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Abstract: As landmines and other unexploded ordnances (UXOs) present a great risk to civilians and
infrastructure, humanitarian demining is an essential component of any post-conflict reconstruction.
This paper introduces the Minefield Observatory, a novel web-based datastore service that semanti-
cally integrates diverse data in humanitarian demining to comprehensively and formally describe
suspected minefields. Because of the high heterogeneity and isolation of the available minefield
datasets, extracting relevant information to determine the optimal course of demining efforts is
time-consuming, labor-intensive and requires highly specialized knowledge. Data consolidation and
artificial intelligence techniques are used to convert unstructured data sources and store them in an
ontology-based knowledge database that can be efficiently accessed through a Semantic Web application
serving as the Minefield Observatory user interface. The MINEONT+ ontology was developed to
integrate diverse mine scene information obtained through non-technical surveys and remote sensing,
such as aerial and hyperspectral satellite imagery, indicators of mine presence and absence, contextual
data, terrain analysis information, and battlefield reports. The Minefield Observatory uses the Microdata
API to embed this dataset into dynamic HTML5 content, allowing seamless usage in a user-centric web
tool. A use-case example was provided demonstrating the viability of the proposed approach.

Keywords: semantic web; advanced web applications; HTML5 microdata; ontology; data integration;
humanitarian demining; suspected hazardous area

1. Introduction

Military and civilian approaches to demining (humanitarian mine action or mine
action [1]) differ significantly. Civilian demining begins when the conflict ends, and
all actions are aimed at minimizing the risk with the goal of a 100% clearance rate of
land mines [2]. The development of successful planning and implementation of demining
projects depends on the quality and adequate use of all available information on the location
of the Suspected Hazardous Area (SHA) [3,4]. These plans are implemented by national
centers for demining [5] (so-called Mine-Action Centers, MACs) under the auspices of
governments, which do not deal with demining per se, but collect and analyze all the data
they can find by interviewing returnees in SHA, general assessments of mine actions [1,5],
non-technical surveys [6], technical surveys [7], analytical assessments of military maps,
reading biographies of military commanders, and interpreting and analyzing multi-sensory
images of SHA. In [2], it was stated that these are long and expensive processes that
ultimately do not provide enough accurate information. That is why demining experts
need to speed up the mine action process to quickly identify SHA to avoid accidents as
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much as possible. For this purpose, this paper introduces a novel ontology-based approach
to storing and using all data for humanitarian demining.

At a time when data are increasingly influencing automated decision-making processes
in various sectors, the complex and important field of humanitarian mining remains
relatively unaffected and still relies on traditional methods of data mining and knowledge
discovery. However, the heterogeneity, diversity, and—above all—the sheer size of data
obtained from various sensors pose a significant challenge and make the extraction of
relevant, usable information for non-technical time and labor-intensive. The nature of the
data necessary to conduct a successful demining is very diverse and includes not only
data from multispectral, hyperspectral, ground-penetrating radar or magnetic sensors from
remote sensing techniques but also information derived from different unstructured and
semi-structured documents such as hand-drawn minefield charts or reports of previous
minefield accidents, among others [8–13].

Therefore, the significance of semantic capture and formal and structured representa-
tion of SHA has become extremely important as it contributes significantly to improving
operational efficiency and facilitating more effective decision-making processes in humani-
tarian demining. In this context, semantic technologies have proven to be an indispensable
tool in various other domains (per examples [14–16]), and they are also well-aligned with
current trends for upcoming industry standards [17]. They enable the construction of knowl-
edge bases characterized by linking concepts according to rules governing the relationships
between different concepts. The overall goal of these tasks is to project ontology-related
textual information into distribution vectors so that a variety of applications—from se-
mantic similarity measurement and supervised learning based on ontology annotations to
knowledge discovery and reasoning—can be performed with greater efficiency.

For these reasons, two original and innovative concepts are presented in this paper
within the areas of advanced web technologies and artificial intelligence to improve the
non-technical survey and humanitarian demining. These two contributions are (1) the
Minefield Observatory and (2) the MINEONT+ ontology.

The Minefield Observatory is a novel concept based on advanced web technologies
and formal knowledge representation methods. This approach shows how we may use
the potential of semantic web technologies to solve the difficulties of data integration
in minefields. Our solution uses DevOps principles and cloud-based infrastructure to
transform unstructured and semi-structured data into machine-readable formats to access
the data through HTML5 web application endpoints. This results in creating a unified
web-based data repository that significantly improves current methods and practices for
managing and interpreting mine scene data.

The data observatory web platform, such as the Minefield Observatory, represents a
substantial advancement in data management and representation. It provides a basis for
organizing and understanding massive amounts of unstructured and semi-structured data
from multiple sources. This is especially important in a non-technical survey for mine action,
as data from many sources, such as reports, field notes, maps, hyperspectral airborne images,
and various ground observation sensor readings, must be merged and interpreted. A key
feature of data observatories is their capacity to gather and make sense of such complicated
and varied information. Establishing a single perspective of the data makes it easier to identify
patterns, trends, and insights, resulting in more informed decisions and actions.

At the center of the Minefield Observatory is the MINEONT+ ontology, which we
developed to bring together diverse mine scene information. This ontology includes a
number of aspects, such as concepts represented in multimodal aerial and hyper-spectral
satellite imagery, indicators of the presence or absence of mines, contextual data, terrain
analysis information, and battlefield experiential knowledge. Using the Microdata API,
we can embed a minefield record dataset into an HTML5 page, employing the latest web
technology standards and thereby facilitating its use in a user-facing tool.

The remainder of the paper is organized as follows: Section 2 sets the stage and
introduces contemporary data platforms, explaining the concepts of data observatories,
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data lakes and optimization of data lake performance using ontologies in the context of data
engineering. In particular, Section 2.1. describes data platform functions with their different
advantages and drawbacks. Section 2.2 explains how data lakes may be used in cloud-
based data platform architectures to ingest data in raw format. Section 2.3 explains how the
introduction of ontologies as a tool for formal knowledge representation can assist in data
transformation to consolidate diversely structured datasets. Section 3 provides an overview
of related work. Section 4 describes the MINEONT+ ontology developed to formally
describe, share, and semantically enrich the high-level description of a SHA. The developed
ontology is used for data consolidation of diversely structured minefield documents in
a non-technical survey. This section also presents the structure of the Microdata API
developed to share the content of the Minefield Observatory’s knowledge base utilizing the
MINEONT+ ontology. Section 5 presents the structure of the Minefield Observatory and
the methodology for evaluating the observatory’s knowledge base, as well as the results
of this evaluation. To demonstrate the feasibility of the proposed approach, Section 6
provides a use-case with a real-life example of minefield records ingestion into the Minefield
Observatory using deep learning algorithms and export of such that may be provided by
using the Microdata API. Section 7 provides a discussion about the Minefield Observatory
approach and deliberates on the benefits and limitations of this study. Finally, Section 8
concludes the paper and proposes possible future research directions.

2. Data Observatories as Advanced Web-Based Data Management Platforms

To understand data observatories, their function, and benefits over traditional and mono-
lithic repositories of diverse datasets such as data warehouses, it is necessary to first define the
concepts of data platforms [18], data lakes [19], and ontology-optimized data lakes [20].

A data platform is a type of software designed for three main functions: collecting
data, analyzing data, and managing data. These platforms are usually made to work as
analytics platforms and to act as an integration layer. When we look at their structure, data
platforms can be mainly of two types: (1) centralized data platform and (2) decentralized
data platform, often called the “Data Mesh” [21,22].

The centralized data model is characterized by a monolithic architecture where data
ownership, responsibility, and management reside primarily with a single, centralized
team [23]. The obvious benefit of such an approach is that organizations can maintain
consistent and standardized data across the board with centralized data storage. This pro-
motes data integrity and reduces the risk of discrepancies or inconsistencies. However, this
often leads to potential scalability issues and can hinder adaptability to changing business
requirements or technological advances. While the unified approach provides streamlined
management and standardization, it can also lead to scalability issues, especially as the
volume and diversity of data increases [24]. In addition, adaptability within this structure
can be limited, especially with rapid functional changes or evolving business needs. While
the centralized nature provides consistency, it can occasionally act as a bottleneck that
limits innovation and responsiveness to new data requirements.

The decentralized data platform or Data Mesh is a novel architectural approach that treats
data as a product [25]. Rather than centralizing data in one place or team, responsibility for
the data is decentralized and distributed across multiple teams or domains. This approach is
consistent with the way modern software is developed and deployed, which is often in smaller,
autonomous teams. The Data Mesh paradigm promotes the idea that teams that produce data
should also take responsibility for, maintain, and deliver their data products, just as they would
a software product. The data products are made available to data consumers through endpoints
called Data Marts [26]. This shift in ownership and responsibility helps organizations scale their
data infrastructure and practices while ensuring data quality and accessibility [27].

The main purpose of any data platform—and one of the main motivations behind
developing the Data Mesh architecture—is to support a process called Data Democratiza-
tion [28,29]. This means making digital information easy to access and use by all categories of
users. The idea behind data democratization is to let people who are not experts collect and
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analyze data on their own. The end goal is to create a system that provides data to new applica-
tions and services and functions as the main data integration layer. In addition, building a data
platform usually involves setting up a data system or infrastructure [30]. On the other hand,
using a data platform implies making applications and services that use this data system [30].
Data platforms are central in today’s data industry strategies, helping to transfer data from
where it is collected to its many uses. It is important for both experts and non-expert users
alike to understand how these platforms work to make the most of our data-driven world.

2.1. Data Observatories Roles as Comprehensive Data Services

Data Observatory is a centralized web-based facility that supports data-driven re-
search and decision-making, providing an integrated environment where data are not only
accessible but also usable and interpretable [31–33]. Key to this process is the wide range
of functions that a Data Observatory performs.

The key functions of data observatories, separated into core and additional functions,
are listed and described in Table 1. The core functions are fundamental to its operation
and form the backbone of data observatory services, while the additional functions are not
essential to the basic operations.

Table 1. The core and additional functions of Data Observatories.

Function Description

Core Functions

Data Collection and Storage
Aggregates diverse data from various sources, providing a

central repository for data-driven research and
decision-making.

Data Integration
Provides services for integrating data from multiple

sources, allowing researchers to combine and analyze data
from different experiments, simulations, or observations.

Data Standardization
Ensures that data are consistent and compatible with other
data, involving tasks such as converting data to a common

format or unit of measurement.

Data Processing and Analysis
Utilizes specialized tools, algorithms, and models to

transform raw data into actionable insights and generate
new knowledge.

Data Visualization Offers advanced visualization tools and technologies for
exploring and analyzing data findings.

Additional Functions

Modeling and Simulation

Data Modeling and Simulation
Provides tools and expertise for building and running

simulations, enabling researchers to test hypotheses and
explore scenarios using data.

Training Functions

Training and Support
Provides training and support to researchers through

workshops, tutorials, and resources to assist researchers in
their data-driven projects.

Collaboration Functions

Data Sharing
Facilitates data sharing through APIs or other interfaces,

promoting collaboration within and outside the
organization.

Data Dissemination and Publication
Responsible for disseminating and publishing data,

making it available through various means for further
analysis and research.

Data Governance and Security

Data Governance Establishes robust policies and procedures for data use
and access, addressing data privacy and security issues.

Data Security and Privacy
Implements stringent measures to protect the security and

privacy of data, preventing unauthorized access
and usage.
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One of the most important functions is the collection and storage of data, which often
includes large amounts of diverse data from a variety of sources. These include data
derived from experimental results, simulated models, and field observations. The ability to
aggregate such disparate data into a single integrated digital platform is a critical feature
of a data observatory. After the data have been ingested, it must be prepared for further
processing. This step involves organizing, cleaning, standardizing, and maintaining data
in a suitable form for later use.

Once the data have been prepared according to the specific requirements of the domain
of usage—such as the field of humanitarian demining—it can be processed and analyzed.
A data observatory provides the necessary tools and expertise to facilitate this. It uses
specialized algorithms and models to transform complex data into tangible insights and
generate new knowledge. This process is critical to transforming raw data into information
that can drive research and decision-making.

Equally important is the role of the data observatory in visualizing and communicating
data. By providing advanced visualization tools and technologies, researchers are able to
explore and analyze data more effectively. In addition, these tools help communicate their
findings to other researchers, various stakeholders, or the public.

During the data observatory’s development phase, a set of standard reports is usually
created. These reports are intended to address the general requirements of most users
by providing a comprehensive overview of the data collected and analyzed at the obser-
vatory. Standard reports typically include key metrics and trends that are required for
a comprehensive understanding of the problem domain. The standardization of these
reports ensures that all users have access to consistent and reliable data, which is crucial
for comparative analysis and benchmarking.

However, as stakeholders interact with the observatory and become more familiar
with the available data, they often recognize the need for more specialized reports. These
specialized reports address specific questions identified after the initial production phase.
The observatory’s structure must be adaptable to enable the creation of these customized
reports, providing users with the information they require to make informed decisions. This
adaptability ensures that the observatory remains relevant and useful to its users over time.

Data observatories also emphasize data sharing and provide access to data through
Application Programming Interfaces (APIs) or API gateways. In some cases, data can also
be exported in various formats for further analysis. The ability to share data efficiently
allows researchers to collaborate more effectively within their organizations and with
external stakeholders. Mutual relationships between the Core and Additional functions of
data observatories are illustrated as a UML activity in Figure 1.
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(training and support, data sharing, data dissemination and publication, data governance, data
security and privacy) of data observatories with their dependence interrelationships.
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As can be seen in Figure 1, in addition to core functions, a data observatory also
performs several additional tasks. These include curating and managing data to ensure that
it is organized, cleaned, and maintained in a form suitable for analysis and use. Tasks such
as data standardization, data integration, and metadata creation may be part of this process.

Data observatories often provide training functions that support researchers by offer-
ing workshops, tutorials, and resources to assist researchers with their data-driven projects.
This subset of additional functions ensures that users can take full advantage of the data,
tools, and technologies made available by the observatory.

Another role that data observatories often fulfill is facilitating collaboration and net-
working among researchers. Organizing events, meetings, or other opportunities for
researchers to network fosters an environment where ideas, expertise, and data can be
shared. Data integration is another important service provided by data observatories,
allowing researchers to combine and analyze data from different experiments, simulations,
or observations. They also provide standardization of data to ensure its consistency and
compatibility with other data.

Data observatories also facilitate data modeling and simulation by providing tools and
expertise for creating and running simulations. This enables researchers to test hypotheses
and explore scenarios using data.

Finally, the set of functions defining data security and privacy is of great importance.
Data observatories take strict measures to protect the security and privacy of data. In this
respect, data governance is an important area of responsibility for a data observatory. This
includes establishing sound policies and procedures for data use and access and addressing
privacy and data security issues. This is important to preserve the integrity of the data
and ensure its appropriate use. The function of data dissemination and publication is
integral to their role, making data available through various channels for further analysis
and research.

2.2. Data Lakes as Large Storage Repositories of Differently Structured Data

The data lake is essentially a large storage space designed to hold both structured and
unstructured data, storing it in its raw format [34–37]. One of the most important features
of a data lake is its ability to store data without a predetermined schema or structure. This
aspect provides flexibility and facilitates ingesting data from a wide range of sources in its
original (i.e., raw or native) format.

A landing area, often referred to as a staging area, is the Initial section within a data
lake into which the data are first loaded [38]. This area serves as a temporary storage
location for raw data ingested from various sources. In a typical workflow, the data passes
through this landing area into the data lake, where it is stored in its original format without
any significant transformation or processing. The main function of the landing area is to act
as a buffer zone for incoming data so that it can be captured in its unaltered state. This is
particularly important to preserve the integrity and granularity of the original data, which
can be crucial for subsequent comprehensive analysis. By storing data in this unprocessed
form, the data lake ensures that all original data attributes are preserved, enabling a wide
range of uses and analyses.

From the landing area, the data can then be processed, transformed, or moved to other
areas within the data lake for more structured storage and analysis. For example, the data
can be cleansed, categorized, and then transferred to a formalized storage area within the
data lake, where it can be organized in a more query-friendly format. Alternatively, the data
in the landing area can be accessed directly and analyzed using advanced analytics and
machine learning tools, especially when raw and unstructured data analysis is required.

In addition to its storage capabilities, a data lake also offers scalability and flexibility so
that new data sources can be included, or larger amounts of data can be ingested as needed.
This makes data lakes a suitable solution for companies that generate large amounts of data
and need a scalable solution for storing and managing it. By storing data in a centralized,
scalable, and cost-effective manner, data lakes enable organizations to access and analyze



Electronics 2024, 13, 814 7 of 25

their data with much less effort in support of microservice architectures. This also facilitates
insight extraction and data-driven decision-making.

2.3. Improving Data Lakes with Ontologies

To see how data lakes can be improved with formal knowledge representation methods
such as ontologies, it is first necessary to define the associated terms. By definition, ontology
is a formal, explicit specification of a shared conceptualization of a domain of interest [39].
An ontology contains a set of concepts within a domain and the relationships between
these concepts. It is a formal vocabulary of terms representing concepts in a particular
domain, along with the relationships between them. Importantly, ontologies are used to
reason about the described concepts, i.e., to derive implicit knowledge from the existing
explicit knowledge and automated inference utilizing reasoning engines [40]. In addition,
ontologies are often used to provide a common understanding of a domain between
different people or systems [41–43].

Depending on their complexity, scope and purpose, ontologies are divided into (1) gen-
eral and (2) specialized domain ontologies. A general ontology provides a foundational
knowledge framework that can be applied to different domains. It contains basic concepts
and relationships that are universally applicable, such as spatiotemporal relationships,
logical concepts, or basic entities such as objects, events, and actions. On the other hand, a
specialized domain ontology is tailored to a specific area of knowledge or field of study. It
captures the unique concepts, relationships and specific rules relevant to that domain.

Typically, ontologies are stored in knowledge bases (KBs), which are repositories that
facilitate the formal representation of domain-specific knowledge through concepts, rela-
tionships, and constraints defined in the vocabulary defined by the utilized ontologies. By
using automated reasoning services, KB facilitates automated reasoning processes by pro-
viding the necessary infrastructure to infer new knowledge, validate existing information,
and execute complex queries [44–47].

In the context of improving data lakes, particularly for their application in non-
technical surveys for mine action, it is beneficial to consider adding an ontology layer.
This layer represents a major advance in the way we manage and use large data sets such
as data lakes [47,48].

The ontology layer enables the formal representation of knowledge and transforms
the raw data stored in the data lake into structured, meaningful information. Ontologies
provide a common vocabulary that defines types, properties, and relationships between
entities in a specific domain. In the context of demining, these could be concepts represented
in multimodal aerial and hyperspectral satellite imagery, indicators of the presence or
absence of mines, contextual data, terrain analysis information, and experiential knowledge
about the battlefield.

Beyond the organization of knowledge, introducing an ontology layer also opens
the possibility of automated reasoning using expert systems. These systems can use the
structured knowledge provided by the ontology to use existing declarative knowledge, or
facts, and imperative knowledge in the form of rules to draw conclusions and thus derive
new knowledge. This functionality is particularly valuable in the context of demining
operations, where efficient data discovery and accurate decision-making are important.

3. Related Work

In [31], the Forest Observatory is presented, a linked data store designed to integrate
and represent wildlife data semantically. It focuses on an extensive wildlife sanctuary
where a large amount of diverse Internet of Things (IoT) data are generated. This research
uses semantic web technologies to address the problem of heterogeneous and isolated
wildlife data. The Forest Observatory Ontology (FOO) is developed to semantically model
and link data sources, enhancing data accessibility and enabling complex queries about
wildlife. The paper evaluates the ontology and its application, demonstrating its potential
in aiding wildlife research and decision-making.
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Regarding the rationale behind data observatories, a paper [32] examines the concept
of the Web Observatory, a global infrastructure project designed to promote the sharing
and use of web-related datasets and analytics applications for research and business. It
emphasizes the need for a distributed infrastructure for big data analytics that enables
the retrieval of common datasets without replication and the reuse of analytics tools for
different datasets. The project aims to bridge the gap between big data analytics and the
web of big data, facilitating innovation and digital literacy by making data accessible to a
wider audience.

In [47], researchers focused on the development of a semantic data lake to address the
challenges of analyzing data across multiple enterprise collaboration systems (ECS). This
data lake ingests data in real time and uses ontology-based data access for harmonization,
allowing for efficient analysis and integration of diverse data structures and formats. The
approach improves business intelligence by allowing identical SPARQL queries to be run
across multiple systems, simplifying data access and analysis.

The paper [48] presents a methodology for enhancing data lakes with semantic lay-
ers. It demonstrates the process of converting data from different sources into a unified
knowledge graph that facilitates advanced data queries and exploration. The approach
includes the integration of entity linking techniques for text data, using a domain-specific
ontology, and using RDF Mapping Language (RML) for data transformation. The result is
a comprehensive knowledge graph that combines structured, semi-structured and unstruc-
tured data, offering significant benefits for data analysis and business intelligence. Thus,
incorporating an ontology layer into a data lake represents a significant upgrade.

In [49], the creation of a comprehensive database with around 1000 entries for am-
munition, mainly from the Second World War, is presented. This database, developed
in collaboration with SENSYS and using the MuniMan software (Information about the
MuniMan software is available at: https://sensysmagnetometer.com/), also includes 250
datasets describing the modern Warsaw Pact and NATO ammunition. The corpus covers
regions in Europe, North Africa, and Southeast Asia and provides detailed information
on ammunition types, periods of use, countries that manufacture ammunition and identi-
fication data. This tool was designed to help experts identify unexploded ordnance and
support decision-making in ordnance disposal. However, the database does not include an
advanced data infrastructure that utilizes web-based technologies, nor does it make use
of ontologies or other technologies to formally represent knowledge about unexploded
ordnance (UXO).

The development of a sophisticated decision support system for humanitarian demi-
ning has been previously described in [12,50]. The Advanced Intelligence Decision Support
System (AIDSS) integrates various advanced technologies, including remote sensing and
data fusion, to support decision-making processes in identifying and clearing mine-affected
areas. The AIDSS aims to provide a reliable, efficient tool to support the process of making
decisions about suspected hazardous areas based on the methodology scientifically devel-
oped and validated in the EU FP5 SMART project and upgraded in the EU FP7 TIRAMISU
project. The paper emphasizes the potential applications of this system in non-technical
surveys, demonstrating its innovative contributions to improving the efficiency and safety
of humanitarian demining operations.

In our previous research, the authors introduced MINEONT, a novel ontology devel-
oped for mine action, particularly in the context of non-technical surveys for humanitarian
demining [51]. MINEONT has been developed using the OWL-DL 2 formalism, which
provides an expressive and formal representation of mine action concepts, high-level se-
mantics, geospatial metadata and information from remote sensing non-technical surveys.
This ontology supports data such as multi-sensory imagery, mine presence indicators
and mine action expertise. The paper discusses the construction of this ontology and its
potential for improving decision support systems in the field of mine action and highlights
its advantages over existing methods.

https://sensysmagnetometer.com/
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The authors have also explored new approaches to improve the efficiency, accuracy,
and safety of humanitarian demining in previously published research [33]. To improve
the process of the non-technical survey in humanitarian demining, the introduction of
a data observatory and data lake system was proposed. This system would be able to
process large amounts of unstructured data to improve decision-making through the
use of artificial intelligence, deep learning and data analysis techniques. Key features
include data ingestion pipelines, transformation techniques, and blockchain technology
for data integrity, interoperability, data analysis, security, and data governance. The
envisioned approach has the potential to transform humanitarian demining and make
it more effective and safer. Furthermore, in our latest study [52] we have proposed to
use blockchain, specifically Filecoin and NFT.Storage (NFT.Storage is a freely available
decentralized storage service available at: https://nft.storage/), for storing landmine
and UXO locations. This novel, interdisciplinary approach ensures secure, reliable, and
decentralized data storage for humanitarian demining. The use of blockchain databases
for tracking UXO information overcomes challenges such as scalability, integration, legal
compliance, and cost. Using blockchain for minefield records can improve the efficiency,
accessibility, and safety of demining operations. In this research, we have outlined the
concept, its implementation, and potential benefits and highlighted the role of blockchain
in improving demining processes.

4. MINEONT+ Ontology

The MINEONT+ ontology, which stands for “MINE-action ONTology Plus,” is a
core ontology specifically designed to formally represent knowledge in the aerial non-
technical survey domain. This ontology, expressed in the OWL-DL 2 formalism, provides
a comprehensive and formal representation of concepts related to non-technical surveys
in humanitarian demining. Its design ensures an accurate representation of relevant
knowledge in this domain and functions as the fundamental component of the Minefield
data observatory.

More precisely, the MINEONT+ ontology model encapsulates high-level semantics,
geospatial metadata, and information for a non-technical survey acquired through various
sensors included in remote sensing. The ontology’s vocabulary defines formal concepts,
which include but are not limited to multisensory aerial and satellite imagery, indicators
of mine presence and absence, terrain analysis information, and formalized knowledge
of humanitarian demining specialists. The MINEONT+ model presented in this research
was developed as a continuation of the previous ontology [51], which had more limited
possibilities to present knowledge about different types of UXO.

The construction of the MINEONT+ knowledge database, a prerequisite for utilizing
the ontology for minefield information consolidation and formalization, involves two
phases: data acquisition and data processing. As already explained, inputs for constructing
the knowledge database for non-technical surveys can come from numerous sources, such
as minefield records, mine accident maps, interviews, surveyor reports, military maps,
and more. These data inputs are characterized by diverse formats, types, and structuring
levels, presenting a challenge in harmonizing and integrating this disparate information
into an integrated KB. After acquiring and adequately processing the required data, it can
be stored in the ontology model of the integrated knowledge database.

The MINEONT+ ontology model, is designed to provide a formal and comprehen-
sive representation of a minefield containing different UXOs. As can be seen in Figure 2,
the model is structured around several key concepts and their interrelationships. First-
level concepts that are directly subsumed under owl:Thing class are: Minefield, Mine-
fieldRecord, and MinefieldDrawing. Additional key concepts are: DeminingOperation,
MachineLearningAlgorithm, GeospatialData, MinefieldIncident, OrientationPointList, Ori-
entationPoint, UXOList, UXO, and co:ListItem.

https://nft.storage/
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The model is defined in OWL 2 DL format.

At the highest level is the Minefield concept, which can contain many Minefield-
Record instances in the knowledge database. Each MinefieldRecord has a GeospatialData
instance. Furthermore, data stored in a MinefieldRecord instance can be analyzed by one
or many machine learning algorithms. This relationship is captured by isAnalyzedBy
object relationship between MinefieldRecord and MachineLearningAlgorithm concepts.
An instance of a MinefieldRecord is related to one or more instances of MinefieldDrawing,
OrientationPointList, and UXOList classes through their respective object relationships. In
formal OWL 2 DL terms, this can be expressed as:

MinefieldRecord ≡ ∃≥1(MinefieldDrawing) ⊓ OrientationPointList ⊓ UXOList (1)

The concept “Minefield” has functional attributes dataLastInspected and riskLevel
indicating the data and time of a particular landmine location’s last inspection and estimated
risk level. This concept also has attributes of location, name, and status for the name of the loca-
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tion, the minefield and its status or state, respectively. Concept GeospatialData has functional
attributes to store the minefield’s geographic latitude, longitude, and inclination level.

Each UXO in the MinefieldDrawing is represented in the knowledge database ABox
as exactly one instance of the UXO concept. This concept can have labeled attributes such
as name, description, and quantity.

The UXOs are organized into sequences, with the first member of the sequence attached
to a UXOList individual using the co:firstItem object relation. Each subsequent member
in the list is linked to the previous one with the co:nextItem object relation until the last
member is denoted using the co:lastItem object relation. Each list item also has its index
that uniquely identifies it.

In OWL 2 DL, the relationships between UXO, UXOList, and the co:firstItem, co:nextItem,
and co:lastItem object relations can be expressed as:

UXOList ≡ ∃(co:firstItem.UXO) ⊓ ∃(co:nextItem.UXO) ⊓ ∃(co:lastItem.UXO) (2)

Each MinefieldRecord is divided into one or more sequences of UXO individuals,
which contain a particular explosive device or remnant of war. Sequences have their index
and can be numbered. Similarly, a single MinefieldRecord instance can have at least one
OrientationPoint individual. UXOs and OrientationPoints are hierarchically organized
into sequences.

In OWL 2 DL, the relationships between concepts MinefieldRecord, UXO, and Orien-
tationPoint can be expressed as:

MinefieldRecord ≡ ∃≥1(UXO.Sequence) ⊓ ∃≥1(cOrientationPoint.Sequence) (3)

Each MinefieldRecord is associated with one or more UXO sequences and one or more
OrientationPoint sequences. By defining an instance of the MinefieldIncident concept, each
minefield can be associated with one or more minefield incidents. Each individual has at-
tributes indicentType, casualties, incidentData and reportBy. Because demining operations
can be very complex and time-consuming, the attributes progress, operatingOrganization,
startDate, endDate, and operationName can be used to describe them. The MINEONT+
model with top-level concepts and the most important object properties is shown in a
diagram in Figure 2.

These formal expressions in OWL 2 DL define the relationships between the key concepts in
the MINEONT+ model, providing a foundation for automated reasoning and query processing.

4.1. Minefield Observatory Microdata Schema

In the context of web applications, the structuring of a Microdata schema is important
for the practical implementation of the Minefield Observatory system. By using the capa-
bilities of HTML5 standard together with the Microdata API, minefield records stored in
the data observatory can be presented and exported in a standardized, open, and easily ac-
cessible format. The structured schema based on Microdata enables the transfer of complex
datasets in machine-readable formats that facilitate their use in other academic research
and demining applications.

The Microdata API is critical for connecting the data observatory to other information
systems and sending detailed information about minefields. This integration is essential
for making the knowledge database content accessible to other systems, thereby expanding
the reach and impact of the data collected in humanitarian demining efforts.

The usage of the Microdata API within the Minefield observatory always involves three
steps. First, the selection of the concepts from the MINEONT+ ontology will be represented.
Second, the data must be fetched from the KB using SPARQL queries. In addition, finally,
a new HTML5 document is generated, and the semantic data are embedded within the
HTML document structure.

The Microdata schema developed for the Minefield Observatory is comprised of
8 key elements:
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• Minefield (itemscope): Represents the overall context of the data.
• Location (itemprop): Specifies the geographical coordinates of the minefield.
• Status (itemprop): Indicates whether the minefield is active or inactive.
• DateLastInspected (itemprop): Marks the date when the minefield was last inspected.
• RiskLevel (itemprop): Describes the assessed level of risk associated with the minefield.
• DeminingOperation (itemprop): Details an event that encompasses efforts to clear the

minefield.
• MinefieldIncident (itemprop): Describes incidents that have occurred within the

minefield.
• WarRemnant (itemprop): Provides information on remnants of war found within or

around the minefield.

The structure of the Microdata schema is shown in Figure 3. An example of schema
usage with HTML5 code is shown in Section 6.2.

Electronics 2024, 13, x FOR PEER REVIEW 12 of 25 
 

 

the data observatory can be presented and exported in a standardized, open, and easily 
accessible format. The structured schema based on Microdata enables the transfer of com-
plex datasets in machine-readable formats that facilitate their use in other academic re-
search and demining applications. 

The Microdata API is critical for connecting the data observatory to other information 
systems and sending detailed information about minefields. This integration is essential 
for making the knowledge database content accessible to other systems, thereby expand-
ing the reach and impact of the data collected in humanitarian demining efforts. 

The usage of the Microdata API within the Minefield observatory always involves 
three steps. First, the selection of the concepts from the MINEONT+ ontology will be rep-
resented. Second, the data must be fetched from the KB using SPARQL queries. In addi-
tion, finally, a new HTML5 document is generated, and the semantic data are embedded 
within the HTML document structure. 

The Microdata schema developed for the Minefield Observatory is comprised of 8 
key elements: 
• Minefield (itemscope): Represents the overall context of the data. 
• Location (itemprop): Specifies the geographical coordinates of the minefield. 
• Status (itemprop): Indicates whether the minefield is active or inactive. 
• DateLastInspected (itemprop): Marks the date when the minefield was last inspected. 
• RiskLevel (itemprop): Describes the assessed level of risk associated with the mine-

field. 
• DeminingOperation (itemprop): Details an event that encompasses efforts to clear 

the minefield. 
• MinefieldIncident (itemprop): Describes incidents that have occurred within the 

minefield. 
• WarRemnant (itemprop): Provides information on remnants of war found within or 

around the minefield. 
The structure of the Microdata schema is shown in Figure 3. An example of schema 

usage with HTML5 code is shown in Section 6.2. 

 
Figure 3. The HTML5 Microdata schema developed for the Minefield Observatory. 

Within the top-level Minefield element (itemscope), the subsumed element (item-
prop) “name” specifies the name of the minefield. The geographical coordinates (latitude, 
longitude) are given under “location” to identify the exact location. The “status” itemprop 
element indicates the current state of the minefield. The “DateLastInspected” itemprop 
element notes the date of the last inspection of a particular minefield, while “RiskLevel” 
itemprop element indicates the associated risk. The “DeminingOperation” is itemprop el-
ement group and contains comprehensive details of ongoing demining activities. The 
“MinefieldIncident” itemprop element group records historical data on incidents, and 
“WarRemnant” itemprop group describes any war remnants found, including their dis-
covery and disposal status. Each element is crucial for a detailed representation of the 
minefield. War remnant is a larger term that encompasses UXOs and other related non-
explosive material that might be left in the ground after cessation of hostilities. 

Within the “DeminingOperation” group, marked by itemprop attribute, each sub-
sumed element has a specific purpose: “operationName” assigns a label to the demining 

Figure 3. The HTML5 Microdata schema developed for the Minefield Observatory.

Within the top-level Minefield element (itemscope), the subsumed element (itemprop)
“name” specifies the name of the minefield. The geographical coordinates (latitude, lon-
gitude) are given under “location” to identify the exact location. The “status” itemprop
element indicates the current state of the minefield. The “DateLastInspected” itemprop
element notes the date of the last inspection of a particular minefield, while “RiskLevel”
itemprop element indicates the associated risk. The “DeminingOperation” is itemprop
element group and contains comprehensive details of ongoing demining activities. The
“MinefieldIncident” itemprop element group records historical data on incidents, and “War-
Remnant” itemprop group describes any war remnants found, including their discovery
and disposal status. Each element is crucial for a detailed representation of the minefield.
War remnant is a larger term that encompasses UXOs and other related non-explosive
material that might be left in the ground after cessation of hostilities.

Within the “DeminingOperation” group, marked by itemprop attribute, each sub-
sumed element has a specific purpose: “operationName” assigns a label to the demining
operation, “startDate” and “endDate” denote the operation’s commencement and con-
clusion dates, respectively, “operatingOrganization” describes the entity overseeing the
operation, and progress reflects its current state or completion level. Similarly, in the
“MinefieldIncident” group, the element “incidentDate” specifies the date of the incident,
“incidentType” describes the nature of the incident, “casualties” details the impact or out-
come of the incident in terms of human harm, and “reportBy” identifies the organization or
authority that reported the incident. Finally, the “WarRemnant” itemprop group element
“type” identifies the kind of war remnant, “foundDate” indicates the date the item was
discovered, and “disposalStatus” describes the current status of its disposal process.

5. Minefield Observatory Structure

This section explains the architecture of the Minefield Observatory and the integration
of its different components, including the ontology knowledge database. A thorough
evaluation of the Minefield Observatory is conducted using a task-based methodology and
applying it to a real-world scenario representative of its intended use. This methodology
enables the evaluation of the functionality and effectiveness of the observatory in a real-
world environment and gives us insights into its performance and utility for UXO demining.



Electronics 2024, 13, 814 13 of 25

The ontology-based paradigm for minefield annotation consists of terminological
and assertional knowledge about high-level SHA description and a reasoning engine.
These two types of knowledge are the basic components of a knowledge-based system
based on Description Logics (DLs) [44] as a set of structured knowledge-representation
formalisms with decidable reasoning algorithms. DLs represent important notions about a
domain as concept and role descriptions. To achieve this, DLs use a set of concept and role
constructors on the basic elements of a domain-specific alphabet. This alphabet consists of
a set of individuals (objects) constituting the domain, a set of atomic concepts describing
the individuals and a set of atomic roles assigned to the individuals. The concept and
role constructors that are employed indicate the expressive power and the name of the
specific DL. Here, we use SHOIN (D), on which OWL 2 DL is based that employs concept
negation, intersection, and union: existential and universal quantifiers, transitive and
inverse roles, role hierarchy and a number of restrictions. Since OWL Lite is semantically
very limited and OWL 2 Full is undecidable, OWL 2 DL represents a compromise between
adequate expressivity and guaranteed decidability. Most importantly, a variety of tools
for knowledge engineering exist [53,54] that allow construction, management, reuse, and
reasoning with OWL-based ontologies. As such, OWL 2 DL is a suitable ontology language
for representation and reasoning about high-level minefield description.

In the context of humanitarian demining, data originates from a variety of sources,
such as remote sensing data, multimodal aerial and hyperspectral satellite imagery, indica-
tors of the presence or absence of mines, contextual data, terrain analysis information and
battlefield experiential knowledge and can be collected and stored in the data lake. This di-
versity and richness of data sources is particularly beneficial in the context of non-technical
surveys for demining, as it provides a comprehensive picture of the mine area. However,
in the context of data engineering efficiency, such a variety of data sizes, types and formats
is not desirable. Therefore, a solution that includes data lakes is a desirable choice.

A data lake can often serve as a central repository within a data observatory where
raw data collected from these various sources can be stored. This raw data can then be
accessed and examined by researchers and data scientists to gain insights and support
decision-making processes. In addition, a data lake can also be used to store the results of
data analyses so that researchers and analysts can access and use them later.

The Architecture of the Minefield Observatory containing a landing area and data
lake, is shown in Figure 4.

The KB for ontological representation of minefield records within the Observatory
has two main components. The terminological component (TBox) describes the relevant
notions of the application domain by stating the properties of concepts and roles and
their interrelations. Tbox contains an ontological representation of the knowledge about
SHAs. The assertional component (Abox) is a formal set of assertions describing specific
information or semantics in terms of terminological knowledge. Abox describes a concrete
world by stating individuals and their specific properties and interrelations.

The annotation process of a suspected minefield begins with the identification of
concepts in its content that can be observed by subjects and deemed important (by demining
experts) for the description of SHA. After a concept is recognized, an equivalent concept
must also be identified in the ontology used for SHA representation. Tbox must define all
concepts that exist in the SHA semantics. After an equivalent concept has been found, a
new individual is created, associated with the minefield and stored in Abox. This process
is repeated for all minefields in consideration within the Observatory KB. Retrieving
knowledge about mine records assets in the proposed architecture can be easily achieved
by using semantic query languages such as the SPARQL query language [55]. The next
figure (Figure 5) illustrates a SPARQL 1.1 query that might be posed by an expert system
using the MINEONT+. In this example, instances of MinefieldRecord class are retrieved
from the KB, specifically their labels, creation dates, and validity statuses.
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Figure 4. Architecture of the Minefield Observatory containing a landing area and data lake in the
context of non-technical survey and humanitarian demining. The landing area receives differently
structured and semi-structured data acquired from remote sensing of a SHA. The data lake is utilized
as a repository of differently structured raw data in native formats. After the data have been
consolidated, the knowledge base (KB) and MINEONT+ ontology layer above the data lake perform
semantic integration of the acquired data.
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Figure 5. A SPARQL 1.1 query for retrieval of MinefieldRecord instances from the KB.

Prefixes ex: and xsd: are defined to provide the URI references for ontology classes
and XML Schema Definition (XSD) properties in the SPARQL query, respectively. Variables
(?minefieldRecord, ?label, ?dateCreated, ?isValid) are selected, representing the minefield
record ID, its label, the date it was created, and its validity status. Clause OPTIONAL is used
to account for the possibility that some records might not have all the properties (“label”,
“dateCreated”, “isValid”). Results are ordered in ascending order by the ?dateCreated
property to get a chronological list of minefield records. This query may be executed in
the Protégé ontology editor [56,57] extended with the Jess rule engine [58]. The forward
chaining search strategy should be used to maximize the number of returned tuples and
multimedia documents [59].

6. Use-Case Example

Minefield records are the most reliable source of information regarding minefield
presence, location, shape, and content (Figure 6). The Croatian MAC experts analyzed
122 mine records from Croatia’s municipality Blinjski Kut and attempted to locate their
positions in space using the information extracted from them [60]. These mine records
contain 39 different types of information about the laid minefield, which are classified
into five categories: (1) cartographical data (name and scale of the map, etc.), (2) data
for orientation and positioning of minefield (coordinate of referent point, etc.), (3) type
and number of mines in minefield, (4) characteristics of minefield (type and dimension of
minefield), and (5) information about mines placement (date, military unit, responsible
person, etc.). All of the above information is required for experts to analyze the mine scene
and determine the SHA.

Examples of minefield records associated with the Blinjski Kut minefield are shown
in Figure 6. The document sets contain hundreds of similar semi-structured and hand-
drawn records for several different locations in Croatia. The minefield records represent
the painstaking efforts of demining teams and local communities to document the presence
and location of landmines within the Blinjski Kut minefield. Each record in the collection
provides crucial information about the type of landmine, its condition, and any additional
relevant details that aid in the safe removal and clearance of the area. The records in Figure 6
highlight the diverse range of landmines present in the Blinjski Kut minefield. Some entries
detail traditional anti-personnel mines, while others document more sophisticated anti-tank
mines. The variation in explosive devices underscores the complexity of the demining task
at hand [61].
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As already explained, the minefield records serve as a historical record of the mine-
field’s composition and play a crucial role in ongoing demining operations [62]. Demining
teams use this documentation to track their progress, adjust their strategies as needed,
and ensure that each section of the minefield is thoroughly cleared before declaring it safe
for public use. As such, this information represents a valuable source of information that
should be extracted and organized in a suitable manner.

The semi-structured nature of these records reflects the challenging conditions under
which demining operations are conducted [63]. In many cases, demining teams use a
combination of sketches, written descriptions, and photographs to create a comprehensive
overview of the minefield. This information is vital for developing effective demining strate-
gies, ensuring the safety of personnel involved, and mitigating the risk to local populations.

6.1. Deep Learning-Based Mine Records Ingestion

The hand-drawn sketches accompanying the records provide visual representations
of the minefield layout [64]. These sketches often include symbols and annotations that
convey the location of each mine, the depth at which they are buried, and any observed
changes in their condition over time. Such information is invaluable for creating detailed
maps that guide demining efforts and help minimize the risk of accidents during the
clearance process.

The high-level overview of the entire process of text extraction is shown in Figure 7.
The process of extracting data from images featuring minefield records begins by leveraging
advanced techniques such as identifying potential regions of interest within the documents.
This is accomplished through the application of the YOLO (“You Only Look Once”) deep
learning model, which not only identifies but also labels these potential regions [65].
Subsequently, these labeled regions are cropped into smaller, more manageable images.
Figure 7 illustrates a snapshot of this initial stage, with each region uniquely colored to
signify distinct labels.
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Breaking down the extraction task into smaller, more focused activities enables the
utilization of various tools for addressing specific aspects of the process. The effectiveness
of this segmentation is evident in the example image, where each color-coded region
represents a different label associated with the content it encapsulates.

Following the successful detection and cropping of these regions, the subsequent
step involves identifying specific textual information within them. This process allows for
more targeted and efficient data extraction as the focus shifts to discerning relevant details
embedded within each segmented region. The utilization of advanced technologies not
only streamlines this identification process but also enhances the accuracy and precision of
text extraction from the minefield records.

In essence, this multi-stage approach, incorporating YOLO-based region identification,
text detection and subsequent text extraction, facilitates the overall extraction task and
optimizes the workflow by breaking it down into more manageable components. The
example image in Figure 8 visually represents how this method enhances the efficiency and
effectiveness of data extraction from minefield records, contributing to a more robust and
accurate analysis of the documented information.

In Figure 9, we depict the information extraction process. The initial step involves
annotating minefield records with relevant labels. These labels correspond to designated
regions of interest, numbered 1 to 9 in the image. Following labeling, the YOLO algorithm
is employed to detect and crop all regions of interest into designated folders, allowing the
creation of smaller datasets for subsequent analysis.

Moving to the second phase, we focus on text detection [66]. A specific region of
interest is chosen, and annotations are added to identify the specific textual content for
extraction, as demonstrated in Figure 9. The objective here is to detect individual words,
numbers, or combinations of letters, words, and numbers. Once annotations are complete,
YOLO is employed again to train on this data and detect text.

Upon implementation of the custom text detector, the process proceeds to the third
phase of text recognition using the Tesseract OCR engine [67,68]. Tesseract boasts Unicode
(UTF-8) support and can recognize over 100 languages, including Croatian, the language
used in the minefield records. Detected regions undergo text recognition through Tesseract,
and the results are formatted appropriately for storage, ready for later use in MINEONT+.

While this procedure applies to most regions in the minefield record, it may not be
necessary for hand-drawn maps of the minefield. In such cases, the map can be saved in
image format and described in MINEONT+. Visualization tools can then be employed to
enhance information management.
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computer vision methods.

6.2. Microdata API Example

A HTML5 representation of the Microdata schema for the Blinjski Kut minefield
use-case near Sisak, Croatia, is shown as an example in Figure 10. This is only a partial
representation of KB content for this use-case that can be provided by the data observatory
Microdata API.

This Microdata API gateway is a key component of the minefield observatory, serving
as an interface between external clients and internal observatory services. It optimizes
client interactions by providing a single point of access to the information stored in the
observatory, improving security, managing traffic, and allowing the observatory to provide
a consistent and comprehensive data service. Users gain access to a wide range of detailed
minefield information via this gateway, allowing for secure and efficient data retrieval
and interaction.
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Figure 10. Microdata schema for the use-case of Blinjski Kut minefield near Sisak, Croatia, in
HTML5 format.

Using the Microdata schema defined in Section 4.1 for the minefield Blinjski Kut
example, the snippet in Figure 10 would read as follows: The minefield is located at latitude
45.4667, longitude 16.3783, and is currently active with a high-risk level. The last inspection
was on 10 March 2003. Additionally, there is a demining operation titled “Operation Peace
Return” conducted by the International Demining Group, which started on 1 April 2003
and has been ongoing as of 31 December 2003. An incident occurred on 15 February 2003,
involving a detonation with two injuries reported by the Ministry of the Interior of the
Republic of Croatia. There is also a remnant of war, specifically an unexploded ordnance,
found on 5 March 2003, which is pending disposal.

7. Discussion

In the Discussion section, we critically examine the Minefield Data Observatory,
highlighting its multiple benefits and acknowledging the inherent limitations of our study.
Section 7.1 focuses on the significant benefits of using advanced knowledge representation
methods like computer ontologies coupled with automated reasoning expert systems.
Section 7.2 addresses the limitations of our study, in particular, the constraints of ontologies
and the challenges associated with analytically evaluating data on SHA.

7.1. Benefits of the Minefield Data Observatory

The use of advanced knowledge representation methods such as computer ontologies
combined with automated reasoning expert systems to formally define concepts and their
mutual relationships in the domain of humanitarian demining represents the main benefit
of the proposed system. This new approach allows for faster, simpler, and more accurate
analysis of all existing semi-structured and heterogeneous information stored within a
MAC mine information system. Formal representation of minefield records will also enable
the automated discovery of new knowledge in the existing document repositories.
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Furthermore, research into using decidable decision methods in computer vision to
aid in the semantically rich interpretation of the processed mine scene represents another
benefit of the Minefield Observatory system. There have been no significant developments
in humanitarian demining in this area due to the very complex scene and objects (e.g.,
indicators of mine presence like a trench, infantry shelter, bunker, drywall, etc.) that need
to be detected and reliably extracted. This tool will be accompanied by Standard Operating
Procedures for each step of the process. As a result, MAC operatives do not need to be
experts in every single technology-related step. They will benefit from the decision-making
system for humanitarian demining. Furthermore, new members of the MAC can be easily
educated on this new tool for recognizing the characteristics of SHA. In the end, MAC
personnel will make the final decision on what constitutes a mine presence indicator.

7.2. Limitations of the Study

The first potential limitation of the study is related to the usage of ontologies in a super-
vised learning setting. The process of using an ontology-based KB always relies heavily on
the expertise and contributions of domain experts, who must meticulously and manually
populate KB with instances of ontology concepts by identifying the correct terminological
concepts in the KB formal vocabulary. This requirement presents a major challenge as it
requires assembling a group of expert individuals who have a deep understanding of the
problem domain as well as the developed ontology vocabulary for the description of the
domain. These experts must spend significant time and effort to accurately define and relate
complex concepts, which can be labor-intensive and prone to errors. In addition, reliance
on human input increases the risk of subjectivity and inconsistencies in the ontology, which
can compromise the integrity and usefulness of the KB.

Additionally, once developed, ontologies are essentially static structures rarely changed.
Large ontological structures, especially those with many concepts, relationships, and prop-
erties, may have scalability problems and be difficult to modify. As such, they may not cap-
ture all the dynamic data properties of minefields. Integrating changing terminologies into
such rigid knowledge description frameworks may be challenging for practical purposes.

Another limitation of the study is related to the analytical assessment of all available
data on SHA, which consists of in-depth, comprehensive analysis and interpretation of all
previously collected data stored in the mine information system MAC. The most impor-
tant goals are the spatial positioning and contextual interpretation of all the mentioned
data. Based on this, general and special requirements for collecting additional data are
determined (in cases where the existing data are insufficient for the safe positioning of
minefields or mine-explosive devices). The results are highly dependent on the expert
military knowledge, skills, and affinities of the researchers of the analytical expert team.
For this reason, it is of crucial importance to define well every data that enters the system
and its links with all other objects in the system. In this way, the expert will be able to gain
comprehensive insight into the situation on the battlefield and define the borders of the
SHA more confidently, that is, identify what data he lacks in order to do so. The limitations
of these procedures will largely depend on the ability to properly define each object and
establish connections between them. The main challenge is to make all the data comparable
so that they can all be used together.

Finally, in the context of applying deep learning for extracting text from minefield
records, YOLO is a powerful object detection algorithm [69–71]; however, it has certain
limitations when used for extracting text from documents such as minefield records [72].
YOLO may struggle with very small text, text in low-resolution images, and when there
is a significant amount of noise in the image. If the minefield records contain too small
or poorly defined text, YOLO might have difficulty accurately detecting and extracting it.
YOLO is designed to detect objects with regular shapes and might face challenges when
dealing with irregular text layouts or non-standard orientations. Minefield records may
have text arranged in unconventional patterns, making it harder for YOLO to reliably
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capture. In such cases, a pre-processing step is necessary to align images to an angle more
suitable for extraction [73,74]. This will enable extracting text with regular shapes.

8. Conclusions and Future Work

Data observatories are multifunctional web-based platforms that provide a wide range
of services and resources to support data-driven research and decision-making. However,
the benefits of data observatories, data lakes, and other data engineering techniques that
use advanced web technologies have not been employed in humanitarian demining.

This paper has successfully introduced the Minefield Observatory, an innovative web-
based datastore service. It has effectively integrated a wide array of non-technical survey
and humanitarian demining data and provided a comprehensive and formal representation
of minefields through the MINEONT+ ontology. This approach greatly simplifies the
process of extracting relevant information from different sensor datasets, thereby increasing
the efficiency of demining efforts. The integration of diversely structured remote sensing
datasets and the innovative use of the Microdata API for seamless user interaction show
the robustness and utility of the proposed observatory concept.

The expected main outcome of the Minefield Observatory system is a toolbox for
storage, special requirements for collecting data on SHA; assessment and analysis of all
available data; extraction and delineation of mine presence indicators; producing mine
hazard maps. All functions of the system could be available on one integrated workstation.
The secondary outcome will be a functional multisensory UAV system (multispectral and
thermal) for data collection from the depth of SHA with Standard Operational Procedures
(SOP) to prepare and implement the UAV data collection flight mission.

Future developments will focus on extending the capabilities of the proposed ob-
servatory, potentially integrating it with other software applications, and utilizing it in
advanced artificial intelligence systems to further improve its benefits in the domain of
humanitarian demining.
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51. Horvat, M.; Krtalić, A.; Bajić, M.; Muštra, M.; Laura, D.; Gold, H. MINEONT: A Proposal for a Core Ontology in the Aerial
Non-Technical Survey Domain. In Proceedings of the 18th International Symposium “Mine Action 2022”, Novi Vinodolski,
Croatia, 16–18 June 2022; pp. 47–52.
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