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Abstract: The use of machine learning (ML) and its applications is one of the leading research areas
nowadays. Neural networks have recently gained enormous popularity and many works in various
fields use them in the hope of improving previous results. The application of the artificial intelligence
(AI) methods and the rationale for this decision is one issue, but the assessment of such a model
is a completely different matter. People mostly use mean square error or less often mean absolute
error in the absolute or percentage versions. One should remember that an error does not equal an
error and a single value does not provide enough knowledge about the causes of some behavior.
Proper interpretation of the results is crucial. It leads to further model improvement. It might be
challenging, but allows us to obtain better and more robust solutions, which ultimately solve real-life
problems. The ML model assessment is the multicriteria task. A single measure delivers only a
fraction of the picture. This paper aims at filling that research gap. Commonly used integral measures
are compared with alternative measures like factors of the Gaussian and non-Gaussian statistics,
robust statistical estimators, tail index and the fractional order. The proposed methodology delivers
new single-criteria indexes or the multicriteria approach, which extend the statistical concept of
the moment ratio diagram (MRD) into the index ratio diagram (IRD). The proposed approach is
validated using real data from the Full Truck Load cost estimation example. It compares 35 different
ML regression algorithms applied to that task. The analysis gives an insight into the properties
of the selected methods, enables their comparison and homogeneity analysis and ultimately leads
towards constructive suggestions for their eventual proper use. The paper proposes new indexes and
concludes that correct selection of the residuum analysis methodology makes the assessment and the
ML regression credible.

Keywords: machine learning; residuum analysis; tail index; L-moments; fractional order; α-stable
distribution; robust statistics; full truck loads

1. Introduction

Full truck loads (FTL) is a common transportation method, where the goods fill an
entire truck. It perfectly suits a large volume of goods, where a load covers the whole
truck space. Apart from the FTL, there exists an alternative method called less-than truck-
load (LTL), in which a truck takes several partial loads to different contract load/unload
locations within a single journey. This work focuses on the FTL, however from a rarely
addressed perspective.

In case of the external fleet contract pricing, the contracts are priced according to
the varying contractor policy, which takes into account several objective and subjective
market and non-market factors [1,2], such as contract0dependent, economic, regulatory,
general and purely ambivalent factors. Those factors potentially reflect, in the opinion

Electronics 2024, 13, 810. https://doi.org/10.3390/electronics13050810 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13050810
https://doi.org/10.3390/electronics13050810
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0009-9379-4906
https://orcid.org/0009-0006-8178-0134
https://orcid.org/0009-0006-4050-6585
https://orcid.org/0009-0007-5232-3628
https://orcid.org/0009-0009-5655-7143
https://orcid.org/0000-0003-4053-3330
https://doi.org/10.3390/electronics13050810
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13050810?type=check_update&version=1


Electronics 2024, 13, 810 2 of 26

of the decision maker, the shipping cost for a given commodity, along some determined
route within a certain time period. Dynamic pricing shows increasing shipping business
dynamics [3] and determines it simultaneously [4]. Next, it is assumed the contractor may
use some custom dynamic pricing model, which is associated with serious challenges [5].

The shipping cost estimations start to play an even more important role in case of
short routes, when common relations between the price, fuel costs and the driver time is
not straightway included. The pricing of the FTL long-range contracts is frequently solved
using deterministic analytical fright calculators [6], or with the use of algorithmic estimators.
It is worth noting that the AI and ML methods [7] lead in that area. The literature mostly
focuses on the blind machine learning approaches [2,8–10] or hybrid ones [11].

On the contrary, the task of the short-range FTL shipment cost estimation, i.e., for
routes shorter than 50 km, is seldom addressed in the literature. One may try to determine
the reasons for that. Firstly, this task is of a smaller order and is often hidden in all data,
or omitted due to the lower absolute cost values of such routes. Secondly, these routes often
play a complementary or secondary role in relation to the long-distance ones. Thirdly, it is
a thankless and simply difficult task. The fact that we undertake this task is related to its
difficulty and observations made while dealing with the general task of estimating FTL
costs [11], where the largest relative errors occur precisely for short routes, which spoils the
overall picture of the modeling and estimation task.

The multi-criteria assessment methodology is the second contribution of this work.
It is a well-known fact that each performance index, such as means square error, absolute
error or various residuum statistical factors, exhibit different properties and are sensitive
towards different estimation error aspects. Despite that knowledge, there is a significant
deficiency in the literature, because multi-criteria residuum assessment approaches are
hardly reported [12]. The researchers mostly use the mean square error (MSE), mean
absolute error (MAE) or the relative mean absolute percentage error (MAPE). Each of them
has different properties and puts more attention on various data features. Square errors
are sensitive to large residua, while even often-occurring but small errors are neglected.
Absolute errors equalize these differences and reflect small residua as well.

During this research, different measures are investigated: classical (normal), robust
and L-moments, tail index and the Geweke-Porter-Hudak estimator of the fractional order
of the ARFIMA filter. They are presented following the statistical approach named moment
ratio diagrams (MRD) or L-moments ratio diagram (LMRD). Our work plans to supplement
the estimation residuum analysis with the multi-criteria approach named the IRD—(Index
Ratio Diagrams) using various measures.

The main contribution of this work lies in the proposal of the multicriteria residuum
analysis concept, as this aspect is hardly existent in the research. The FTL estimation task is
considered as the representative example for the assessment methodology.

General FTL cost estimation task formulation is introduced in Section 2, while Section 3
describes the utilized assessment methods and estimation algorithms. Various estimators
are compared in Section 4. Section 5 presents the results of the multi-criteria residuum
analysis, while Section 6 concludes the paper.

2. Estimation Case Study

The analysis uses the data from selected Polish shipping companies [9]. The original
database consists of approximately 414,000 records. Once the data are limited only to the
short-range contracts, the number of records is limited to 20,239 from 1 January 2016 till 30
April 2022. These data are used for training. Contracts from 1 May 2022 till 1 August 2022
(703 records) are used for validation, as shown in Table 1.
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Table 1. Number of records used during the analysis.

Data Raw Preprocessed

training 414,404 20,239

validation 14,968 703

Data Preprocessing and Features Selection

Each contract included in the database is characterized by 22 independent features.
We limit this number to the 12 most important variables listed in Table 2. This table does
not include an important feature like the fuel cost, which is highly volatile due to varying
geopolitical and economic situations. The following descriptors are excluded from the
estimation process:

• ID number—a sequence number;
• Maximum weight and tonne-kilometers, as they are frequently incomplete;
• Geographical clusters [11], the latitudes and longitudes of the loading and unloading

places, which are used only in the selection of the short-range routes.

Python programming language (scikit_learn and torch libraries) and MATLAB (Statistics
and Machine Learning Toolbox) are used during data processing and the estimation process.

Table 2. The list of selected features.

Time-Related Distance-Related Route-Related Freight-Related

date of payment total distance number of loads usage of cold storage

min transport time total empty distance number of unloadings

max transport time

time interval

date of transport

lead time

3. Methods and Algorithms

This research uses quite a large scope of possible methods, which are included in the
proposed IRD framework: integral indexes, classical, robust and L-moments, tail index and
the Geweke–Porter–Hudak fractional order estimator of the ARFIMA filter. Methods used
during calculations are described below.

3.1. Integral Measures

The MSE measure is calculated as the mean integral of the squared residua over some
time period k = 1, . . . , N

MSE =
1
n ∑(y − ŷ)2. (1)

It penalizes large errors, neglecting the smaller ones. This measure is significantly
affected by outlying occurrences and exhibits the zero-breakdown point [13]. The MAE
index sums absolute residua values

MAE =
1
n ∑|y − ŷ|. (2)

The MAE is less conservative as it penalizes continuing small residua. Though its
breakdown point is zero as well, it is robust against a portion of outliers. The MAPE is
defined in a relative way:

MAPE =
100%

n ∑
∣∣∣∣y − ŷ

y

∣∣∣∣. (3)
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Generally, it is difficult to define what error value is good and which model is proper
enough. Lewis, in [14], proposed the interpretation of typical MAPE values, which is
presented in Table 3.

Table 3. Interpretations of MAPE values.

MAPE [%] Interpretation

<10 highly accurate forecasting

10–20 good forecasting

20–50 reasonable forecasting

>50 inaccurate forecasting

3.2. Statistical Moments

This research follows a theoretical approach that assumes some distribution, which
correctly represents the underlying process. Such probabilistic density function (PDF) is
utilized through their factors and moments (if they exist).

Let us assume that {Xi}T is a given time series with the mean µ and the r-th central
moment γr = E(X − µ)r, E(·) denotes the expectation. The mean µ is the first moment
γ1, and the variance σ2 is the second one denoted as γ2, where σ denotes the standard
deviation. These moments are often used together with the third one, i.e., the skewness
γ3 and the fourth—the kurtosis γ4. The skewness reflects data asymmetry and kurtosis
its concentration.

γ3 =
1

Nσ3

N

∑
i=1

(xi − x0)
3 (4)

γ4 =
1

Nσ4

N

∑
i=1

(xi − x0)
4 − 3 (5)

The existence of outlying observations in the time series causes its distributions to start
to be fat-tailed [15]. This feature biases the moments estimation. The use of statistical factors
in the residuum analysis has quite a long history following the legacy of Gauss [16,17].
They are strictly connected with the assumption about data normality and normality tests.

3.3. L-Moments

The theory of L-moments was proposed by Hosking [18] as a linear combination of
order statistics. The theory of L-moments includes new descriptions of the distribution
shape, helps to estimate factors of an assumed statistical function and allows the testing
of hypotheses about theoretical distributions. We may define L-moments for any random
variable, whose expected value exists. The L-moments give almost unbiased statistics, even
for a small sample. They are less sensitive to the distribution tails [19]. These properties are
appreciated in the life sciences, although they might be also used in control engineering.
Their calculation is done as follows. The data {x1, . . . , xN}, N—number of samples, are
ranked in ascending order from 1 to N. Next, the sample L-moments (l1, . . . , l4), the sample
L-skewness τ3 and L-kurtosis τ4 are evaluated as:

l1 = β0, l2 = 2β1 − β0, l3 = 6β2 − 6β1 + β0,

l4 = 20β3 − 30β2 + 12β1 − β0,

τ2 =
l2
l1

, τ3 =
l3
l2

, τ4 =
l4
l2

, (6)
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where

β j =
1
N

N

∑
i=j+1

xi
(i − 1)(i − 2) · · · (i − j)

(N − 1)(N − 2) · · · (N − j)
(7)

Statistical properties are reflected in L-shift l1, L-scale l2 ∈ (0, 1), L-covariance (L-Cv)
τ2, L-skewness τ3 ∈ (−1, 1) and L-kurtosis τ4 ∈ (−1/4, 1). They help to fit a distribution
to a dataset. L-skewness and L-kurtosis work as the goodness-of-fit measure. They can
be calculated for theoretical PDFs [20] and normal distribution has: l1 = µ, l2 = σ/π,
τ3 = l3/l2 = 0 and τ4 = l4/l2 = 0.1226.

The L-moments deliver reliable estimates, especially for small samples and fat-tailed
distributions. They form a backbone for the L-moments ratio diagrams, which support the
distribution fitting to empirical samples. The most common diagram uses L-kurtosis (τ4)
versus L-skewness (τ3) relationship [19]. Apart from that, L-moments diagrams are used to
compare various samples originating from different sources in search for the homogene-
ity [21,22]. These features constitute the research idea for the proposal of the IRDs.

3.4. Robust Statistics

Robust statistics is taken into consideration to address the impact of outliers. Robust
estimators acquired popularity with works of Huber [23]. Robust estimators allow to
evaluate the shift, the scale and the regression coefficients for data impacted by outliers.
This work utilizes the M-estimators with logistic psi-function implemented in the LIBRA
toolbox [24].

M-estimators consider the maximum likelihood (ML) estimator that uses the log-
likelihood formula for a given distribution Fµ,σ is

N

∑
i=1

{
log f0

(
xi − µ

σ
− log σ

)}
, (8)

The location M-estimator µ̂ is defined as a solution of:

1
n

n

∑
i=1

ψ

(
xi − µ̂

σ0

)
= 0, (9)

where ψ(.) is an influence function, µ̂ is a location estimator and σ0 is an assumed scale.
In a similar way we define the scale M-estimator σR = σ̂

1
n

n

∑
i=1

ρ

(
xi − µ0

σ̂

)
= 1, (10)

where ρ(.) is a loss function, σ is a location estimator and µ0 is a preliminary location.
The work utilizes logistic functions ρL(ξ) and ψL(ξ) given by

ρL(ξ) = k2
L ln

[
cosh

(
ξ

kL

)]
, (11)

ψL(ξ) = kL tanh
(

ξ

kL

)
. (12)

The utilization of robust statistics is just straightforward, as they form the natural
extension of the statistical scale measures (variance and standard deviation) in case o
outliers [25], which occur frequently in real-life applications [26]. With their use, we are not
biasing our assessment by anomalies or erroneous records.

3.5. Moment Ratio Diagrams

Moment ratio diagrams graphically show the statistical properties of the considered
time series in a plane. The MRD is a graphical representation in Cartesian coordinates of
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a pair of standardized moments. Actually, there are two versions [27]. The MRD(γ3, γ4)
shows the third standardized moment γ3 (or its square γ2

3) as abscissa and the fourth
moment γ4 as ordinate, plotted upside down. There exists a theoretical limitation of the
accessible area, as γ4 − γ2

3 − 1 ≥ 0. The locus corresponding to PDF can be a point, curve
or region. It depends on the number of shape parameters. PDFs lacking shape factor (like
Gauss or Laplace) are represented by a point, and functions with one shape coefficient
are represented by a curve. Regions reflect functions with two shape factors. The second
type of the diagram MRD(γ2, γ3) represents variance γ2 as the abscissa and skewness γ3 as
the ordinate.

Moment ratio diagrams initially have a formulated multicriteria assessment approach,
though in the statistical context. This research uses this idea in the residual analysis.

3.6. L-Moment Ratio Diagrams

L-moments have been introduced by Hosking [18]. The LMRDs are popular in the
extreme analysis. They allow the identification of proper distribution for empirical ob-
servations. The LMRD(τ3, τ4) is the most common and it shows the L-kurtosis τ4 versus
L-skewness τ3. Similarly to MRDs, one can confront the empirical data with the theoretical
PDF candidate [19]. A blank diagram with shapes (points or curves) for some theoretical
PDFs is presented in Figure 1.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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3
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Figure 1. Sample LMRD(τ3, τ4) diagram—red line depicts the limit of all distributions
(GEV—Generalized Extreme Value, GAM—Gamma, WEI—Weibull, GLO—Generalized Logistic,
GPD—Generalized Paerto, LN—Lognormal).

Similarly to the MRD(γ2, γ3), there are two LMRD versions: LMRD(τ2, τ3) and
LMRD(l2, τ3). They combine in a single plot the scale and skewness. As the CPA analyzes
frequently use kurtosis, it is proposed to investigate a new formulation: the LMRD(l2, τ4).
The LMRDs are the successor of the MRDs and predecessor of the IRDs and they should be
considered from that perspective.

3.7. The α-Stable Distribution

Apart from the specific robust estimators or L-moments one may use other distribu-
tions. Stable functions deliver an alternative set of the statistical measures [28]. The α-stable
distribution is expressed by the characteristics equation

Fstab
α,β,δ,γ(x) = exp

{
iδx − |γx|α(1 − iβl(x))

}
, (13)
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where

l(x) =

{
sgn(x) tan

(
πα
2
)

for α ̸= 1
sgn(x) 2

π ln|x| for α = 1
(14)

The factor 0 < α ≤ 2 is called the index of stability (stability exponent), the |β| ≤ 1 is
the skewness factor, δ ∈ R the shift and γ > 0 the scale. Thus, the α-stable distribution has
one shift factor, one scale and two shape coefficients: α and β.

The α-stable distribution has an increasing potential in the assessment approaches [29],
as it allows to measure the data diversity (scale factor γ) and other shaping factors such
as skewness (β) and the tailedness (α). These features nominate them as the potential
measures in the residual analysis as well. Their application might be constrained in case of
data, which does not fall into the stable families, which should be validated before their use.

3.8. Tail Index

Statistics frequently use the law of large numbers and the central limit theorem. Once
data exhibits outliers, which is revealed in the form of tails, the majority of the assumptions
made are not met. In such a case the knowledge of where the tail starts and which
observations are located in the tail plays an important role [30,31]. There are many methods
to estimate it and the tail index, denoted as ξ̂, is the most promising one [32]. There are
quite a few tail index estimation approaches, with two leading ones: the Hill [33] and
Huisman estimator [34]. This work uses the second one.

Tail index as such is an extension of the α-stable distribution’s stability exponent and
it measures where the distribution tail starts. This perspective nominates the tail index as
the potential measure of the data properties and their contamination with anomalies.

3.9. ARFIMA Models and Fractional Order

The ARFIMA time series is treated as an extension to the classical ARIMA regression
models, see [35]. The process xk is denoted as ARFIMA(p, d, q)

Ap(z−1) · xk = Bq(z−1) · (1 − z−1)−dϵk, (15)

where A(z−1) and B(z−1) are polynomials in the discrete time delay operator z−1, ϵk is
random noise with finite or infinite variance. We use Gaussian noise in this research.
Fractional order −0.5 < d < 0.5 refers to process memory.

For d ∈ (0, 0.5) the process exhibits long memory or long-range positive dependence
(persistence). The process has intermediate memory (anti-persistence) or long-range neg-
ative dependence, when d ∈ (−0.5, 0). The process has short memory for d = 0; it is
stationary and invertible ARMA. ARFIMA(p, d, q) time series is calculated by d-fractional
integrating of a classical ARMA(p, q) process. The d-fractional integrating through the(
1 − z−1)−d operator causes the dependence between observations, even as they are far

apart in time.
The Geweke–Porter–Hudak (GPH) estimator proposed by [36] uses a semi-parametric

procedure to estimate the memory parameter dGPH for ARFIMA process xk:

xk = (1 − z−1)−dϵk, (16)

Next, ordinary least squares (LS) are applied to estimate d̂ from the

log(Ix(λs)) = ĉ − d̂
∣∣∣1 − eiλs

∣∣∣+ residual, (17)

being evaluated for fundamental frequencies λs =
2πs

n , s = 1, . . . , m, m < n, where m is the
largest integer in (n− 1)/2 and ĉ is a constant. Discrete Fourier transform xk is evaluated as

ωx(λs) =
1√
2πn

n

∑
k=1

xkeikλs . (18)
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Application of the least squares algorithm to the Equation (16) yields to the final
formulation

d̂ =
∑m

s=1 xs log Ix(λs)

2 ∑m
s=1 x2

s
, (19)

where Ix(λs) = ωx(λs)ωx(λs)∗ being a periodogram and xs = log
∣∣∣1 − eikλs

∣∣∣. The GPH
algorithm calculates the dGPH without explicit assumptions about ARMA polynomial
orders. We use the [37] implementation.

The use of the Geweke–Porter–Hudak fractional order estimation in the assessment
task is relatively new [38] and still requires much attention. Nonetheless, the first results
are quite promising and that is why they are included in the analysis. However, the argu-
mentation could be extended to the fractal, multi-fractal and data persistence time series
assessment perspective of this estimator, which finds earlier references [39,40].

4. Estimation Approaches

This section describes the machine learning approaches taken into account during the
study. We decided to apply only black-box identification approaches [41]. This choice is
motivated by the unknown patterns behind the data due to the dynamic geopolitical situa-
tion in recent years and due to the specificity of market practice during the determination
of the price for very short shipping. Among other factors, rising inflation, Brexit and the
COVID-19 pandemic are impacting truck cargo transit prices. Proposing an explicit form
of the cost model that takes into account the aforementioned factors would have been a
difficult task, which we decided not to undertake.

4.1. Classical Regression Models

The following regression estimation algorithms are used during the analysis.

4.1.1. Linear Models

Linear regression, like the least mean squares (LMS), is frequently the natural first
choice. LMS minimizes the sum of the squares of the differences between the actual and the
estimated value (model residuum). LMS is the simplest regression approach, however it is
highly sensitive to outliers [42]. Robust Linear Regression [43] (R-LMS) with the intercept
and linear terms compared to LMS is affected by outliers only in a minimal scale. Stepwise
Linear Regression [44] (SLR) is a method that reduces the influence of less important
parameters in an iterative way.

Outliers were expected to occur in the dataset, such as single long-distance transports.
Regression models robust to multivariate outliers, namely Theil-Sen [45] (TS-LR) and
Huber [42] regressors (H-LR), are also tested. Huber regressor differs from the Theil-Sen
one, because it does not ignore the effect of the outliers, giving just a smaller weight to them.

4.1.2. Support Vector Machine

Due to the existence of many transport parameters, it was problematic to divide
the data into separate sets to infer the costs of new transports. For this purpose, it was
reasonable to use hyperplane methods such as Support Vector Machines [46]. Using this
method, we are able to approximate the costs of new transports by reference to a test
set divided into sets with a predetermined precision. In this method, we can adjust the
parameters to achieve a balance between the generalization of the model and its sensitivity.

Linear Support Vector Machines [47] (LSVM) is the simplest linear kernel (20) version
of the method. It is particularly effective when dealing with linear relationships between
input features and the target variable. Its aim is to identify the optimal hyperplane,
minimizing the error between the predicted values and the actual results. Its biggest
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advantages are simplicity, efficiency and robustness to outliers, but it is ineffective when
dealing with complex, non-linear relationships.

f (x) =
n

∑
i=1

αiyi⟨xi, x⟩+ b (20)

Quadratic Support Vector Machine [48] (QSVM) is an extension of the LSVM. Unlike
the linear version, it uses a quadratic kernel function (21) that allows the capture of more
complex decision constraints. It can be particularly useful when dealing with datasets
where classes are not linearly separable.

f (x) =
n

∑
i=1

αiyi(xi · x)2 + b (21)

Coarse Gaussian Support Vector Machine [49] (CGSVM) is suited to tasks with low-
complexity data. It uses Coarse Gaussian kernel that is given by the Formula (22)

f (x) = exp(−4 · √p∥xi − xj∥2). (22)

Medium Gaussian Support Vector Machines [49] (MGSVM) is mainly suited to tasks
with medium-complexity data. It uses Medium Gaussian kernel that is given by the
Formula (23)

f (x) = exp(−√
p∥xi − xj∥2). (23)

Following, the Fine Gaussian Support Vector Machines (LGSVM) use the Formula (24)

f (x) = exp(−
√

p
4
∥xi − xj∥2). (24)

Kernel Support Vector Machine [50] (KSVM) belongs to the group of kernel approxi-
mation models. Using this method, we can conduct nonlinear regression on large datasets.
Training and prediction processes will generally run faster for this method than for Gaus-
sian kernel SVM models. Metric used in model fitting is epsilon-insensitive loss.

4.1.3. Gaussian Processes

The dataset that we use is not particularly large. We search for a regression model
that handles data sets of small size reasonably well. In such a case the use of Gaussian
Process Regression [51] is justified, because it allows us to determine the uncertainty of the
transportation cost prediction as well. Gaussian Process Regression is a non-parametric
approach, which is based on kernel probabilistic models.

Exponential Gaussian Process [52] (EGPR) uses exponential kernel, which is stationary
kernel and can be parameterized by a length scale. Kernel is given as a fraction of Euclidean
distance and length scale parameter. By taking to the kernel squared value of Euclidean
distance we will obtain Squared Exponential Gaussian Process (also named radial basis
function kernel [53]—SEGPR). The advantage to this development is the small chance of
generating large errors, while handling extensive data sets in higher dimensions. Matern
Gaussian Process Regression (MGPR) is the next extension to the Gaussian algorithm and is
generalization of radial basis function kernel. The Matern kernel uses spectral densities of
the stationary kernel and create Fourier transforms of the RBF kernel. Rational Quadratic
Gaussian Process Regression [54] is a probabilistic method that is effective when dealing
with non-linear relationships. The model defines a distribution over possible functions of
the relationship between the input features and the target variable. In this method, the
kernel is used to capture the similarity between data points, allowing the model to make
predictions based on relationships of points in the training data. The Rational Quadratic
kernel enables the model to capture a broader range of non-linear patterns in the data.
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4.1.4. Nearest Neighbors

In order to check whether better results would not be achieved by averaging the known
costs of several similar transports, the k-nearest neighbors method was used. The k Nearest
Neighbors method (k-NN) [55] is based on searching the training set to find transports
with parameters closest to the one whose cost we are looking for. This method uses “k”
such known transports.

This algorithm is sensitive to local structures of data due to using set of transports
with the most similar parameters, but is not prone to outliers from the training set [56].

4.1.5. Orthogonal Matching Pursuit

Orthogonal Matching Pursuit (OMP) stands as an algorithm in compressing sensing,
adept at recovering sparse signals within noisy linear regression models [57]. This technique
enriches the foundational Matching Pursuit algorithm through a least-squares minimization
at each step, thereby optimizing approximations of the extant elements. Noteworthy is
the inherent restraint against redundant element selection, attributed to the orthogonal
relationship between the residual and the previously chosen constituents. Consequently,
the residual converges to zero after k iterations. The first publications within the domain of
signal processing regarding Orthogonal Matching Pursuit appeared in 1993 [58].

4.1.6. Ridge Regression

Ridge regression (RR) addresses multicollinearity by improving least squares estimates,
which suffer from bias and high variance in such scenarios [59]. By introducing controlled
deviation to regression estimation, ridge regression curbs standard error and enhances
reliability, albeit at the expense of some accuracy. It indirectly combats multicollinearity
through a constraint length factor, relinquishing unbiasedness for more practical and robust
regression coefficients. This method’s flexibility blends qualitative and quantitative analysis,
offering a unique solution to multi-collinearity and finding application in extensive research.
However, diverse ridge parameter calculations yield divergent results, and the popular
ridge trace approach relies on subjective variable selection, posing arbitrary outcomes.

Moreover, it is noteworthy that the conventional ridge regression methodology does
not inherently facilitate variable reduction, leading to the retention of all variables within
the model. In response to this, the utilization of the Automatic Relevance Determination
(ARD-RR) method emerges as an approach capable of decisively assessing the relevance of
input features [60].

Furthermore, our approach encompasses the utilization of Bayesian Ridge Regres-
sion [61] (BRR), wherein is assumed that all regression coefficients have common variance.
The Bayesian instantiation of ridge regression presents a distinct advantage by obviating
the necessity for explicit regularization parameter selection. Instead, the model dynami-
cally acquires this parameter from the data, engendering a more data-driven and adaptive
regularization strategy.

4.1.7. Decision Trees

Searching for a regression method that would allow us to create an accurate and robust
model, we also had non-technical aspects in mind. This was one of the reasons to use
decision trees [62]. One of their many advantages is that the model is intuitive and easy to
explain to the decision makers for whom the model is being developed.

Regression trees [63] are a supervised learning approach that is commonly used in
statistics and data mining. They are one of the most popular algorithms in machine learning.
The algorithm works by dividing the data set into subsets (branches, nodes and leaves).
The division is made in such a way as to obtain the greatest possible information gain or to
minimize the sum of squared errors (SSE). The unquestionable benefit of this approach is
its robustness to outliers and missing data. Unfortunately, the growth of the regression tree
is associated with a significant increase in computational complexity (therefore, the depth
of the tree can be limited).
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Regression Tree [64] (DTR) divides the data into branches, nodes and leaves. Re-
gression Tree is similar to Decision Tree that is used to predict continuous data, not only
discrete data output. Regression Tree can be classified by its size, defining the depth of
the regression tree. Division is created by leaf size parameter. Coarse Regression Tree
has a minimum of 20 Coarse Trees, Medium Regression Tree (M-DTR) has a minimum of
12 medium trees and Fine Regression Tree has 4 fine trees. Fine Regression Tree (F-DTR) is
usually highly accurate on the training data, however separate test data accuracy can be
not comparable to training one. Coarse Regression Tree (C-DTR), due to the multiplicity of
leaves, is inclined to overfit data. However, Coarse Tree with limited large leaves does not
gain high training accuracy and its training accuracy might be close to the test one.

Boosted Regression Trees [65] (BoostRT) are an advanced machine learning approach
used for regression tasks, when there are non-linear relationships in the data. Boosting in
the method consists in the iterative matching of trees to test data based on the residual error.
Boosted Regression Tree has found wide applications in various domains, including finance,
healthcare and environmental science, owing to its ability to handle high-dimensional data
and produce accurate predictions. The disadvantage of this method is that its perfor-
mance is highly dependent on careful parameter tuning and sufficient training data to
avoid overfitting.

Gradient boosting stands as a prevalent and effective machine learning technique,
extensively applied to regression and classification tasks. The development of gradient
boosting can be attributed to the work of Jerome H. Friedman [66]. This methodology
culminates in the formation of an ultimate predictive model structured as an ensemble
amalgamating numerous feeble predictors. At its core, gradient boosting is a process of
iteratively refining a cost function within the expanse of function space. This iterative
refinement is achieved by judiciously selecting functions that align with the negative gradi-
ent orientation of the cost function. Often, the ensemble constituents of gradient boosting
harness decision trees as weak predictors. The amalgamation of decision trees and boosting
principles results in the Gradient Boosted Decision Tree. In the Gradient Boosted Decision
Tree paradigm (GBoostRT), an iterative construction unfolds, progressively assembling an
ensemble of modest decision tree learners through the mechanism of boosting. The cul-
minating prediction yielded by Gradient Boosted Decision Tree is the aggregate outcome
of assimilating the prediction outputs from all constituent trees, thereby harnessing the
collective predictive prowess of the ensemble.

Histogram-based Gradient Boosting Regression Tree (HGBoostRT) represents an es-
timator endowed with capabilities to handle missing values (NaNs) [67]. Throughout
the training process, the growth of trees entails a learning mechanism that strategically
determines the trajectory of samples with missing values, directing them to either the
left or right child nodes, predicated upon the ensuing potential gain. During prediction,
samples harboring missing values are systematically assigned to the appropriate child node.
In instances where a specific feature encountered no missing values during the training
phase, samples replete with missing values are routed to the child node boasting the highest
sample abundance. This estimator exhibits significantly heightened efficiency compared to
the Gradient Boosting Regression tree, particularly in the context of substantial datasets.

Extremely Randomized Trees Regression [68] (ERTR) is a similar but significantly
faster variant of random forests method. This algorithm creates numerous decision trees
and predictions are made by averaging the prediction of the decision trees. Each tree
is built based on a randomly chosen subset from the feature set. Splitting value is also
chosen randomly—we do not calculate entropy, information gain or SSE error as in classical
regression trees. This allows us to reduce the correlation of individual trees. The main
advantages of this method include improved prediction accuracy, overfitting control and
reduction in bias.

Bagged Regression Trees Regression [69] (BRTR) is a supervised machine learning
algorithm. The main idea of Bagged Trees is to not rely on a single decision tree, but be
dependent on many decision tree models. It is used to increase predictive power and
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stability of regression trees. The main advantage of using Bagged Trees is its ability to
minimize variation while holding bias consistent. In general, decision trees are simple
and easy to explain,; however, bagged trees algorithms append complexity, so they can be
difficult to interpret.

4.1.8. Random Forest Regression

A decision forest in the Random Forest Regression (RFR) can be defined as an ensem-
ble classifier comprised of an amalgamation of tree-structured classifiers. Each individual
tree within this ensemble contributes a singular vote towards the prevailing class of the
input data point. Remarkable enhancements in classification accuracy have been consis-
tently noted, irrespective of the specific algorithms employed for the construction of the
constituent trees [70].

4.1.9. Regularization Techniques

Equally important as the predicted shipping cost are the features/information based
on which this cost was calculated. During preprocessing, you can a priori select the features
based on which you build the model, but you can also use the LASSO [71] regression
(LASSO-R) model to select these features. LASSO (least absolute shrinkage and selection
operator) method reduces model overfitting by extending the cost function with a penalty
term i.e., the sum of the L1 norms of the model coefficients. By minimizing the value of the
cost function, the method identifies features that are irrelevant from its point of view. Using
this model, the transport company will know which transport parameters it can afford to
deviate from the norm without changing the cost of shipping.

A commonly used alternative to the LASSO model is the LARS model [72]. It is used
for multidimensional data—such as the data from the shipping company on which our
experiments are being conducted. In the case of LARS (least-angle regression) method,
there is no need to adjust the hyper-parameters weighing the penalty term. LARS is quite
similar to forward stepwise regression method. The Least Angle Regression method aims
to find an attribute that has the highest correlation with the residual. However, despite the
high numerical efficiency of this method, it is very sensitive to noise, which can lead to
misleading predictions and, consequently, financial losses for the company that uses such
a model.

The concept of a regressor combining the advantages of the above two has also
emerged. Such model is LARS LASSO (LARS-R). It has a faster convergence than the
standard LASSO method. This method has also only two hyper-parameters, so tuning the
model is greatly simplified.

Another example of a hybrid method that combines the advantages of other methods
(LASSO and Ridge) is the Elastic Net method [73] (ENR). It handles multi-collinearity issues
extremely well. The penalty function incorporates both L1 and L2 norms (see Figure 2). It
reduces overfitting by eliminating redundant (mutually correlated) features.

Figure 2. Norms used for regularization in Ridge, LASSO and Elastic Net regression methods.
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4.2. Neural Network Approach

In order to develop transport cost prediction models, it was decided to use the PyTorch
library, which allows numerical calculations, including operations on tensors and the
implementation of advanced neural networks. The problem is the lack of knowledge of the
ideal neural network architecture that would handle this task the best. Therefore, a study
was conducted, exploring various possibilities, such as the number of hidden layers,
the number of neurons in each hidden layer, the activation functions and the network
training process optimizer. Details of the architectures used are as follows:

• Number of hidden neurons: 12–2048;
• Number of hidden layers: 1–8;
• Activation fun.: RELu, Tanh, identity, logistic;
• Optimizer: Adaptive Moment Estimation, Stochastic Gradient Descent.

The use of artificial neural networks (ANN) in the context of cost prediction problems
has found application in a number of scientific studies on such topics as predicting the cost
and duration of building construction or predicting the cost of housing engineering [74,75].

5. The Results

We start the analysis with a presentation of the calculation of common integral mea-
sures. Table 4 compares obtained values. Even the draft analysis allows for an interesting
observation. Each measure indicates different models as the best. The MSE highly penalizes
large errors [76] and is sensitive to any outlying occurrences, while the MAE is less conser-
vative. It enables closer relations to smaller variations and economic considerations [77].

Moreover, relative indexes point out or penalize other methods. Therefore, the de-
cisions about the model that should be chosen highly depends on the selected index.
Practice shows that this decision is often unaware, which might be costly in further practi-
cal applications.

In Section 3, we describe various performance indexes that can be found in the lit-
erature. Moreover, we suggest the performance of visual multi-criteria analysis using
the so-called Index ratio Diagrams (IRD). This idea follows the notions of moment ratio
diagrams, known in statistics.

We start the analysis from the classical moment ratio diagram that shows the relation-
ship between the third and the fourth moment, i.e., between the skewness denoted as γ3
and the kurtosis γ4. Figure 3 presents the respective diagram. Each shaded circle denotes
one model, which is labeled with the blue number according to the notation sketched in
Table 4. The circles are shaded according to some other index, in this case it is the MAE.
Generally, such a drawing brings some relative visual information—we still expect to obtain
a single performance indicator. Actually, we may assume that the best tuning is reflected
by the shortest distance from some optimal point. In this case we may assume the point
[γ3; γ4] = [0; 3].

As we wish to obtain this value independently, we scale it and obtain the following
IRD distance index dIRD(x,y) for scaled values x and y:

ADiMe = dIRD(x,y) =
1√
2

√
(x − x0)

2 + (y − y0)
2. (25)

This index we name as the Aggregated Distance Measure (ADiMe). The assumed
scaling factors, which are used in each case, are denoted on the plots.
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Table 4. Comparison of the regression models. Grey color highlights the extreme values of the
models: the worst (red) and the best (green). Bold numbers indicate the worst and the best one.

No Descriptor Method Name MAE MSE MAPE [%]

1 LMS Least Squares 205.8 704,903 66.24

2 R-LMS Robust Linear Regression 189.2 837,335 37.69

3 SLR Stepwise Linear Regression 226.8 1,664,193 75.34

4 TS-LR Theil-Sen Regressor 188.4 851,928 46.61

5 H-LR Huber Regressor 177.6 763,898 41.4

6 LSVM Linear Support Vector Machines 175.6 764,256 36.11

7 KSVM Kernel Support Vector Machines 298.9 1,943,548 60.79

8 QSVM Quadratic Support Vector Machine 187.1 877,200 45.61

9 CGSVM Coarse Gaussian Support Vector Machines 195.6 1,088,107 50.5

10 MGSVM Medium Gaussian Support Vector Machines 235.0 1,479,565 56.79

11 FGSVM Fine Gaussian Support Vector Machines 304.8 1,746,572 79.59

12 EGPR Exponential Gaussian Process Regression 155.5 748,644 42.58

13 SEGPR Squared Exponential Gaussian Process Regression 202.4 1,193,684 42.76

14 MGPR Matern 5/2 Gaussian Process Regression 182.1 967,428 42.37

15 RGPR Rational Quadratic Gaussian Process Regression 159.7 718,013 38.31

16 k-NN k-Nearest Neighbors Regressor 200.9 824,671 57.08

17 OMP Orthogonal Matching Pursuit 198.0 858,053 40.65

18 RR Ridge Regression 205.8 704,902 66.24

19 ARD-RR Automatic Relevance Determination 205.4 704,991 65.99

20 B-RR Bayesian Ridge Regression 205.7 704,758 66.31

21 DTR Decision Tree Regressor 167.9 614,842 35.45

22 BoostRT Boosted Regression Trees 164.7 719,251 33.58

23 GBoostRT Gradient Boosting Regression 151.8 695,577 38.04

24 HGBoostRT Histogram Gradient Boosting Regression 140.0 490,936 34.01

25 ERTR Extremely Randomized Trees 131.2 712,589 27.68

26 BRTR Bagged Regression Trees 128.5 626,157 26.83

27 F-DTR Fine Regression Tree 161.6 688,117 29.23

28 M-DTR Medium Regression Tree 140.6 675,587 27.12

29 C-DTR Coarse Regression Tree 130.5 609,023 26.25

30 RFR Random Forest Regression 136.1 625,584 30.77

31 LASSO-R LASSO Regression 205.9 705,301 66.54

32 LARS-R LARS Lasso 205.9 705,301 66.54

33 ENR Elastic Net Regression 204.9 702,740 66.39

34 LAR Least Angle Regression 205.8 704,903 66.24

35 ANN Artificial Neural Network 134.0 651,000 27.82

The IRD(γ3,γ4) diagram points out the model no 24, i.e., the Histogram Gradient
Boosting Regression (HGBoostRT) as the best modeling approach. We may observe that
selected model is the same as the one selected by the MSE index. The value of the IRD
distance index is equal to dIRD(x,y) = 0.674. What is interesting is that the second-best
model is the Quadratic Support Vector Machine (QSVM), which is not appreciated by any
of the integral indexes.

The next Figure 4 presents the same IRD relationship IRD(γ3,γ4), but with different
shading, which is conducted according to the relative MAPE index. It is decided that all
the consecutive diagrams are shaded according to the MAE index.
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Figure 3. IRD(γ3,γ4): red square depicts good tuning, green—the best (circles shaded according
to MAE).

The next two plots show the IRD diagrams showing the relationship between the stan-
dard deviation (the second moments) and the skewness. Figure 5 uses classical Gaussian
standard deviation estimator σG, while Figure 6 uses its robust counterpart σH. In both cases
the HGBoostRT model is indicated with the ADiMe measure equal to dIRD(σG,γ3)

= 0.691
and dIRD(σH,γ3)

= 0.590. In contrast, the next-best models are different, i.e., the Fine Regres-
sion Tree (F-DTR) and Coarse Regression Tree (C-DTR).

Figure 7 presents standard L-Moment Ratio Diagram, i.e., the IRD(τ3,τ4). As the
L-skewness and L-kurtosis are normalized, there is no need for any further scaling. This
approach indicates the k-Nearest Neighbors Regressor (k-NN) with dIRD(τ3,τ4)

= 0.463.
Interestingly, the two next-best models are Rational Quadratic Gaussian Process Regression
(RGPR) and Exponential Gaussian Process Regression (EGPR). The favoring of these
models is intriguing, because they are not indicated by other indicators. We may bring the
hypothesis that their residua exhibit, in general, neutral statistical properties. This issue
requires further investigation.

The following two diagrams takes into account the L-l2 scale measure together with
the L-skewness in Figure 8 and L-kurtosis in Figure 9. The IRD(L-l2,τ3) approach points
out the Coarse Regression Tree (C-DTR) with dIRD(L-l2,τ3)

= 0.449, which is highly favored
by all integral measures. On the contrary, the IRD(L-l2,τ4) selects the Orthogonal Matching
Pursuit (OMP) method with dIRD(L-l2,τ4)

= 0.680. It must be noted that the selected best
models are quite close to the following ones, and thus the indications are not very decisive.
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Figure 4. IRD(γ3,γ4): red square depicts good tuning, green—the best (circles shaded according
to MAE).
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Figure 5. IRD(σG,γ3): red square depicts good tuning, green—the best (circles shaded according
to MAE).
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Figure 6. IRD(σH,γ3): red square depicts good tuning, green—the best (circles shaded according
to MAE).
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Figure 7. IRD(τ3,τ4): red square depicts good tuning, green—the best (circles shaded according
to MAE).
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Figure 8. IRD(L-l2,τ3): red square depicts good tuning, green—the best (circles shaded according
to MAE).
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Figure 9. IRD(L-l2,τ4): red square depicts good tuning, green—the best (circles shaded according
to MAE).

The next two plots combine the L-scale factor L-l2 with the alternative measures
of the tail—the tail index ξ̂ in Figure 10 and the Geweke–Porter–Hudak ARFIMA filter
fractional order estimator d̂ shown in Figure 11. Both diagrams select the same modeling
approach, the Bagged Regression Trees (BRTR), which is highly favored by the MAE
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index. The ADiMe values for both approaches are dIRD(ξ̂,τ3)
= 0.570 and dIRD(d̂,τ3)

= 0.503,
respectively. In both cases, the second-best model is Extremely Randomized Trees (ERTR).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
L-l2 (scale factor = 260)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ta
il

in
d
ex
9̂

(s
ca

le
fa

ct
or

=
2
)

Index Ratio Diagram

26

29

25 28

30

24

23

12
21

15

27
22

 6
 5

14

 4 8

 2

 9

17

16

13

33
19201834 13132

 3

10

 7

11

0.5
70

140 160 180 200 220 240 260 280 300
MAE

empirical optimal the best found

Figure 10. IRD(L-l2,ξ̂): red square depicts good tuning, green—the best (circles shaded according
to MAE).
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Figure 11. IRD(L-l2,d̂): red square depicts good tuning, green—the best (circles shaded according
to MAE).

Finally, the IRD diagrams are constructed using factors of the α-stable distribution.
Figure 12 presents the model selection according to the combination of the skewness β
and the stability exponent α. The considered optimal point is the [β; α] = [0; 2], where this
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point indicates normal distribution. In that sense, the Stepwise Linear Regression model
(SLR) is selected with the dIRD(β,α) = 0.220. The next-best models are the RGPR—Rational
Quadratic Gaussian Process Regression—and the k-NN.
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Figure 12. IRD(β,α): red square depicts good tuning, green—the best (circles shaded according
to MAE).

The last two plots present the combination of the scale factor γ together with stability
exponent α in Figure 13 and with the skewness β in Figure 14. The first one selects the
Bagged Regression Trees (BRTR) approach (dIRD(γ,α) = 0.589), while the latter the Extremely
Randomized Trees (ERTR)—dIRD(γ,β) = 0.226. Both modeling approaches are seriously
favored by the integral indexes.

It should be noted that the difference between these two diagrams is quite significant.
The shape factor α is responsible for the tails, i.e., informs about the ratio of the outlying
observations, while the second shape factor, the skewness β measures the residuum asym-
metry. With this difference kept in mind we may select which feature of the modeling error
is considered to be the most important for us.

Finally, let us compare all the approaches and the features they favor and the models
they indicate. Table 5 aggregates the features favored by each of the IRD diagrams with the
selected model.

Generally, the regression trees approaches are the best fitted to the considered esti-
mation task. However, each method has different features and objective comparison is
highly relative and sensitive to the selection of the index. The Histogram Gradient Boosting
Regression method captures the outliers and utilizes them in the estimation, while the
k-NN approach focuses on the bulk of the data and neglects the outliers.

Concluding, one should first define which feature of the estimations matters the most,
and according to that one should select the assessment methodology and the indexes used.
The scaling indexes and the visual inspection of the IRD diagrams deliver an additional
degree of freedom, allowing for deeper insight into the properties of the considered model.
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Figure 13. IRD(γ,α): red square depicts good tuning, green—the best (circles shaded according
to MAE).
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Table 5. Comparison of the ADiMe indications.

Diagram Feature
Selected Model

Number Name

IRD(γ3,γ4)
symmetry

24 Histogram Gradient Boosting Regressionnormality

IRD(σG,γ3)
symmetry

24 Histogram Gradient Boosting Regressionfluctuations

IRD(σH,γ3)
symmetry

24 Histogram Gradient Boosting Regressionfluctuations

IRD(τ3,τ4)

symmetry

16 k-Nearest Neighbors Regressornormality

unbiased by outliers

IRD(L-l2,τ3)

symmetry

29 Coarse Regression Treefluctuations

unbiased by outliers

IRD(L-l2,τ4)

normality

17 Orthogonal Matching Pursuitfluctuations

unbiased by outliers

IRD(L-l2,ξ̂)

outliers (tails)

26 Bagged Regression Treesfluctuations

unbiased by outliers

IRD(L-l2,d̂)

normality

26 Bagged Regression Treesfluctuations

unbiased by outliers

IRD(β,α)

normality

3 Stepwise Linear Regressionsymmetry

unbiased by outliers

IRD(γ,α)

normality

26 Bagged Regression Treesfluctuations

unbiased by outliers

IRD(γ,β)

symmetry

25 Extremely Randomized Treesfluctuations

unbiased by outliers

6. Conclusions and Further Research

This works focuses on two aspects. It addresses the issue of the cost estimation for the
short routes of the external FTL fleet. This subject is hardly recognized in the literature, it is
really difficult and has large practical importance.

The second contribution, in our opinion the most important, is connected with the
model assessment. It is very subjective to assess the model, as we do not have a single uni-
versal measure. Each index favors different properties. If we neglect that fact, the resulting
model can miss our expectations without any clue why. The model assessment should not
be limited to the simple comparison of a single measure numbers, but deeper investigation
and appropriate index selection, even using visual inspection, might help. We propose
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to use the novel approach using Index Ratio Diagrams (IRD) and resulting Aggregated
Distance Measure (ADiMe).

The practical perspective of this research has three dimensions. It bridges the gap
between statistics and machine learning, as nowadays researchers tend to forget the po-
tential lying in statistical analysis. The review of the ML-based estimation reports and
papers does not deliver positive conclusions. Almost always, authors do not try to assess
why their model is so good or so bad. They simply report residuum measure index, often
using one single value. They do not try to check whether their selection captures data
properties. This work aims to show that the assessment task is not one-dimensional and
the analysis of the nuances can improve the work and the knowledge. This fact has further
and more significant consequences. Obtained models might be not so good as observed,
and therefore the industrial end-user can be frustrated by the results. That might lead to a
lack of satisfaction, no further use of the tool and general robustness to new ideas.

Finally, this work offers the method of multicriteria residual analysis accompanied
with new, almost unknown measuring opportunities that can highlight currently unob-
served properties.

The proposed method is not universal and some limitations might be observed. First of
all, especially at the level of the results presentation to the end-user, it might be challenging
to explain the conclusions. Also, the selection of the scaling index values might be subjective
and the work on the results normalization is still required. It would be interesting to conduct
more research aimed at the synthesis of the observation in the direction of the Pareto-front
analysis. The connection between the IRD observations, their explanation and the way to
improve the model should be investigated.

The analysis is still not over. The model assessment, though considered simple, is not
as simple as perceived. One index is not equal to another index. This mistake can lead
to costly consequences. A lot of subjects remain open. How can we assess models using
various criteria? How can we combine our expectations about the model features with
proper performance index selection? How can we make the residuum analysis simple,
clear and comparable?
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28. Domański, P.D. Control Performance Assessment: Theoretical Analyses and Industrial Practice; Springer International Publishing:
Cham, Switzerland, 2020.
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