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Abstract: The widespread adoption of software-defined networking (SDN) technology has brought
revolutionary changes to network control and management. Compared to traditional networks, SDN
enhances security by separating the control plane from the data plane and replacing the traditional
network architecture with a more flexible one. However, due to its inherent architectural flaws, SDN
still faces new security threats. This paper expounds on the architecture and security of SDN, analyzes
the vulnerabilities of SDN architecture, and introduces common distributed denial of service (DDoS)
attacks within the SDN architecture. This article also provides a review of the relevant literature on
DDoS attack detection and mitigation in the current SDN environment based on the technologies used,
including statistical analysis, machine learning, policy-based, and moving target defense techniques.
The advantages and disadvantages of these technologies, in terms of deployment difficulty, accuracy,
and other factors, are analyzed. Finally, this study summarizes the SDN experimental environment
and DDoS attack traffic generators and datasets of the reviewed literature and the limitations of
current defense methods and suggests potential future research directions.

Keywords: software-defined network; distributed denial of service attacks; intrusion detection;
network security

1. Introduction

With the increasing complexity of computer networks, traditional network architec-
tures are finding it difficult to meet the requirements of current cloud computing, the mobile
Internet, and other aspects for diversified and scalable network services. This is due to their
fixed form and tight coupling of control and data-forwarding functions [1]. SDN, proposed
in this context, is a new type of network architecture that separates the network control
function from the data forwarding function, providing greater flexibility and programma-
bility compared to traditional networks. Although SDN architecture achieves centralized
network control and on-demand traffic forwarding, it still has significant security vulnera-
bilities and is more susceptible to security threats. Among them, denial-of-service attacks
that disrupt the availability of SDN are a common attack method [2].

A denial of service attack is when an attacker sends malicious traffic to computer
network hosts, depleting the network’s limited resources and disrupting its availability,
rendering it incapable of providing regular services. When attackers control a large number
of hosts to launch a DoS attack, it becomes a distributed denial of service attack. DoS
attacks exploit vulnerabilities in network protocols and the limited nature of network
resources by sending a large number of invalid data packets. This consumes the network’s
bandwidth, connection, and service resources, ultimately preventing authorized users from
accessing the network. Currently, DoS attacks have become a significant method of cyber
warfare [3]. In the Russia–Ukraine conflict, Russia launched DDoS attacks against multiple
military, government, and financial websites in Ukraine. These attacks caused several
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critical infrastructures and important network systems to collapse, significantly impacting
Ukraine’s social order. Therefore, effectively preventing and mitigating network DDoS
attacks has become an urgent problem that needs to be addressed.

While SDN offers benefits such as agility, flexibility, and programmability, it remains
susceptible to DDoS attacks. Due to centralized management in the SDN architecture,
DDoS attacks can easily overwhelm SDN controllers and switch flow tables, resulting in
significant network performance degradation. Currently, numerous research topics focus
on DDoS attack detection and mitigation technology in traditional networks. However,
many of these solutions are not applicable to SDN controllers. At the same time, it is
challenging to effectively detect new DDoS attacks in SDN environments. Hence, it is
essential to systematically review the relevant literature on DDoS attack detection and
mitigation technology in SDN environments.

Many survey papers on DDoS defense solutions are available in the literature, which
is closely related to our work. In previous literature reviews, Mittal et al. [4] and Ali
et al. [5] focused solely on examining DDoS attack defense strategies from a single technical
standpoint. Karnani et al. [6] conducted a review specifically on mitigation strategies.
While Ubale et al. [3] and Kaur et al. [7] provided comprehensive overviews of DDoS attack
detection and mitigation technologies; however, these articles fail to include a summary
of the existing literature on moving target defense technology utilizing the SDN network
architecture. This article presents a comprehensive analysis of the current literature on
the detection and mitigation of DDoS attacks in SDN. We categorize and examine the
various technical approaches employed in this field, with a particular focus on moving
target defense technology mitigation strategies, which have received limited attention
in previous reviews. In addition, we also classified the reviewed literature according to
the experimental environment used and summarized the existing technical issues and
challenges faced in current research. Table 1 shows a comparison of the proposed study
with existing survey papers in recent years.

Table 1. Comparison of proposed study with the existing studies.

Covered Topic Ref. [3] Ref. [5] Ref. [6] Ref. [7] Ref. [8] Our Work

Vulnerable points and DDoS attack types in SDN
√ √ √ √ √ √

DDoS attack detection
technology

Statistical analysis and
information entropy - -

√ √ √ √

Machine learning
√ √

-
√ √ √

Hybrid detection
√

-
√ √ √

DDoS attack
mitigation techniques

Policy-based techniques
√

-
√ √ √ √

Moving target defense - -
√

- -
√

Experimental environment analysis
√

-
√ √ √ √

Research challenges and gaps
√ √ √ √ √ √

“
√

”: The paper contains this content. “-”: The paper does not contain this content.

The main contributions of our paper can be summarized as follows:

• We provide a description of the security vulnerabilities that exist in SDN as well as the
prevalent DDoS attacks that target SDN networks.

• We conducted a literature review on popular DDoS attack detection and mitigation
technologies in SDN and categorized and evaluated them according to the technolo-
gies utilized. DDoS attack detection and mitigation technologies in SDN environ-
ments encompass statistical analysis techniques, machine learning techniques, hybrid
detection techniques, policy-based techniques, and, particularly, moving target de-
fense techniques, which are less commonly discussed in the literature. Furthermore,
we conducted a comparative assessment of the benefits and drawbacks linked to
these technologies.
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• Finally, we analyze the experimental environment used in the relevant literature and
briefly summarize the research challenges and gaps in DDoS attack defense technology
in SDN.

The rest of this paper is structured as follows: Section 2 elaborates on the methods
used to search the literature during the research process of this article; Section 3 presents the
vulnerable points and DDoS attacks in SDN; Section 4 presents the DDoS attack detection
technology in SDN and Section 5 presents the DDoS attack mitigation techniques in SDN. In
Section 6, we analyze the experimental part of the collected literature. Section 7 summarizes
the research challenges and gaps in existing work. Section 8 concludes our work.

2. Research Methodology

Our research primarily focuses on detecting and mitigating DDoS attacks in SDN
environments. Through a comprehensive review of the relevant literature, we aim to
address the following questions:

• RQ 1: What are the weaknesses of SDN compared to traditional networks, and to what
DDoS attacks is it more susceptible?

• RQ 2: What technical methods do researchers typically use to detect and mitigate
DDoS attacks in SDN environments?

• RQ 3: What are the benefits and drawbacks of current detection and mitigation
technologies? What are the current challenges in research?

To find papers related to the research questions, we followed a three-stage selection
procedure: (1) identifying search terms, (2) selecting sources, and (3) applying inclu-
sion/exclusion criteria to the selected papers:

• Search terms: This stage primarily determines the keywords to search and search
strings. For the research of DDoS attacks on SDN, the identified keywords were
as follows: “SDN”, “DDoS”, “Controller Resource Saturation”, and “Flow Table
Overloading”. Meanwhile, to define the search string, the Boolean operation “OR”
was used to select optional words and synonyms, while “AND” was used to se-
lect relevant terms, thereby generating the search string. The following keywords
were selected as the search string: “(software-defined network” OR “SDN”) AND
(“DDoS” OR “Controller Resource Saturation” OR “Bandwidth Saturation” OR “Flow
Table Overloading”)”.

• Search library: We selected Google scholar, IEEE Xplore, Springer, Science Direct,
Wiley, Hindawi, and ACM as the databases to search the literature. At the same time,
we also searched the relevant literature on CNKI and selected articles with higher
impact factors.

• Inclusion/exclusion criteria: We further reviewed the literature retrieved from the
database and established exclusion criteria to eliminate studies that were not relevant
to the defined research question. The exclusion criteria are defined as follows:

• Multiple research studies.
• Studies that do not provide an equivalent amount of information.
• The literature without adequate experimental support.
• Not strongly correlated with SDN.

3. Vulnerable Points and DDoS Attacks in SDN

Due to its flexible architecture and non-standardized protocols, SDN has more vul-
nerabilities in terms of security, leading to a series of new security issues. SDN is not only
susceptible to DDoS attacks targeting server devices or services in traditional networks
but also to new types of DDoS attacks against switches and controllers, which can cause
damage to the network. The security issues and DDoS attacks faced by SDN architecture
are shown in Figure 1.
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• The security of the data plane. The limited storage space for flow table entries in
data plane switches can lead to overload or buffer overflow when attackers send
a large amount of traffic, depleting the computing resources of the control plane.
There is a vulnerability in the timeout mechanism of the OpenFlow protocol used
for communication between the controller and the switch. Flow table entries are not
updated in real-time, so when attackers send false flow table entries to the switch, they
continue to be stored in the switch, affecting the normal forwarding of related packets
and potentially disrupting the network topology [9].

• The security of the control plane. The control plane controller has network control
capabilities. When the controller is hijacked, attackers can use it to carry out network
eavesdropping, IP address spoofing, and routing modifications, which can compro-
mise the integrity and confidentiality of the network [8]. A hijacked controller can also
send false messages to launch DDoS attacks and deplete network resources.

• The security of the application plane. The application layer defines the functionality
of the network controller. However, due to the absence of strict access control mech-
anisms, attackers can execute malicious programs on the application layer to gain
access to network intelligence or deplete resources. Attackers can also target specific
applications in SDN systems by sending resource-intensive requests to consume the
network bandwidth and disrupt network availability [10].

• The security of communication and protocols. The OpenFlow protocol used in the
southbound interface encrypts data using SSL/TLS for secure communication. How-
ever, the OpenFlow 1.3.0 specification made TLS optional, which means that com-
munication in the southbound interface may not be secure [11]. Therefore, attackers
can intercept or tamper with data packets in southbound communication or exploit
the interactive nature of the OpenFlow protocol to launch DDoS attacks and deplete
network resources. The absence of standardized protocols in the northbound interface
makes data transmission vulnerable to eavesdropping, significantly compromising
network confidentiality.

Based on these aforementioned security issues, attackers can exploit vulnerabilities
to launch DDoS attacks, which can impact network availability. Since the controller is a
core component of the SDN architecture, DDoS attacks targeting SDN controllers have
become an important type of DDoS attack [12]. Figure 1 also categorizes DDoS attack types
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according to the SDN architecture plane. Table 2 summarizes the characteristics of DDoS
attacks in SDN environments.

Table 2. DDoS attack types in the SDN environment.

Attack Type SDN Plane Security Vulnerabilities Exploited

Flow Table Overflow Data Plane
The OpenFlow switch possesses a

restricted amount of storage capacity for
flow tables.

Switch spoofing Data Plane The OpenFlow switch lacks
authentication for flow tables.

Saturated DDoS attacks Control Plane Packet In datagram blocking controller

Malicious program
DDoS attacks Application plane

The application plane lacks robust
authentication and access control

mechanisms for applications.

Northbound interface
bandwidth exhausted Application plane

The application layer lacks robust
authentication and access control

mechanisms for applications, and the
northbound interface has limited

bandwidth resources [7].

• Data plane DDoS attacks. Data plane OpenFlow switches use ternary content-
addressable memory (TCAM) to store forwarding rules. TCAM has high storage
efficiency but is expensive and has limited space. When there is a need to store for-
warding rules for a large amount of traffic, table overflow can occur [13]. On the
other hand, OpenFlow switches have a vulnerability in their static timeout policy. The
flow rules stored in the switch are only deleted if no matching packets are received
within a certain period of time. The Low-Rate Flow Table Overflow (LOFT) attack
exploits this vulnerability by sending low-rate attack traffic based on the flow table
timeout rules, saturating the switch’s flow table entries and preventing the normal
forwarding of traffic [14]. Another common data plane attack is switch spoofing [15].
Since data plane switches do not have the ability to identify controller flow tables,
attackers can send malicious flow table entries to modify the switch’s IP address.
When the controller tries to connect to the switch using an IP address, the malicious
switch impersonates the IP address and communicates with the controller, causing the
controller to lose connection with legitimate switches and disrupt network availability.

• Control plane DDoS attack. When a switch processes packets that do not match its
flow table entries, it sends a Packet In message to the controller in order to retrieve
the corresponding flow table information. Attackers inject a large number of invalid
packets, causing the switch to send numerous Packet In messages to the controller.
This action consumes controller resources and achieves the goal of saturating the
controller with a DDoS attack.

• Application plane DDoS attacks. Application plane DDoS attacks exploit the weak
access control mechanism of SDN [7]. Applications with design flaws can create a large
number of threads, which can consume memory resources or deplete the bandwidth
resources of northbound interfaces. Malicious applications can simultaneously con-
sume controller resources by generating a large number of resource-intensive requests.
Traditional application plane attacks, such as HTTP Flood and DNS Flood attacks, are
also major DDoS attack methods in SDN.

4. DDoS Attack Detection Technology in SDN
4.1. Statistical Analysis-Based DDoS Attack Detection Technology

In SDN environments, effectively identifying DDoS attack behaviors is a crucial prereq-
uisite for issuing timely warnings and successfully implementing defense measures. This
is essential for maintaining the normal operation and security of the network. Given that
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attackers often use technological means to disguise malicious traffic as legitimate traffic to
confuse the public, the precise detection of DDoS attacks faces significant challenges. When
a system is subjected to such attacks, the network traffic characteristics typically undergo
significant changes. By conducting a comprehensive statistical analysis of these abnormal
features, potential DDoS attack activities can be effectively identified. Mainstream statistical
analysis and detection methods include, but are not limited to, techniques based on the
information entropy theory. These methods reveal hidden attack patterns by quantifying
their uncertainty in network traffic. And detection techniques utilize statistical prediction
models, which are trained using historical data to predict future traffic conditions. These
models serve as a benchmark to identify traffic features that significantly deviate from
normal conditions, effectively capturing the occurrence of DDoS attacks. Both of these
methods are important for detecting DDoS attacks in the current SDN environment.

4.1.1. Information Entropy-Based DDoS Attack Detection Technology

The information entropy theory and information divergence proposed in the informa-
tion theory can be used to reflect the uncertainty of information in a system. Information
entropy is a method used to measure the probability of a random variable occurring at a
specific time. Detection methods based on entropy mainly use different header features
of network traffic, such as a source IP address, destination IP address, source port, etc.,
to calculate the randomness of data packets in the network. In a communication system,
communication between hosts is unrelated, and the features of network traffic, such as the
destination IP, have a high degree of uncertainty. The characteristics of DDoS attack traffic
are that a large number of hosts (or spoofed sources) aggregate malicious traffic to one or
a few destination hosts. Under the influence of this malicious traffic, the distribution of
source IP addresses and destination IP addresses often deviates from the legitimate pattern,
and the calculated entropy value also undergoes significant changes in a short period of
time. Finally, by combining intrusion detection, machine learning, and other technologies,
it is possible to further determine if the system is under a DDoS attack.

Due to the programmability of SDN controllers, it is possible to extract and analyze
network traffic, calculate entropy, and detect DDoS attacks in the network. Yadav et al. [16],
Ahalawat et al. [17], and Carvalho et al. [18] utilized Shannon entropy to detect DDoS
attacks in SDN environments. These methods collect traffic and select features using SDN
controllers or OpenFlow switches. They calculate entropy and determine the presence of
DDoS attacks based on a threshold. These methods have high real-time capability, and low
resource consumption. However, they suffer from low detection accuracy and are prone to
false positives.

To address the issue of the low detection accuracy associated with static threshold
detection based on information entropy, Zahra et al. [19] proposed a method that utilizes a
dynamic threshold setting in information entropy detection. This method collects entropy
values in each period, divides them into normal entropy values and attack entropy value
sets based on their relationship with the threshold, and updates the entropy threshold
based on the mean and standard deviation of the two sets. Although this method improves
accuracy to some extent, setting dynamic thresholds is relatively simple and can still result
in false alarms. Future research on dynamically designing threshold methods is one of the
hot topics in this field.

Raja et al. [20] proposed a method for detecting DDoS attacks based on generalized
entropy, which combines Shannon entropy and Rényi entropy. This method utilizes the
Snort intrusion detection system to extract traffic features and calculate the generalized
entropy (GE) and generalized information distance (GID) of these features. These mea-
surements are used to determine whether the system is experiencing a DDoS attack. By
employing high-order calculations, generalized entropy amplifies the fluctuations in en-
tropy, rendering it more responsive to variations in network traffic. Reference [20] reduced
the redundancy of traffic features by calculating the information distance. This approach
helps to minimize the overhead of identifying attack packets by the controller. Furthermore,
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reducing redundant traffic features also helps improve the accuracy of deep learning when
detecting traffic in subsequent sections.

Liu et al. [21] utilized relative entropy to detect DDoS attacks in SDN. Relative entropy,
also known as Kullback–Leibler divergence, reflects the differences between two distribu-
tions. In SDN, abnormal traffic changes and DDoS attacks can be detected by statistically
analyzing the distribution of traffic features and calculating relative entropy with normal
or previous traffic feature distributions. For known attacks, calculating relative entropy can
enhance detection effectiveness. However, the effectiveness of detection depends on the
prior statistical distribution of normal traffic. Therefore, it is necessary to determine the
optimal feature set of network traffic in order to improve detection accuracy.

The calculation formula for Shannon entropy primarily focuses on utilizing a singular
traffic feature to identify DDoS traffic, while disregarding the potential correlation with
other packet features. Reference [22] introduced a DDoS attack model based on joint
entropy detection. Joint entropy employs multiple traffic packet header information to
compute entropy values, thereby mitigating the occurrence of false alarms that may arise
from solely calculating entropy values for the destination IP. Simultaneously selecting
various features for the computation of joint entropy has the potential to identify distinct
categories of DDoS attacks. For instance, through the exploitation of vulnerabilities in
the ICMP protocol and the calculation of joint entropy using attributes such as the packet
destination IP, protocol type, destination port, and packet size, it is possible to achieve a
more precise identification of the attack’s source. Although joint entropy exhibits superior
performance in the detection of DDoS attacks, it is accompanied by a higher level of
computational complexity. Consequently, it cannot ensure real-time performance within
the context of SDN.

Ming et al. [23] proposed a method for detecting DDoS attacks based on conditional
entropy. One of the characteristics of DDoS attacks is the convergence of multiple sources
targeting a single destination. By utilizing conditional entropy, it is possible to calculate the
probability of the correlation between source IP addresses and destination IP addresses,
thus enabling the detection of DDoS attacks. Conditional entropy reflects the correlation
between traffic characteristics and is effective at identifying malicious traffic. However,
computational complexity is correspondingly increased.

Li et al. [24] demonstrated the feasibility of using φ-entropy to detect DDoS attack
traffic and proposed a DDoS attack detection scheme based on φ-entropy in SDN networks.
This work introduces the parameter φ to adjust the sensitivity of the event frequency
measurement. Compared to Shannon entropy, φ-entropy can amplify the correlation
between random variables and is able to analyze the traffic correlation effectively in network
traffic analysis. The proposed scheme involves the controller periodically obtaining the
entropy value of the destination IP address of the data flow and comparing it with a
threshold. When the entropy value is less than the threshold for five consecutive periods,
it is determined that a DDoS attack is occurring. Through experiments, the authors have
demonstrated that φ-entropy is more effective than Shannon entropy in detecting high-
intensity DDoS attacks. However, it is necessary to adjust the parameter φ used in the
detection according to the network situation.

Table 3 shows a comparison of information entropy-based detection methods. The
detection method based on information theory has low algorithmic complexity, which
does not impose a heavy burden on the controller and has certain real-time capabilities.
However, it also has certain limitations. In the case of high-traffic SDN networks, the
detection method based on information entropy has the drawback of high false alarm and
missed detection probabilities. Additionally, it does not perform well in detecting low-rate
DDoS attacks. In DDoS attack detection, the information entropy-based method can be
used as an initial detection scheme, combined with machine learning methods, to form a
multi-level detection scheme, thereby enhancing the capability of detection.
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Table 3. Comparison of DDoS attack detection parameters based on information entropy.

Calculation
Parameters Features Strengths Weaknesses Improvement Methods

Shannon
Entropy

Probability of variation
in traffic characteristics

Easy to calculate.
Less computing

resources
Low detection accuracy

Dynamic threshold
adjustment.

Joint detection of
multiple traffic features

Generalized
entropy (GE)

Expansion of Shannon
entropy and

amplification of the
variation in

Shannon entropy.

The parameter exhibits a
higher level of sensitivity

towards variations in
traffic characteristics.

When the order of
magnitude is high, the

computational
complexity experiences

an increase.

Set different orders for
different DDoS attacks

Relative
entropy (KL
divergence)

Measuring the
difference between
normal traffic and
malicious traffic

High recognition rate for
known attacks

Dependent on previous
traffic data models

Extract traffic
characteristics of

different attack types and
use relative entropy to

detect attack types

Conditional
entropy

Reflecting the
interrelationships

among various
attributes of traffic flow

High detection accuracy

The computational time
and space complexity are

significant, posing
challenges in meeting

real-time requirements.

Selecting an appropriate
conditional entropy
detection model for

different DDoS attacks

Joint
entropy

Using multiple traffic
packet header features
for entropy calculation

Compared to a single
entropy value, the

accuracy is elevated.
Can detect

unknown attacks

More resources are
required for computation.

Static thresholds are
prone to false alarms

Threshold adaptive
adjustment

Selecting accurate
detection features to

reduce computational
complexity

φ-entropy

Introducing parameters
φ Sensitivity of

adjusting entropy to
probability changes in

flow characteristics

Amplified the correlation
between traffic, with

high sensitivity.

The parameters φ need
to be pre-set, and

different designs are
needed according to the

changes in network
traffic φ Parameters.

φ Parameter
adaptive change

4.1.2. Traffic Statistics-Based DDoS Attack Detection Technology

When a DDoS attack occurs in the network, certain network features may deviate from
their normal values. Defenders can select network features based on attack characteristics,
analyze changes over a certain period of time, and issue DDoS attack alerts when abnormal
features are detected. Additionally, they can establish regression models or time series
prediction models based on historical statistical data to predict future traffic changes. This
allows for timely alerts to be issued for impending high-traffic behavior in the network [11].

Kalkan et al. [25] proposed a statistical packet filtering model. When the traffic on
the switch exceeds the bandwidth threshold, a comparator compares the suspicious traffic
characteristics with the configuration file, calculates a matching score, and discards the
data packet if the score exceeds the threshold. This approach selects multiple different
attributes based on attack traffic to generate various configuration files, resulting in the
effective detection of known attacks on switches. Fouladi et al. [26] utilized time series
analysis to detect DDoS attacks. This approach statistically analyzes historical traffic change
patterns and utilizes ARMA and chaos theory models to forecast future network traffic
changes. It also generates alerts in cases of traffic overload. Shohani et al. [27] proposed a
statistical prediction detection method for detecting blind DDoS attacks that are difficult
to identify. This method utilizes information entropy and principal component analysis
techniques. The controller statistically tracks the changes in the number of flow table
entries that are not hit when the switch receives normal traffic. It uses the Exponentially
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Weighted Moving Average (EWMA) method to establish a trapezoidal detection threshold.
When a switch is under a DDoS attack, the number of missed flow entries in the switch
exceeds the threshold, thereby detecting the DDoS attack. Although this method has a
strong defense effect against blind DDoS attacks, it has a weak detection effect for DDoS
attacks originating from a single host.

The label-based statistical analysis method involves adding flow labels to various
switch traffic data. It then performs statistical analysis on data flow information within
the network to detect DDoS malicious traffic. Furthermore, it can trace malicious traffic
by utilizing the labels. Wang et al. [28] utilized the encoding of data packet forwarding
paths as parameters for detecting attacks and generating alerts when abnormal traffic is
identified on a specific path. This method is suitable not only for detecting DDoS attacks
but also for detecting whether there are loops in the data packet forwarding process. Sahay
et al. [29] proposed adding Packet in messages to flow-ID labels based on the VLAN ID
field. The traffic statistics collector collects the source address, destination address, and
flow-ID label of the packets. When the threshold is exceeded, a security alert is issued, and
suspicious switches can be traced using the flow-ID label.

The statistical analysis method has a higher detection accuracy compared to the
information entropy detection method, but it also requires the collection of a large amount
of historical data, which consumes the network’s computing and storage resources [30].
The dynamic adjustment of feature selection and thresholds is also a consideration for
different DDoS attacks and attack rates.

4.2. Machine Learning-Based DDoS Attack Detection Technology

With the recent advancements in artificial intelligence in various fields, machine
learning algorithms have been widely used for pattern recognition, object detection, and
classification and regression problems. Machine learning algorithms utilize large amounts
of data and expert experience to improve algorithmic strategies and parameters, achiev-
ing optimal performance standards for computer programs. In DDoS attack detection,
defenders can train machine learning-based traffic classification tools based on historical
traffic data to achieve the anomaly detection of network traffic. Commonly used machine
learning algorithms for detecting DDoS attack traffic include support vector machines
(SVM), the Naive Bayes algorithm, supervised learning algorithms, self-organizing maps
(SOMs), and an unsupervised algorithm. Table 4 illustrates the commonly used machine
learning methods for DDoS threat detection.

Table 4. Machine learning algorithm for DDoS attack detection.

Algorithm Classification Algorithm References

Traditional machine learning

SVM [31–35]

Decision Tree [36–38]

KNN [38–41]

Naive Bayes [38,42–44]

Random Forest [36–38]

Deep learning

SOM [41,45,46]

ANN [47–49]

LSTM [48–50]

DNN [51–53]

RNN [50,53]

The SVM algorithm is a binary classification model utilized for distinguishing between
normal and abnormal data in the context of DDoS attack detection based on traffic charac-
teristics. Based on the traffic characteristics observed in the SDN network environment, the
SVM detection algorithm is employed to gather input feature vectors in order to develop
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an algorithm for detecting malicious behavior within the network. The accuracy of the
SVM algorithm is significantly influenced by the traffic feature vectors and kernel functions
that are constructed. Kokila et al. [31], Mehr et al. [32], and Ye et al. [33] employed the
SVM algorithm for the purpose of detecting DDoS attacks within the SDN environment.
By employing various traffic features and kernel functions, the algorithm was able to
enhance its detection accuracy. Myint et al. [35] introduced the advanced support vector
machine (ASVM) algorithm as a means to enhance the basic binary classification outcomes
of conventional SVM algorithms. The objective was to enable the concurrent identification
of UDP Flood and SYN Flood attacks. Reference [34] utilizes the One-Class SVM algorithm
for the purpose of detecting DDoS attacks. This study focuses on the training of a One-Class
SVM model using 11 feature vectors extracted from DDoS attack traffic. Additionally, an
adaptive genetic algorithm was employed to optimize the model’s parameters, thereby
enhancing the accuracy of the detection process.

The KNN algorithm is a supervised learning algorithm that aims to cluster data by
identifying the closest neighbors based on data features. In the context of attack detec-
tion, this algorithm categorizes network traffic by quantifying the dissimilarity between
various feature values. Dong et al. [39] introduced an enhanced KNN algorithm for the
identification of DDoS attacks in SDN. In the context of SDN network traffic, it is essential
to consider the following four parameters: traffic length, traffic duration, traffic size, and
traffic ratio. These parameters play a crucial role in detecting various types of DDoS attacks.
To accomplish this, the KNN model was employed. This model demonstrates a remark-
able ability to accurately identify DDoS attacks. However, it is important to note that the
simulation experiment topology employed in this study is relatively simplistic, and deploy-
ing real-time detection in complex, real-world environments pose significant challenges.
Latah et al. [40] employed the KNN algorithm in conjunction with other machine learning
algorithms for the purpose of network anomaly traffic detection. The experimental results
indicate that the KNN algorithm exhibits superior accuracy and incurs a greater time cost
in comparison to alternative algorithms.

Machine learning algorithms such as Naive Bayes, decision trees, and random forests
are frequently utilized for the purpose of traffic classification. Currently, numerous studies
have synthesized these aforementioned machine learning detection methods and have
identified the method that yields the most effective detection results. In order to address
the issue of data plane Flow Table Overflow attacks, Santos et al. [37] implemented support
vector machines, decision trees, and random forest algorithms within controllers to detect
and classify traffic. In the experimental setting of this study, it was observed that decision
trees exhibit the shortest processing time, whereas random forest algorithms demonstrate
the highest level of accuracy. Khashab et al. [38] implemented a model for detecting DDoS
attacks based on data flow for the application plane of the SDN architecture. This study em-
ploys a combination of Naive Bayes, logistic regression, decision tree, random forest, SVM,
and KNN algorithms in order to detect and classify malicious network traffic. Based on em-
pirical investigations, it has been determined that the random forest algorithm outperforms
other algorithms in terms of accuracy and real-time performance. Aslam et al. [54] also
implemented these six aforementioned algorithms in the context of SDN for the purpose of
detecting DDoS attacks. Unlike previous studies on traffic recognition, this method inte-
grates six distinct algorithms to identify and classify traffic, and subsequently determines
the presence of malicious traffic by analyzing the outcomes of these six algorithm classifiers.
This approach enhances the overall accuracy of the system. Wu et al. [55] employed a
factorization machine (FM) algorithm to identify low-rate DDoS attacks on the data plane.
In order to address the concealed and challenging-to-identify attributes of low-speed DDoS
attack traffic within the data plane, this approach aims to extract four distinct features
from the input flow-table rule. These features were then utilized to train the FM algorithm
model, taking into account the correlated characteristics of the attack traffic. Finally, an
experiment on a low-speed DDoS attack was conducted using the CAIDA dataset. The
experiment compared the performance of the FM algorithm-based DDoS attack detection
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method with the CNN model and random forest model. The results demonstrate that the
FM algorithm-based method achieves a high recognition rate in this specific environment.

4.3. Deep Learning-Based DDoS Attack Detection Technology

Deep learning algorithms are extensively employed in the field of intrusion detec-
tion and malicious traffic recognition, primarily because of their inherent advantages,
including self-learning capabilities, self-organization, robustness, good fault tolerance, and
parallelism [56]. Deep learning-based DDoS attack detection methods exhibit a superior
recognition capability for novel DDoS attacks, as they do not necessitate the filtering of
traffic features [57]. The primary techniques employed for DDoS detection in deep learning
are neural network models.

Cui et al. [58] conducted a study in which they gathered switch traffic through an
SDN controller and employed the BPNN(Back Propagation Neural Network) algorithm for
the purpose of classifying the traffic and detecting any malicious activity. Simultaneously,
by utilizing the classification outcomes, it was possible to track the origin of malicious
IP traffic and eliminate it within the switch, thereby achieving the objective of mitigating
attacks. Li et al. [49] employed CNN, RNN, and LSTM algorithms for the purpose of
detecting traffic features. At the same time, it is imperative to continuously update the
deep learning detection model in real-time, taking into consideration the probability of
traffic characteristics. The aforementioned methods result in an increased workload on the
switch; however, they exhibit low real-time performance. Nam et al. [41] employed the
SOM and KNN algorithms to assess the dissimilarity between traffic and malicious traffic
feature vectors. Their objective was to identify if the traffic corresponds to a DDoS attack,
enhance the real-time detection capability, and minimize the impact on accuracy. Deepa
et al. [59] employed a two-level neural network detection model. Initially, they utilized
a deep belief network (DBN) and autoencoder (AE) algorithms to extract attack traffic
features. Subsequently, the multiple kernel learning (MKL) algorithm was employed for
traffic classification with the aim of identifying DDoS traffic while maintaining a balance
between accuracy and efficiency.

The advantage of a machine learning detection mechanism lies in its strong ability
to abstract and generalize detection data with high feature dimensions, allowing for the
efficient processing of multi-dimensional data. Machine learning models [60–62] can also
yield favorable results in recognizing attack types, reducing the dimensionality of traf-
fic data, and tracing attackers. The drawback is that the characteristics of supervised
learning algorithms are manually designed and annotated, and the quality of input fea-
tures significantly affects the detection accuracy of the model. Unsupervised learning
algorithms require additional time and resources to train the model, leading to subpar
real-time detection.

4.4. Hybrid Detection Technology

While information entropy or the machine learning anomaly detection algorithm can
identify DDoS attacks in SDN networks, accurately characterizing extensive data in SDN
networks using only information entropy algorithms is challenging. Relying solely on
machine learning algorithms also consumes excessive time and resources, posing difficulties
in ensuring real-time detection.

Currently, a mature approach is to combine information entropy and machine learning
in a hybrid detection model. This involves using information entropy methods for initial
detection to identify early attack behaviors or locate attacks, followed by machine learning
methods for further detection. Hu et al. [63] proposed a hybrid detection method that
combines information entropy and machine learning. This method detects changes in the
information entropy of SDN controllers, extracts information entropy as a feature, and
uses the SVM algorithm for traffic classification, effectively identifying DDoS traffic. Sun
et al. [64] tackled the problem of low accuracy in information entropy by employing the
computation of traffic source IP and destination IP φ-entropy. φ-entropy is utilized for the
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initial detection of DDoS attacks, and the detection module differentiates normal traffic
from malicious traffic using the KNN algorithm to identify malicious DDoS attacks. Novaes
et al. [65] proposed a multi-level detection method that divides attack detection into three
stages. Firstly, network packet attributes are collected, and information entropy along with
other features are calculated. LSTM models are then utilized to predict traffic changes
and detect early attack behaviors. Finally, fuzzy logic is utilized to further identify and
pinpoint attacks. Dehkordi et al. [66] proposed a hybrid detection method that identifies
and locates abnormal traffic using information entropy and statistical analysis methods.
In the detection module, a variety of machine learning algorithms, including Bayes Net,
J48, logistic regression, and Random Tree algorithms, were utilized for classification to
address the high false alarm rate associated with the dynamic threshold. Zhang et al. [67]
proposed a multi-level mixed detection method. It initially utilizes information entropy to
rapidly detect changes in network traffic, followed by the use of the autoencoder (SSAE)-
SVM architecture multi-level detection model to identify abnormal traffic. This approach
enhances detection timeliness while reducing the probability of false alarms.

Hybrid detection technology ensures that the model has high detection accuracy
while also reducing the processing time for classification detection. However, due to the
complexity of the model design, multiple functional modules need to be expanded on
the controller, and the deployment and maintenance costs require further research and
optimization. Furthermore, the multi-level detection mechanism may increase time and
computational resource costs.

5. DDoS Attack Mitigation Techniques in SDN
5.1. Policy-Based DDoS Attack Mitigation Techniques

Implementing forwarding policies in switches and controllers, as well as controlling
traffic forwarding, filtering, dropping, rate limiting, and redirecting packets, are widely
employed techniques for mitigating DDoS attacks. Figure 2 illustrates commonly used
policy-based DDoS attack mitigation methods.
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The SDN application plane is primarily responsible for implementing various forms
of network business logic and strategies. Defenders can mitigate DDoS attacks by im-
plementing authentication policies, conducting traffic monitoring analysis, utilizing NFV,
and employing other methods. Singh et al. [68] proposed a scheme called ARDefense for
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detecting and mitigating DDoS attacks based on NFV and SDN. This approach leverages
NFV technology, server migration policies, and IP spoofing techniques to mitigate applica-
tion layer DDoS attacks. Ali et al. [69] proposed an intrusion prevention system based on
three-layer authentication, which includes user authentication, packet authentication, and
flow authentication. Packets that cannot be authenticated are refused for forwarding. This
approach enhances the defense against DDoS attacks by employing authentication tech-
niques. However, multi-level authentication also has an impact on network performance.
Sarwar et al. [70] proposed a traffic forwarding method based on user trust. This method
establishes user trust and directs traffic in the queue according to the level of user trust,
while discarding unauthorized user traffic.

The SDN controller establishes traffic regulations to prevent the storage and forward-
ing of malicious traffic within the network. Deng [71] presents a scheme that suggests
the implementation of a DoS attack defense method in the controller, utilizing address
matching. This method involves the extraction of MAC, IP, and port information from the
Packet-In-Packet received by the controller. Subsequently, this information is compared
with the network device information. If there is any discrepancy in the information, the
packet is discarded. Ravi et al. [72] implemented a traffic control scheme in controllers that
relied on a blacklist approach. This method is designed to counter SYN Flood attackers
who employ fraudulent IP addresses to initiate their attacks. By performing IP packet
analysis, this method detects instances of IP-MAC address spoofing within the network.
It then proceeds to blacklist any identified illegal addresses and subsequently discards
associated data packets. Cao et al. [73] conducted a study that specifically examined the
characteristics of DDoS traffic forwarding. In their research, they employed an RNN model
to effectively identify links within the network associated with attack flows. The controller
made decisions regarding traffic forwarding by considering factors such as the IP address,
hop count, and the router it passed through, while also discarding any malicious traffic.

SDN data plane Flow Table Overflow DDoS attacks inject traffic slowly into OpenFlow
switches, mimicking the characteristics of legitimate users. This results in false positives
when using information entropy and machine learning methods to detect such attacks [74].
Bawany et al. [75] implemented an adaptive filtering strategy based on flow rules, which
defines three filtering strategies according to network traffic. According to the size and rate
of the attack traffic, strategies such as dropping packets, blocking ports, and redirecting
data flow were selected to achieve adaptive DDoS attack mitigation. Yuan et al. [76]
introduced a peer-to-peer support strategy. When a switch requests a new policy from
the controller, the status monitor module facilitates the transfer of the flow to other peer
switches. This transfer is based on various parameters, including switch TCAM usage,
distance from other switches, and switch busyness. The purpose of this transfer is to
alleviate switch storage pressure. Bhushan et al. [77] introduced a flow table space model
that is grounded in the queuing theory. When the available space in the flow table of a
switch is inadequate, the queuing model is employed to transfer the corresponding flow
policies to a switch with sufficient space. This process involves deleting low utilization
policies to prevent overflow in the flow table. Katta et al. [78] conducted an optimization
study on the storage strategy of switch flow tables. Dang et al. [79] mitigated DDoS attacks
by implementing timeout policies. When the network controller detects a high volume of
TCP semi-connected packets, it adjusts the timeout rule according to changes in network
traffic, promptly discards semi-connected packets in the flow table, and implements a
blacklist mechanism to reject malicious traffic packets. They achieved the objective of
expanding the storage space by reducing unnecessary storage content [80], taking into
consideration the dependency relationship among flow table items [81].

Attackers typically launch DDoS attacks on links in the SDN control plane and data
plane, disrupting normal traffic forwarding. Zakaria et al. [82] proposed a rate-limiting
strategy for mitigating reflective DDoS attacks. This strategy employs statistical analysis
and machine learning methods to identify malicious traffic characteristics and establish rate-
limiting policies to reduce the forwarding of packets with malicious traffic characteristics.
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Hong et al. [83] proposed a dynamic routing defense strategy that utilizes information
entropy and a dynamic threshold to detect and locate abnormal traffic hosts in the network.
The unusual host traffic is redistributed based on the network channel’s capacity to reduce
the link congestion caused by individual target DDoS attacks. Kalkan et al. [25] proposed a
traffic filtering strategy called SDNScore for mitigating link DDoS attacks. This strategy
utilizes statistical methods to analyze the characteristics of traffic packets, such as IP, port,
and TTL and assesses the similarity of traffic. The controller filters the attack traffic based
on its traffic score. Alamri et al. [84] proposed a bandwidth limitation algorithm. In this
algorithm, the SDN controller detects when the traffic on a specific link exceeds a threshold,
dynamically adjusts the traffic limit of the link using a bandwidth adjustment factor, and
activates a traffic detection module based on the XGBoost algorithm to identify malicious
traffic. Wang et al. [85] developed a global search algorithm based on an SDN controller to
detect and identify congested links to link Flooding attacks. To manage congested links,
methods such as blocking and discarding abnormal data packets are employed to protect
against DDoS attacks.

Policy-based methods can be easily implemented on the network and have a negligible
effect on resources. However, this approach is susceptible to inducing regular traffic loss
and necessitates the accurate identification of malicious traffic through detection techniques.
Defenders are required to establish forwarding policies that are tailored to the specific
characteristics of network attacks, with the aim of rejecting any malicious traffic. Due to
the implementation of SDN network policies, it is observed that there are still instances of
malicious flow table entries being generated by attack flows within the switch. In addition
to restricting traffic forwarding, it is imperative to cleanse the entries in the switch flow [27].

5.2. Moving Target Defense Technology

With the continuous evolution of attacker–attack methods, traditional network defense
methods such as blocking and killing are becoming increasingly ineffective in achieving
real-time defense. Additionally, these methods have clear shortcomings when it comes to
dealing with DDoS attacks. Moving target defense (MTD), as an emerging network security
defense strategy, has changed the passive nature of defense in traditional network attacks
and often achieves positive outcomes when responding to such attacks [86]. Due to network
programmability and the centralized control of logic, SDN can easily deploy moving target
defense strategies to cope with DDoS attacks. The end information jump strategy enables
the dynamic change in host information in the SDN data plane and provides protection
against DDoS attacks in the data plane.

5.2.1. Port Address Hopping-Based Defense Technology

The concept of Port Address Hopping (PAH) defense technology originated from the
APOD project of the US military in 2003 [87]. Shi et al. [88] introduced the effectiveness
of end information hop in defending against DoS attacks and established a mixed hop
communication network using the Java language. This network includes features such
as the port, address, service time slot, and encryption algorithm. The availability of the
network was verified by simulating SYN Flood attacks. By comparing this with non-jump
systems, the effectiveness of end information jump in resisting DoS attacks is demonstrated.

Port hopping is a relatively simple and effective method for deploying end-to-end in-
formation hopping. Badishi et al. [89] proposed a port-hopping protocol that filters packets
based on packet addresses and port numbers to mitigate DoS attacks. Zhang et al. [90] pro-
posed a port hopping scheme called PH-DM, which was implemented in SDN controllers to
enable random port hopping in communication. The synchronization between the sender
and receiver was achieved through a timestamp feedback-based synchronization method,
enabling smooth communication. The MASON framework, proposed by Chowdhary
et al. [91], first performed threat scoring on the system to identify high-risk services and
hosts. It then deployed port-hopping strategies. This plan was highly targeted and had a
strong defense against vulnerable SDN protection devices. Compared to blind jumps, it
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has a smaller impact on the network. However, there is insufficient consideration given
to the security of jump synchronization, and further design is needed for the evaluation
method of network threats. Zhao et al. [92] proposed an encryption strategy that enhanced
the Diffie Hellman algorithm by incorporating port hopping. This approach ensures the
randomness of the hopping port and the confidentiality of the synchronization process,
effectively guaranteeing the security and confidentiality of the SDN network.

Port hopping does not require modifying existing protocols, but strict synchronization
rules need to be established between the sender and the receiver. Establishing synchro-
nization rules poses a challenge for implementing hopping methods. Based on the charac-
teristics of centralized control in SDN, deploying port hopping rules in SDN controllers
can enhance network security. When attackers launch DDoS attacks against specific ports,
it can be challenging to provide effective protection. At the same time, this strategy also
has a defensive effect on port scanning by attackers. However, if the security of the jump
strategy design is insufficient, attackers can obtain jump rules based on multiple informa-
tion collections, rendering the jump strategy ineffective. When deploying port hop rules
in SDN, it is also necessary to consider how port hop traffic can smoothly pass through
firewalls and address other related issues.

Port hopping, to a certain degree, mitigates DDoS attacks targeting specific ports.
However, attackers can still execute DDoS attacks by crafting packets originating from
the IP address of the target. In order to bolster the system’s defense capabilities against
intricate threats posed by attackers, the concept of address hopping is put forth. Under
the address jump rule, both communication parties modify their IP address information
in accordance with predetermined rules. Only data containing accurate IP address infor-
mation can be transmitted to the designated destination address, thereby providing an
effective defense against external DDoS attacks. Reference [93] introduced the concept
of hybrid network address hopping in computer networks as a means to augment the
security of data transmission. By conducting computer simulations of the NAH system, it
was confirmed that this system exhibits superior anti-interference capabilities and ensures
enhanced confidentiality during the transmission of network data. Taking advantage of the
independent control plane offered by SDN, the address jump strategy can be implemented
within SDN controllers. Zheng et al. [94] proposed a scheme for address hopping in SDN,
where the flow table entries of the hop IP are allocated to the OpenFlow switch via an
SDN controller. The switch verifies the accuracy of the system’s message transmission by
confirming the source IP and destination IP of the message and subsequently executes
matching forwarding. When the packet traffic of a specific address surpasses a predeter-
mined threshold, it initiates the next address jump, prompting the controller to reallocate
the flow table information in order to effectively evade potential attacks. Tu et al. [95]
proposed a novel address jump scheme for chaotic sequences. This scheme utilizes chaotic
sequences as the foundation for generating address jump patterns, effectively addressing
the issue of vulnerability to static jump rule cracking. Reference [96] implemented the
address jump rule on SDN switches and terminal nodes, resulting in a reduction in the
controller load and network overhead. At present, the integration of address hopping
with deep learning algorithms enables the attainment of adaptive hopping. Reference [97]
suggests the utilization of CNN detectors for the purpose of detecting attacker behavior
and promptly initiating address jumps. Compared to conventional jump rules, this scheme
demonstrates a higher level of specificity and the ability to incorporate attacker behavior in
order to dynamically adapt the jumping process. Consequently, this approach effectively
mitigates the system overhead resulting from address jumps. Reference [98] presents an
SDN address hopping algorithm that utilizes flow counting synchronization to achieve
adaptive address hopping according to network traffic patterns. At the same time, the secu-
rity of the transmitted information is guaranteed by employing RSA verification, thereby
enhancing the system’s resilience against DDoS attacks.

Deploying address-hopping strategies in SDN can provide a certain level of defense
against DDoS attacks. However, it remains challenging to accurately differentiate between
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legitimate and malicious traffic, as well as guarantee the normal forwarding of traffic. In
the context of address jump rules, the magnitude of the address space also plays a role
in determining the efficacy of defense mechanisms. For certain targeted network attacks,
the implementation of address-hopping strategies can be employed in conjunction with
honeypots or intrusion detection devices to not only achieve defensive effects but also
facilitate the deception and tracing of attackers [99].

Hybrid hopping integrates various information mutation techniques to enhance de-
fensive efficacy. Shi et al. [100] introduced a novel active network defense technology
that utilizes mixed-end information hopping. This approach enables simultaneous port
and address hopping during communication while ensuring information synchronization
through an end information-expanding synchronization strategy. As a result, high-speed
Port Address Hopping is achieved. This method guarantees the availability of the system,
even when faced with multiple DDoS attacks. Hu et al. [101] introduced a novel moving tar-
get defense scheme that utilizes the OpenFlow protocol. The proposed scheme involves the
dynamic alteration of IP addresses at each hop of the OpenFlow switch, the implementation
of port hopping in inter-domain networks, and the synchronization of information through
a dedicated synchronization server. This methodology can be implemented not only in
SDN environments but also in conventional networks that are equipped with OpenFlow
switches. This method demonstrates a robust defense mechanism against DDoS attacks
targeting specific nodes while also offering a relatively straightforward deployment process.
The AEH-MTD technology proposed in reference [102] employs the entropy method to
identify various types of DDoS attacks. It determines the information jump period by
assessing whether the attacker is engaged in blind attacks. This approach ensures optimal
defense effectiveness while minimizing the impact of jump rules on system availability.
Additionally, it aims to limit the attacker’s access to useful information, thereby providing
a robust defense against diverse attack types.

The comparative analysis for the mitigation approaches based on hopping technol-
ogy is shown in Table 5. Given the varied manifestations and high level of obfuscation
associated with DDoS attacks, it is insufficient to rely solely on end information hopping
as a means of achieving optimal defense effectiveness. Simultaneously, the implementa-
tion of port address information hop technology necessitates the development of robust
synchronization techniques by defenders in order to ensure uninterrupted network avail-
ability [103]. In order to enhance the protection against security threats posed by attackers,
it is imperative to integrate the end-to-end information hop strategy with other dynamic
defense strategies. This can be achieved by leveraging cutting-edge technology to devise
and implement a robust architecture and information space. By continuously altering
the attack surface, the attacker’s assault maneuvers can be rendered ineffective and ex-
posed, thereby accomplishing the objective of countering DDoS attacks and upholding
system security.

Table 5. Comparative analysis of network hopping technology.

Tactics Strengths Weaknesses References

Port
hopping

No protocol modification required
Simple deployment

Poor DDoS attack
defense capability

easy to discover hopping rule
[89–92]

IP address
hopping

No protocol modification required
Good DDoS attack defense capability

Implementation is
relatively complex

Small hopping address space
[94–98]

Hybrid
hopping

Strong security
difficult to discover hopping rule

Difficulty in deployment
High deployment cost

Terminal time
synchronization issue

[100–102]

Routing
hopping

Can defend against link layer
DDoS attacks

Protocol modification required
implementation complexity

impact on network availability
[104,105]
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5.2.2. Other Moving Target Defense Technology

A crossfire DDoS attack is an emerging form of cyber-attack that specifically targets
crucial network links. Traditional defense mechanisms, such as host information hop
strategies, have proven to be ineffective in countering this type of attack. The routing
reconstruction strategy mitigates DDoS attacks against links by adjusting the link structure.
Xie et al. [104] introduced a dynamic routing jump defense strategy as a response to
crossfire attacks. This scheme was implemented in SDN controllers, and it facilitated the
reconfiguration of routing for a specific link in order to mitigate link attacks when abnormal
traffic was detected. Liu et al. [105] introduced a routing hop strategy that utilized the
OpenFlow protocol. This scheme aims to establish a matrix of traffic characteristic entropy
by collecting network traffic data in order to detect and identify network anomalies. This
triggers route mutation based on the results of anomaly detection. It utilizes an enhanced
ant colony algorithm for the purpose of generating novel routing paths, thereby achieving
the capability to withstand DDoS attacks. This scheme employs a jump strategy that relies
on detecting abnormal traffic conditions. However, it is important to note that a short
reconstruction cycle can also have an impact on network availability. Route reconstruction
serves as a preventive measure against the expansion of the attackers’ attack range by
leveraging known routes. Additionally, they possess a defensive capability against link-
layer DDoS attacks. Traffic redirection technology protects the target host by diverting the
attack traffic. Hyder et al. [106] proposed a moving target defense technology scheme based
on traffic redirection for crossfire DDoS attacks. This scheme utilizes NFV technology to
redirect the traffic of the attacked link to the shadow host, achieving the goal of mitigating
the attack.

In light of DDoS attacks in SDN, a moving target defense approach rooted in game
theory is employed to determine the most effective defense strategy for the defending party,
taking into consideration the prevailing network conditions, with the aim of achieving
equilibrium. Chowdhary et al. [107] proposed a model that conceptualizes DDoS attacks as
a dynamic game process involving both attackers and defenders. The researchers devised
defense rules, as well as reward and punishment mechanisms, with the aim of identifying
the optimal strategy for minimizing network bandwidth consumption and mitigating
the impact of DDoS attacks. This scheme is dependent on the utilization of Snort for the
purpose of intruder detection. However, it was observed that attackers have the ability to
circumvent the intrusion detection system by adhering to specific rules, thereby rendering
defense strategies ineffective. Zhou et al. [108] aimed to mitigate the issue of high cost
associated with MTD defense methods by proposing the utilization of multi-objective
Markov decision processes for the development of MTD strategies. This scheme not only
takes into account network attackers and defenders but also integrates legitimate users
into the game process, achieving an optimal balance between the cost and benefit of the
shuffle-based MTD strategy. This particular game model necessitates early training in order
to attain convergence, heavily relies on pre-existing knowledge, and is unable to achieve
optimal defense against novel DDoS attacks. Du et al. [109] applied the game theory to
enhance honeypot-based DDoS attack defense technology. This article first proposes a two-
fold honeypot strategy for SDN based on the game theory from the perspective of attackers.
The defender sets up a pseudo honeypot game to lure attackers, constantly adapts the
pseudo honeypot to protect against FTP flow and SYN Flood attacks in the network, and
strikes a balance between resource usage and defense effectiveness. Priyadarsini et al. [110]
designed a trust value controller attack detection (TCAD) model based on the signal game
theory. This model constructs trust values based on changes in switch traffic, distinguishes
normal users and attackers based on trust values, and achieves the goal of detecting and
mitigating DDoS attacks.

The game theory model does not propose novel defense measures against DDoS
attacks; rather, it emphasizes the importance of striking a balance between the costs and
benefits associated with existing DDoS defense strategies. The game process is dependent
on the modeling of past attackers’ behavior, and the effectiveness of defense against new
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DDoS attacks is suboptimal. Currently, the predominant moving target defense strategies
in game-based scenarios are primarily static in nature. These strategies fail to fully account
for the dynamic and multi-stage nature of the attack and defense confrontation between
attackers and defenders. Deploying real-world networks does not allow for the attainment
of optimal decisions in the context of multi-stage network attacks.

The relevant comparisons of moving target defense technologies are presented in
Table 6. Moving target defense technology through constantly changing protection strate-
gies or system configurations can make it difficult for attackers to identify effective target
points and focus their firepower on saturation attacks against a single target. However, the
requirement for the real-time monitoring of network conditions and the need to respond
swiftly to changes in moving target defense technology result in increased computational
resource consumption and a decrease in overall network performance. Currently, there is
no standardized and mature solution for moving target defense technology, and the syn-
chronization issue of network devices is a significant challenge that impacts the application
of this technology.

Table 6. Comparative analysis of the moving target defense technology.

Tactics Strengths Weaknesses References

Port address
hopping

No protocol
modification required
Simple deployment

Poor DDoS attack
defense capability

Easy to discover hopping rule
[89–102]

Routing
reconstruction

Can defend against link
layer DDoS attacks

Protocol modification required
implementation complexity

impact on network availability
[104,105]

Shadow
host/Honeypot

Can identify
attack types

Traceable attacker
Possible identification by attackers [106,109]

Game theory

Game strategy can
deceive attackers and

diminish attack
effectiveness.

An attack model needs to
be developed.

It needs to be used in conjunction
with other defense strategies.

[107–110]

6. Experiment Environment Analysis of the Literature

In the literature reviewed above, significant progress has been made in technical
methods and theory. However, there are notable variations in the construction and stan-
dardization of experimental environments. For example, some studies are based on single-
controller architecture SDN simulation experiments, while others extend the experimental
environment to multi-controller SDN. There are also significant differences in the selection
of traffic generation tools among different studies, ranging from Scapy and Hping3 to
customized Botnet simulators, etc. Additionally, there is diversity in modeling attack
scenarios, setting network size, and selecting performance indicators. This section analyzes
the common experimental environments and existing problems from the perspectives
of simulators and controllers, DDoS traffic generators, and the datasets used in these
literature experiments.

6.1. SDN Simulator and Controller

In terms of selecting a simulator and experimental environment, over 90% of the
literature opts for Mininet as the experimental platform. Mininet is a lightweight network
virtualization tool that leverages the namespaces provided by the Linux kernel, virtual
Ethernet devices, and Open vSwitch technology to create a comprehensive SDN environ-
ment. It is suitable for rapidly constructing and testing SDN as well as deploying associated
applications. The literature [69] uses OMNeT++ as a simulation tool. Compared to Mininet,
OMNeT++ has the ability to redefine network layers and protocols, making it suitable
for complex network models and capable of handling large-scale and detailed network
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simulations. Meanwhile, some works in the literature [42,47] integrate SDN with IoT to
assess the effectiveness of its detection and mitigation methods in the IoT environment.

In the selection of experimental controllers shown in Table 7, most literature uses Pox
and Ryu controllers to implement their defense schemes. Both controllers are written in
the Python language, which is highly flexible and easy to develop and expand. Compared
to other large-scale controller projects, Ryu and Pox have lower resource consumption
and are more suitable for research and small-scale deployment scenarios. However, these
two controllers require additional custom development in the experiment. Meanwhile,
there may be faults when handling large-scale, high-concurrency traffic.

Table 7. Classification of some reviewed articles based on the utilized controllers.

Experiment
Controller

Detection Techniques Mitigation Techniques
Literature
ProportionStatistical

Analysis
Machine Learning and
Deep Learning

Hybrid
Detection Policy-Based Moving Target

Defense

Ryu [17,20,22,27,29] [33,36,37,41,43,46,52,55,58] - [72,80,84] [97] 30%

Pox [16,18,19,23,26] [40,46,49,51,57,59] [60] [70,74,77] [85] 26.7%

Floodlight [24,28,71,79,81] [45–48,51,52] [66–68] [82] - 23.3%

OpenDaylight [21] [46] - [83] [91,96,108,110] 13.3%

ONOS - [34,46] - [75] [75] 5%

NOX - [46] - - - 1.7%

The Floodlight controller is an open-source OpenFlow SDN controller licensed under
Apache that supports the Java language. It boasts strong cross-platform capabilities,
efficient memory management, and concurrent processing abilities, making it suitable for
large-scale network environments and high-concurrency traffic scenarios. At the same time,
it supports networks consisting of OpenFlow switches and non-OpenFlow switches.

OpenDaylight is a substantial open-source project overseen by the Linux Foundation.
It offers comprehensive southbound and northbound interfaces designed for intricate, large-
scale SDN network environments. As indicated in the table, the literature on moving target
defense technology predominantly utilizes OpenDaylight as the experimental controller.

The ONOS controller is a highly modular SDN controller written in Java, with high
availability and large-scale deployment capabilities. It performs well in managing large
volumes of data and handling concurrent requests in large-scale SDN networks. At the
same time, the controller encounters challenges in deployment, high resource consumption,
and low flexibility, which restrict its scalability in experimental scenarios.

NOX is a well-known early SDN controller written in the C++ language, known for its
high operational efficiency. However, it has since been replaced by other next-generation
controllers, which may have limitations in terms of functionality and usability.

In terms of controller architecture, most experimental environments that utilize ma-
chine learning methods adopt a single-controller SDN environment. These methods pri-
marily rely on the controller to detect the traffic of the corresponding switch without taking
into account the impact of a single point of switch failure on DDoS attack detection. Due to
the necessity of perceiving the network environment and adapting to dynamic changes in
network deployment, defense strategies and moving target defense methods against link
attacks are frequently evaluated in a multi-controller architecture environment.

6.2. DDoS Traffic Generation Tools and Datasets

In order to accurately evaluate and optimize the DDoS defense mechanism in SDN
architecture, network traffic generation tools are widely used to simulate DDoS attack
scenarios, verify the effectiveness of detection algorithms, and test the performance of
defense systems. Table 8 presents the primary traffic generation tools identified in the
relevant literature research.
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Table 8. Classification of some reviewed articles based on the traffic generation tools.

Traffic Simulator Description Research Works

Scapy Scapy is an interactive packet processing program that allows users to build,
send, receive, and parse network protocol packets at the underlying level. [18–20,24,74,82,83]

Hping3 Hping3 is a command line TCP/IP packet assembly/testing tool that provides
richer functionality than traditional ping. [21,33,37,47,64,67]

D-ITG
D-ITG is a high-performance network traffic generation tool that can generate
complex network traffic with multiple streams and protocols and can simulate

traffic loads in high-concurrency scenarios.
[52,55]

BotNet simulator As a zombie network simulator, it can simulate the attack behavior of a large
number of controlled nodes and simulate real distributed attack scenarios [29,60]

TFN2K The early distributed denial of service attack tools were used to analyze the
behavior patterns and attack mechanisms of attackers. [60]

Scapy is an interactive packet processing library based on Python. It offers a high level
of flexibility for constructing, sending, receiving, and parsing packets of various network
protocols. In DDoS attack simulation scenarios, Scapy can be used to meticulously design
and execute complex attack traffic models to assess the effectiveness of target systems or
defense mechanisms.

Hping3 is a robust command line network tool that allows for the extensive manip-
ulation of various aspects of the TCP/IP protocol stack. It is used to generate and send
customized network traffic, mimicking common techniques in DDoS attacks, such as TCP
SYN Flooding, and can be utilized for security testing and auditing.

As an advanced network performance testing tool, D-ITG functions to generate a
large amount of multi-protocol and multi-mode real network traffic. In a compliant se-
curity experimental environment, the main purpose of this tool is to measure network
performance and service quality. It achieves this by configuring high-load traffic with
DDoS characteristics, which helps users evaluate the resilience of network devices and
protection systems.

The BotNet simulator is primarily used to simulate the behavior of zombie networks
in a legal and controllable manner. It can simulate a large number of network requests
initiated by concurrent nodes, reproduce large-scale DDoS attack scenarios, and provide
researchers with an important platform to understand zombie network attack mechanisms,
propagation strategies, and test defense measures.

TFN2K was an illegal DDoS attack tool in the early days, showcasing the technical
features of early distributed denial of service attacks. In today’s research environment,
it is feasible to apply its principles to develop a credible simulator. This tool-assisted
academic researchers and network security experts in analyzing historical attack methods
and refining modern defense technologies accordingly.

Traffic generation tools simulate DDoS attack behavior by creating a large number
of packets of the same type. Meanwhile, low-speed DDoS attacks can be simulated by
adjusting the rate. However, the features of traffic generation tools are predetermined
and lack variability, which makes it challenging to accurately represent the complex traffic
characteristics of the network using traffic generation tools and simulators. A recommended
method involves gathering actual network traffic and blending it in proportion with
malicious traffic generated by traffic generation tools to assess the efficacy of DDoS tool
detection and mitigation techniques.

In machine learning-based DDoS attack detection schemes, high-quality datasets are
the cornerstone for constructing and validating detection models. Table 9 lists the DDoS
attack datasets commonly used in relevant literature research.
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Table 9. Classification of some reviewed articles based on the utilized dataset.

Dataset Description Research Works

CIC-DDoS 2019 Data containing normal traffic and multiple types of DDoS attacks provides a
simulation of DDoS attack scenarios in modern data center environments. [32,58,65,72,84]

CAIDA
The dataset includes anonymized packet-level records, stream-level data, and

real-time or historical BGP routing information for network measurement, topology
analysis, and security research.

[52,57,73,79]

NSL-KDD A preprocessed classic dataset containing four types of network attacks and normal
traffic is used to evaluate the performance of intrusion detection systems. [39,48,52]

CIC-IDS-2017
Contains a large amount of data that simulates different types of attacks and normal

traffic in real network environments, suitable for the development and testing of
machine learning-based intrusion detection systems.

[31,36,54]

ISCX A dataset of various types of network attack traffic, including mixed attacks and
normal traffic, supporting research on new attack techniques. [56,66,75]

DARPA Datasets from the Early Large Intrusion Detection Project “Intrusion Detection
System Evaluation” of the US Defense Advanced Research Projects Agency [42]

UNSW-NB15 Contains data for 9 types of attacks and normal traffic, characterized by rich features
and diverse types of attacks [59]

CTU-13 Provided PCAP format network traffic data for a range of malicious software
activities, especially Botnet [66]

MAWI Working Group
Traffic Archive

Public large-scale network traffic data archiving is mainly used for research in
network engineering, transmission protocol analysis, and traffic modeling. [26]

Kaggle DDoS and other network attack datasets contributed by the
cybersecurity community [35]

LLS 2.0 DDoS dataset This dataset is specifically designed for DDoS attack scenarios and contains DDoS
attack traffic samples of different scales and complexities. [23]

The CIC-DDoS 2019 dataset was released by the University of New Brunswick in
Canada for research on DDoS attacks. The dataset contains a substantial number of labeled
data points that differentiate between normal network traffic and various DDoS attack
traffic. This provides researchers with an experimental environment featuring the latest
attack patterns and defense challenges. This dataset highlights the significance of accurately
identifying DDoS attacks in intricate network environments, and its feature set may include
detailed packet inspection (DPI) level information.

CAIDA is a significant resource center for Internet traffic research. The platform
offers a wide range of public Internet traffic datasets, such as anonymous packet-level
data, route table snapshots, and instances of large-scale DDoS attacks. These data provide
valuable information for the academic and industrial communities to enhance network
traffic models, conduct research on DDoS defense strategies, and analyze the security of
network infrastructure.

NSL-KDD is a preprocessed version of the KDD Cup 1999 dataset, primarily utilized
for research on intrusion detection systems. Although it mainly focuses on general types
of intrusion behavior rather than specifically targeting DDoS attacks, it does contain a
small number of DDoS-related samples that can be used to train and test network intrusion
detection algorithms.

The CIC-IDS-2017 dataset, released by the University of Carleton in Canada, is an
intrusion detection dataset based on real network traffic. It includes various types of
network attacks, such as DDoS attacks. This updated dataset aims to represent the current
threat landscape in modern network environments and serve as an experimental platform
for the latest security research.

ISCX series is a collection of intrusion detection system datasets created by the Infor-
mation Security and Cryptography Laboratory at the University of Ottawa, Canada. The
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ISCX IDS 2012 dataset contains a substantial volume of both normal and abnormal traffic
records, making it suitable for DDoS attack detection and other network attack research.

The intrusion detection and evaluation project by DARPA has generated a series
of significant datasets to facilitate research competitions in the field of network security.
These datasets contain various types of network attacks, including early instances of DDoS
attacks, which are highly significant for understanding the development of DDoS attacks.

The UNSW-NB15 dataset was created by the University of New South Wales in
Australia. It includes detailed feature descriptions and covers a wide range of attack
categories, including various types of DDoS attacks. It is currently widely used as a
benchmark dataset in the fields of network intrusion detection and DDoS research.

The CTU-13 dataset from the Prague University of Technology in the Czech Republic
focuses on botnet activities and covers various DDoS attack scenarios. This dataset offers
samples of malicious traffic generated in real network environments, making it particularly
valuable for in-depth research on the sources and propagation methods of DDoS attacks.

The MAWI Working Group Traffic Archive collects real-time network traffic data on
the Japanese Internet backbone. These data are valuable for researchers studying large-
scale network behaviors, such as pattern recognition and traffic characteristics analysis of
DDoS attacks.

As the world’s largest data science competition platform, Kaggle frequently releases
datasets related to cybersecurity and machine learning in collaboration with industry
partners. It contains real datasets focused on DDoS attacks.

The LLS 2.0 DDoS dataset is provided by MIT Lincoln Laboratory and is specifically
designed for detecting DDoS attacks. It provides simulated or real DDoS attack traffic data
for training and testing the effectiveness of DDoS defense systems. This type of dataset
helps researchers better simulate real-world attack scenarios when developing effective
defense mechanisms.

Although the aforementioned datasets have yielded favorable results in training
DDoS attack detection models, the continuous evolution of DDoS attacks means that early
datasets may not capture the latest network attack technologies and trends. Simulation-
based datasets may deviate from real-world scenarios. Furthermore, various datasets
offer varying feature dimensions and depths, thereby complicating the process of feature
selection and processing in machine learning models. Many datasets are not designed
for SDN and do not accurately reflect the traffic characteristics in real SDN environments.
Further experiments are still needed in real-world network scenarios.

7. Research Challenges and Gap

In this paper, we aim to examine the existing research literature on detection and
mitigation technologies against DDoS attacks in SDN environments. It categorizes and re-
views these methods based on the technologies employed in the literature. The comparison
of the application scope, advantages, and disadvantages of the detection and mitigation
technologies mentioned in this article can be found in Table 10.

Although the DDoS detection and mitigation techniques mentioned above can miti-
gate DDoS attacks in some experimental settings within the SDN environment, the diversi-
fied and covert nature of DDoS attack methods continues to present ongoing challenges.
Therefore, there are still issues and challenges that need to be overcome in DDoS attack
defense mechanisms.

• Application plane security. At present, most DDoS attack detection methods are
deployed on the SDN control plane and data plane, neglecting security detection on
the application plane. In fact, the security of the northbound interface of the SDN
control plane also plays a crucial role in the normal operation of the SDN. Due to
the openness and flexibility of SDN, there is a lack of strict access control, identity
authentication, and abnormal detection mechanisms in the application layer. Attackers
can launch a high volume of API calls within a short timeframe using malicious
applications, resulting in controller crashes and the complete paralysis of the entire
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network. Therefore, strengthening the security of the SDN application layer is also an
important measure to defend against DDoS attacks.

• Real network scenarios and load balance. In real-world scenarios, SDN architecture
inevitably faces synchronization and load-balancing issues caused by multi-controller
systems. Currently, most research is based on simulation experiments of single-
controller SDN systems. In real SDN deployments, a single controller system is
unreliable. In a multi-controller system, the traffic of switches is distributed among
various switches, which poses difficulties for DDoS attack detection. On one hand,
DDoS attacks are more covert due to dispersed traffic, requiring more targeted de-
tection thresholds. On the other hand, SDN with multiple controllers also needs to
consider load balancing, distributing traffic evenly among different controllers to
prevent being mistaken for an attack due to heavy load on a single controller. Wang
et al. [111] deployed a DDoS attack defense scheme in a multi-controller system but
did not consider the synchronization strategy of multiple controllers. The problem
of effectively allocating resources, achieving load balancing, and synchronizing flow
table information from multiple controllers is a challenge that SDN security policy
deployment needs to address.

• Network information synchronization. Network information synchronization is the
core issue of DDoS dynamic defense methods. If the synchronization of the sender and
receiver information cannot be guaranteed during the information hopping process,
it impacts network availability. The commonly used synchronization methods at
present are time-based synchronization methods and protocol-based synchronization
methods [112]. Time-based synchronization methods are affected by network latency
and time accuracy, making it difficult to achieve accurate information synchronization.
The protocol-based synchronization method requires prior communication negotiation
and confirmation between the parties involved in the communication. However,
this method is susceptible to replay attacks and tampering, which can disrupt the
synchronization of network information jumps. Security research on information
synchronization methods for dynamic defense is also a research direction.

• Distinguishing between DDoS attacks and flash events. In a real network, there
are often multiple legitimate users accessing the network simultaneously, which can
lead to flash events. During these events, the website server is unable to provide
normal services [113]. Unlike DDoS attacks, this event is caused by a surge in network
traffic from legitimate users and cannot be prevented solely through DDoS attack
defense strategies. Luo et al. [114] introduced methods to distinguish and detect flash
events and DDoS attacks, along with a dataset for detection. Sun et al. [64] proposed a
method for detecting flow feature-based DDoS attacks and discriminating flash events
in SDN. At present, it is also an urgent problem to distinguish between DDoS attacks
and flash events in SDN and adopt different mitigation strategies to avoid affecting
the legitimate use of the network by normal users.

• Adaptive DDoS attack defense. Attackers often adapt their attack methods based on
the intelligence gathered in the early stages to evade network defenses and detection
methods. Studying adaptive attack detection mechanisms for DDoS attacks in SDN
has become an important topic. Based on statistical information for detecting DDoS
attack methods, dynamic detection thresholds are set according to the actual network
traffic size and attack methods in order to reduce false alarm rates. They minimize
the impact on network availability while ensuring accurate detection. In machine
learning detection methods, selecting traffic features based on attack types helps train
the model for detection. This approach reduces model complexity while improving
accuracy [115]. The currently commonly used method is to combine lightweight iden-
tification methods with heavyweight detection algorithms to efficiently and accurately
detect and identify DDoS attacks. In dynamic defense methods, the selection of the
information jump space and period also requires an adaptive adjustment in order to
achieve an adaptive information jump. At present, research is focused on achieving
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network adaptive DDoS attack detection and minimizing the impact on network avail-
ability. This involves developing DDoS defense measures that target various attack
methods and scales.

• Protocol security. At present, there is no clear industry standard for security in SDN
network architecture. Although organizations such as the Open Network Founda-
tion [116] and the European Telecommunications Standards Association [117] have
established certain security standards, there are still no fully recognized security stan-
dards domestically and internationally. This lack of recognized standards also impacts
the security of SDN. Kloti et al. [118] conducted a security analysis on the OpenFlow
protocol and experimentally verified that attackers can easily perform sniffing and
DoS attacks on devices that deploy OpenFlow. In response to vulnerabilities in the
SDN communication protocol, attackers can also compromise SDN security through
methods such as man-in-the-middle attacks and spoofing attacks. Therefore, establish-
ing security protocol standards is also an important measure to defend against DDoS
attacks and ensure the security of SDN.

Table 10. Summary of DDoS attack defense techniques in SDN.

Technology Scope Plane Key Points Strengths Weaknesses

Statistical
analysis Detection Data/control

Utilizing statistical
parameters of traffic

characteristics or
information entropy for the
detection of DDoS attacks.

Low resource
consumption and high
real-time performance

High false alarm
rate (FAR)

Machine
learning

Detection/
Mitigation Control

The deployment of machine
learning algorithms in

control planes to identify
DDoS attack traffic in

networks.

High accuracy
Model training is

complex and has low
real-time performance

Hybrid
detection

Detection/
Mitigation Data/Control

Statistical analysis and
machine learning

multi-level detection
methods for DDoS

attack detection.

Balancing real-time
detection and accuracy

Difficulty in deployment
Parameter settings affect
detection effectiveness

MTD Mitigation Control
Dynamic changes in

network information to
mitigate DDoS attacks

Improve the security
of SDN

High requirements for
network systems and

communication
synchronization issues

Policy-based
mitigation Mitigation Data/Control/

Application

Set traffic forwarding
policies to effectively

discard malicious traffic and
ensure the transmission of

clean traffic.

Easy to implement and
minimal resource usage May affect normal traffic

8. Conclusions

With the application of SDN architecture in various real-world scenarios, the security
issues of SDN remain a significant challenge. On the one hand, many traditional network
security problems still exist in SDN. On the other hand, the openness of SDN brings new
security issues. This article focuses on the common DDoS attack problems in SDN and
introduces several mainstream methods for detecting and mitigating DDoS attacks in SDN
environments. The advantages and limitations of these methods are analyzed in terms of
attack detection accuracy, real-time performance, network resource consumption, and types
of DDoS attacks. Finally, this article raises questions and challenges regarding existing
methods. Of course, there are also research areas that have not been covered in this article,
such as the SDN communication protocol against DDoS attacks [119] and application-level
defense methods against DDoS attacks [120]. Absolute network security does not exist, and
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security attacks on networks will never end. Detecting and defending against new types of
DDoS attacks in SDN environments will continue to be an area of exploration in the future.
In future work, the author plans to utilize threat intelligence to model attackers, develop
dynamic defense strategies using SDN programmability, achieve the early detection of
DDoS attacks and localization of attackers, minimize controller overhead, and establish the
traceability of attackers.
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