in Transmitter-i ∇θT L.

11: ∇θT L ≈ 1
S ∑S

k=1 Loss( ˆ̂Mi,j, M̂j)∇θT D(xi)
12: Updating the neural network weight θT of the encoder in Transmitter-i by back-

propagation.
13: until Stop criterion is met.

3.4. Training of DNICS

The encoders and decoders in DNICS are trained alternately, as shown in Algorithm 2,
where Transmitter-i and Receivers-i denote the transmitter and receiver in the Node-
i, respectively. Note, that the encoder is updated first and the decoder then follows
their change.

Algorithm 2 The alternating training algorithm.

1: Repeat
2: Training encoders in Transmitter-i (i = 0 or 1).
3: Training decoders in Receivers-i (i = 0 or 1).
4: until Stop criterion is met.

The decoders are directly trained by supervised learning (5). The specific training
process of the receiver is given in Algorithm 3.



Electronics 2024, 13, 831 9 of 18

Algorithm 3 Training algorithm of decoders.

1: Repeat
2: Sending a mini-batch of M by the Transmitter.
3: xi = f (i)θT

(M)

4: Obtaining altered signal yj at receiver.
5: yj = hi(xi) + ni

6: Generating the reconstructed signal M̂i by Receiver.
7: M̂i = g(j)

θR
(yj)

8: Calculating the loss function of receiver L(i)
R .

9: L(i)
R = Loss(M̂i, M)

10: Updating the neural network weight θR of decoder in receiver by back-propagation.
11: until Stop criterion is met.

3.5. The Win-Win Phenomenon in the Training of DNICS

We observe an interesting win-win phenomenon in training where the two Deep
JTROCS in DNICS help each other to reduce their errors.

When the loss value (10) of the Deep JTROCS link (8) decreases with the updating of
the encoder and decoder parameters during the training, the error of (8) and (13) decreases,
which favors the reduction in the Node-0 loss value of the encoder in the middle, thus
reducing the loss value (9) of the Deep JTROCS link (7).

It allows our approach to complete the training in fewer epochs than [18] and also
makes the training easier to converge.

4. Experiments

In this section, the proposed approach is compared with the channel model-based
MA [12] and the feedback link-based MF [18] approaches on different tasks, such as
the transmission of digital symbols, binary symbol sequences, and analog signals. The
performance of these training approaches is evaluated by the performance of the trained
Deep JTROCS (or Deep JTROCS in DNICS). The better the performance of the trained
communication system, the better the performance of the approach.

The dataset for the transmission of digital symbols and binary symbol sequences
consists of randomly generated symbols, while the dataset for the transmission of analog
signals consists of randomly intercepted music clip samples. The labels of the samples in
these datasets are the samples themselves. Specific details about the datasets are given in
the respective experiment subsections.

The different channel states in the experiments are simulated by the channel models.
However, only MA uses these channel models directly to back-propagate the gradients, and
neither MF nor our approach uses these channel models to transmit the training gradients.

The structures of the encoders and decoders in Deep JTROCS or are different in
different tasks, which are given in specific subsections. The neural networks are trained
by the Stochastic Gradient Descent (SGD) and Adam [24] optimizers, respectively, and the
learning rates are set to 10−4. The optimizer selection and setting results are obtained from
experiments.

Additionally, this work focuses on the training approach for neural networks in Deep
JTROCS. Consequently, we utilize metrics commonly employed to evaluate neural net-
works, such as accuracy, to describe the performance of training approaches in experiments,
rather than traditional communication system metrics like bit error rate.

4.1. Transmission of Digital Symbols

In this experiment, Deep JTROCS is trained to transmit digital symbols on AWGN
and Rayleigh channels. The structures of the encoder and decoder are shown in Figure 5.
The encoder consists of two fully connected (FC) layers and a normalization layer. The first
FC layer has 128 ELU [25] activated neurons, and the other layer has 32 neurons without
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activation function. The normalization layer limits the output amplitude of the neural
network to meet the system limits on output power. For the AWGN channel, the decoder is
implemented by two FC layers with batch normalization (BN) [26] and ReLU [27] activation.
Their neuron numbers are 128 and 4, respectively. For the Rayleigh channel, the decoder
is composed of an additional equalization and the receiver of the AWGN channel. The
equalization is used to estimate the channel response. It is a neural network with two FC
layers, where the first FC layer has 20 hyperbolic tangent (Tanh) activated neurons, and the
other layer has 32 neurons without activation function.

The experimental dataset consists of a training set, a validation set and a testing set
containing 16,384, 8192 and 8192 samples. Each sample in these datasets is a digital symbol
represented by a one-hot vector of length 4.

(a) (b) (c) (d)

Figure 5. The neural network structure of transmitter and receiver in transmission of digital symbol.
(a) Encoder; (b) Decoder-A; (c) Decoder-R; (d) Equalization.

Tables 1 and 2 show the test accuracy of DNICS and Deep JTROCS on AWGN and
Rayleigh simulation channels, respectively. The MA and MF in the tables denote Deep
JTROCS trained by the channel model [12] and the reliable feedback link [18], respectively.
Ours-0 shows the performances with a different signal-to-noise ratio (SNR) in different
channel directions, and one direction of the channel remains 0 dB SNR. Ours-1 denotes
the Deep JTROCS performance of DNICS trained on the channels with the same SNR in
different directions. The values inside and outside the brackets indicate the accuracy in
different directions, respectively.

Table 1. The accuracy of symbol transmission on Additive white Gaussian noise (AWGN) channels.

SNR MA MF Ours-0 Ours-1

30 dB 100.00% 100.00% 100.00% (100.00%) 100.00% (100.00%)
20 dB 100.00% 100.00% 100.00% (100.00%) 100.00% (100.00%)
10 dB 100.00% 100.00% 100.00% (100.00%) 100.00% (100.00%)
5 dB 100.00% 100.00% 100.00% (100.00%) 100.00% (100.00%)
0 dB 100.00% 100.00% 100.00% (100.00%) 100.00% (100.00%)
−5 dB 98.53% 91.40% 96.33% (100.00%) 98.65% (98.65%)
−10 dB 92.28% 75.68% 75.95% (100.00%) 83.27% (83.27%)

Table 2. The accuracy of symbol transmission on Rayleigh channels.

SNR MA MF Ours-0 Ours-1

30 dB 100.00% 100.00% 100.00% (100.00%) 100.00% (100.00%)
20 dB 100.00% 100.00% 100.00% (100.00%) 100.00% (100.00%)
10 dB 100.00% 100.00% 100.00% (100.00%) 100.00% (100.00%)
5 dB 100.00% 100.00% 100.00% (100.00%) 100.00% (100.00%)
0 dB 100.00% 100.00% 100.00% (100.00%) 100.00% (100.00%)
−5 dB 100.00% 100.00% 100.00% (100.00%) 100.00% (100.00%)
−10 dB 100.00% 96.68% 90.97% (100.00%) 96.53% (96.22%)
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The results show that DNICS trained by our approach achieves similar accuracy
to that of Deep JTROCS trained by MA and MF. As the SNR decreases, the accuracy
of the communication system decreases regardless of the training method used. When
SNR is small enough, e.g., SNR = −10 dB, the accuracy of MA is better than that of
MF and Ours because the channel model provides more complete state information of
the simulated experimental channel for training the communication system than other
approaches. However, the channel model is not a real channel and it does not provide
real CSI for the training of Deep JTROCS; instead, our approach trains two Deep JTROCS
directly on their working channel online and in real time.

Figure 6 shows the variation in training accuracy of the trained Deep JTROCS over the
first 40 training epochs. All these curves are obtained with the same training parameters,
where the batch size is 128, the learning rate is 2 × 10−5 and the channel is AWGN. The
SNR of the channel is 0 dB in MA and MF, 0 dB (−5 dB) and 0 dB (0 dB) in Ours-0 and
Ours-1, where the numbers inside and outside the brackets indicate the SNR in different
channel directions, respectively. The accuracy of Ours-0 and Ours-1 is the mean of two
Deep JTROCS in two channel directions.

Figure 6. Accuracy and epoch evolution of training.

Figure 6 indicates that the Deep JTROCS trained by our approach requires fewer
training epochs to reach 100% accuracy than Deep JTROCS trained by FM and MA at
0 dB. We believe that the win-win phenomenon in our proposed approach accelerates the
convergence of Deep JTROCS in training.

4.2. Transmission of Binary Symbol Sequence

In order to finely observe the performance differences of Deep JTROCS trained by dif-
ferent approaches, we used square waves composed of repeated sample points to represent
the binary symbol sequence and used the mean accuracy of the sample points to evalu-
ate the performance of trained system structures. In addition, we added the bandwidth
limit of the Deep JTROCS in this experiment to further simulate the real communication
environment.

The experimental dataset contains 8192 samples, of which 90% are the training set, 5%
are the validation set and 5% are the test set. Each sample contains 512 randomly generated
binary symbols, and each symbol is represented by 32 repeated sample points with the
values of 1 or 0.

The encoder and decoder are implemented by the 1D convolution neural networks
(CNN), as illustrated in Figure 7. The encoder consists of a backbone network, a BN layer,
a global average pooling (GAP) layer, a Tanh layer and a low-pass filter. The backbone is
the SEResNet-18 [28,29] without the final average pooling layer and full connection layer.
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It is used to extract the features and encode the input samples. The GAP layer maps the
output to the size of [2, 8192], where 8192 denotes the length of network output and 2
indicates that the output signal has the in-phase and the quadrature components. The BN
and tanh layers restrict the amplitude of the network output signal. The low-pass filter
layer is used to limit the bandwidth of the output signals. The decoder of receivers is
designed as an encoder-decoder structure to reduce the noise [30]. It consists of a backbone
network (SEResNet-18) and a generative network composed of five fractionally-strided
convolution layers with an output GAP layer. The hyperparameters of these fractionally-
strided convolution layers are shown in Table 3. In addition, a low-pass filter is placed in
front of the decoder to filter some noise out of the working bandwidth.

(a) (b)

Figure 7. The structure of encoder and decoder in transmission of binary symbol sequence.
(a) Encoder; (b) Decoder.

Table 3. The hyperparameters of the fractionally-strided convolution layers in the decoder.

Hyperparameters Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Input channel 2048 256 128 64 32
Output channel 256 128 64 32 16

Kernel size 2 2 2 2 2
Stride length 2 2 2 2 2

Tables 4 and 5 show the experimental results on AWGN and Rayleigh channels,
respectively. Note, that the results in the table are the accuracy per sample-point in the
transmitted symbols.

Table 4. The accuracy of binary symbol sequence transmission on AWGN channels.

SNR MA MF Ours-0 Ours-1

30 dB 100.00% 100.00% 87.49% (95.74%) 100.00% (100.00%)
20 dB 100.00% 100.00% 97.53% (99.84%) 100.00% (100.00%)
10 dB 100.00% 99.83% 98.48% (99.71%) 100.00% (100.00%)
5 dB 99.99% 99.41% 99.71% (99.89%) 99.98% (99.98%)
0 dB 99.95% 94.74% 99.97% (99.97%) 99.92% (99.92%)
−5 dB 99.72% 79.35% 98.82% (97.67%) 99.74% (99.75%)
−10 dB 94.79% 61.82% 94.28% (87.44%) 96.53% (96.53%)
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Table 5. The accuracy of binary symbol sequence transmission on Rayleigh channels.

SNR MA MF Ours-0 Ours-1

30 dB 100.00% 99.92% 99.96% (99.95%) 100.00% (100.00%)
20 dB 100.00% 99.01% 99.99% (100.00%) 100.00% (100.00%)
10 dB 100.00% 99.99% 99.99% (99.99%) 100.00% (100.00%)
5 dB 100.00% 99.96% 100.00% (100.00%) 100.00% (100.00%)
0 dB 100.00% 99.94% 100.00% (100.00%) 100.00% (100.00%)
−5 dB 100.00% 99.91% 100.00% (100.00%) 100.00% (100.00%)
−10 dB 100.00% 99.94% 98.40% (98.19%) 100.00% (100.00%)

Specifically, the accuracy of Ours-1 is very close to that of MA, while the accuracy
of MF and Ours-0 are lower than that of Ours-1 and MA. The system trained by Ours-1
benefits from the channel estimation in the forwarding mechanism and achieves comparable
performance to MA. However, when the SNR of two directions is different, the direction of
the channel with a smaller SNR generates a larger transmission error, which increases the
error of the forwarded signal and reduces the accuracy of Deep JTROCS in the direction of
the larger SNR.

4.3. Transmission of Analog Signals

The experiment shows the ability of Deep JTROCS trained with our approach to
recover the signal amplitude at different SNRs. The results are shown in Figures 8 and 9,
where Deep JTROCS trained by the MA is used as the control group.

The experimental signal samples are taken randomly from 11 pieces of music with a
sampling rate of 44.1 kHz, and each sample contains 2048 sample points whose values are
quantified to a range from 0 to 1 with a minimum quantization interval of 1 × 10−4; 90%
and 10% samples from the first 8 pieces of music are used for the training and validation,
respectively, while the samples from the remaining three pieces of music are used for
the test.

The training loss is calculated by the MSE and the quality of the reconstructed signal
is evaluated by the PSNR (28),

PSNR (z, ẑ) =
1

MSE (z, ẑ)
(28)

where z and ẑ are normalized to [0, 1].
The encoder and decoder are illustrated in Figure 10, where the encoder includes

two double convolution blocks, a Sigmoid layer and a mapping function, and the decoder
includes a mapping function, two fractionally-strided convolution blocks and a Sigmoid
layer. The double convolution block consists of two 1D convolution layers with BN, a ReLU
activation layer and a maximum pooling layer. The fractionally-strided convolution block
consists of two 1D fractionally-strided convolution layers with a BN and a ReLU activation
layer. The mapping function in the transmitter and receiver reshapes the input data to the
size of 2 × 131,072 and 512 × 512, respectively.

Figure 8 shows the comparison between MA and Our-1. Obviously, the performance
of the two Deep JTROCS is very similar at high SNR. As the SNR increases, the PSNRs also
increase in very close increments. However, at low SNR, the performance of Our-1 is lower
than that of MA. This difference in performance is due to the fact that the MA method
provides Deep JTROCS with complete channel information, but in real communication
environments it is difficult to construct a channel model with complete channel information
to train Deep JTROCS.

Figure 9 shows the original signal M and the reconstructed signal M̂ of Deep JTROCS
trained by our approach at different SNRs. Obviously, the distortion of M̂ becomes more
and more severe as the SNR decreases. However, the main contours of M are still preserved
at low SNRs. This suggests that we can use methods similar to image restoration to repair
transmitted signals with high-frequency distortion.
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Figure 8. The Peak Signal-to-noise ratio (PSNR) of reconstructed signals on AWGN channels.

(a) (b)

(c) (d)

Figure 9. The reconstructed signal of Deep JTROCS trained by proposed approach. (a) 30 dB;
(b) 10 dB; (c) 0 dB; (d) −5 dB.

(a) (b)

Figure 10. The neural network structure of transmitter and receiver in symbol sequence experiment.
(a) Encoder; (b) Decoder.
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4.4. Summary

The experimental results of the three different tasks indicate that the compared train-
ing approaches in the experiment yield similar performance in these tasks. Specifically, the
accuracy of MA surpasses that of MF and Ours, owing to the channel model’s capability
to furnish comprehensive CSI for the encoders, in contrast to other methodologies. Our
approach implicitly estimates the channel state and delivers partial channel state informa-
tion for Transmitter-i, thereby achieving performance superior to MF and approaching that
of MA.

Although all three approaches demonstrate very similar performance, our approach
stands out due to its superior practicality. This is attributed to its capability to provide
real-time and online training for Deep JTROCS without relying on auxiliary tools, such as
channel models and feedback links.

5. Over-the-Air Experiment

To verify the applicability of our approach to real-world channels, we trained DNICS
on a composite over-the-air channel. The results are compared with Deep JTROCS trained
by MF using a local area network (LAN) as the noise-free feedback link.

5.1. Experimental Setup

Figure 11 gives an overview of the experimental testbed. The encoders and decoders
are located in two personal computers (PCs), and the composite channel consists of two
audio cables, two FM intercoms (BaoFeng UV-5R) and a radio channel. The testbed
is located in our office of no more than 20 square meters, and the radio channel is an
unobstructed line of sight (LOS) of approximately 3 m with multi-path effects. The location
of the intercoms remains constant during the training.

Figure 11. Testbed overview.

The training task and the neural network structure are consistent with these in
Section 4.1, the only difference is the systems transmit binary symbols. The training sample
is firstly randomly generated and then distributed to each communication node.

The synchronization of the signals is solved in a two-stage way. In the first stage, a
large time window is used to capture the transmitted signal. For example, a signal that
lasts 1 s needs to be captured using a window of more than 1 s. In the second stage, the
position of each symbol is located by detecting the preambles inserted in signals.
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5.2. Result

Figure 12 shows that the variation in accuracy of Deep JTROCS over the first 170 training
epochs, where Node-0, Node-1 and MF denote the accuracy variation of two nodes of
DNICS trained by our approach and Deep JTROCS trained by MF, respectively. After
no more than 150 epochs, the accuracy of both Deep JTROCS are improved to 100%.
Additionally, Figure 12 also shows that DNICS requires fewer epochs for convergence than
the MF-trained Deep JTROCS, but its growth is unstable. We speculate that this is the result
of the win-win effect of our method.

This experiment demonstrates that our method can train Deep JTROCS in real-time
online over complex real channels without any auxiliary tools.

Figure 12. Evolution of accuracy.

6. Conclusions

In this paper, we propose a new training approach for Deep JTROCS that combines two
Deep JTROCS into a DNICS and alternately updates the encoders and decoders. Specifically,
the encoders are updated by the damage of the transmitted signals in the channel, which is
calculated from the forwarding and direct reconstruction signals in the DNICS, and the
decoders are trained by supervised learning. Therefore, the proposed approach makes
Deep JTROCS more practical as Deep JTROCS can be trained on the real-world channel
and without any tools. Furthermore, we experimentally observe that the Deep JTROCS in
DNICS reinforce each other in a win-win manner, accelerating the convergence of accuracy
during training.

Theoretically, Deep JTROCS senses the channel and achieves optimum communica-
tions performance by, for example, adjusting the transmit power and timing of the signal.
Although our training approach provides the transmitter with a loss to describe the damage
caused by the channel to the transmitted signal, this value does not provide the transmitter
with full CSI. Therefore, in the future, we continue to search for system architectures and
training approaches that provide full CSI to the transmitter of Deep JTROCS.
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