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Abstract: Evaluating hand function presents a significant challenge in the realm of remote rehabilita-
tion, particularly when highlighting the need for comfort and practicality in wearable devices. This
research introduces an innovative wearable device-based Internet of Things (IoT) system, specifically
designed for the assessment of hand function, with a focus on a wearable wristband. The system,
enhanced by cloud technology, offers comprehensive solutions for remote health management and
therapeutic services. Firstly, it uses electromyography (EMG) signals from the arm to assess hand
function. By employing sophisticated classification and regression models, this system can automati-
cally identify user gestures and accurately measure grip strength. Additionally, the integration of
additional sensor data ensures that the system fulfills essential criteria for hand function assessment.
Leaving conventional grip strength classification methods, this study explored four distinct regression
models to accurately represent the grip strength curve. The findings reveal that the Random Forest
Regression (RFR) model is the most effective, achieving an R2 score of 0.9563 on the test data. This
significant outcome not only confirms the practicality of the wearable wristband, which relies on
EMG signals, but also underscores the potential of the IoT system in assessing hand function.

Keywords: IoT; grip strength; wearable device; hand function evaluation

1. Introduction

The importance of hand function is paramount in our ability to perform a diverse
range of daily activities, from basic self-care to complex tasks. In particularly in the elderly
and people with neurological disorders, the loss of motor skills of the hands markedly
affects their autonomy and quality of life. Highlighted in a study by Gianluca et al., the
importance of hand motor function is evident, noting its profound impact on activities
of daily living (ADL) [1]. This issue is especially critical for older adults, as a decrease in
muscle strength, including grip strength, is a hallmark of aging and is directly correlated
with a reduced quality of life. Further supporting this, the research of Melissa et al. reveals a
distinct connection between grip strength and quality of life in the elderly [2], emphasizing
the need to preserve the independence of hand function in both ADL and Instrumental
Activities of Daily Living (IADL).

In the context of the pandemic, remote rehabilitation, an innovative medical service
model, has emerged as a crucial and potential-filled approach. However, it faces several
practical challenges. According to Jansen et al., many rehabilitation facilities are located
in remote locations [3], which pose difficulties for medical professionals in providing care
outside their usual work settings, potentially impacting care quality. However, remote
rehabilitation offers a promising supplement to existing rehabilitation resources, with sig-
nificant market demand. Otto et al. have made strides in this area, developing a biomedical
device specifically for hand motor rehabilitation [4]. This device helps professionals track
and monitor rehabilitation results, actively engaging patients in their recovery and thus
increasing the success rate of rehabilitation processes.
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The structure of this study is organized methodically as follows: Section 2 dives deeper
into related research. Section 3 outlines a comprehensive IoT architecture for wearable
devices aimed at assessing hand function and details the technical approach for wearable
EMG wristbands. Section 4 describes the experimental procedure and the implementation
method for assessing hand function. Section 5 presents the scoring criteria and results of
various models. Lastly, Section 6 concludes the study with a comprehensive summary
and discussion.

2. Related Work

The traditional approach to assessing hand function is based predominantly on the
subjective judgment of clinicians, augmented by established assessment scales such as the
Fugl-Meyer and Brunnstrom scales. These tools are widely used to evaluate hand motor
function and rehabilitation progress in stroke patients. However, the inherent subjectivity
of clinician evaluations and potential observational errors can lead to unavoidable inaccu-
racies. To mitigate this, the use of wearable devices and sensors to monitor physiological
signal changes offers a more precise, scientific, and quantitative solution.

The assessment of hand function, when grounded in electromyography (EMG) signals,
presents a more objective and accurate method. It excels at detecting minute variations
in muscle activity and hand movements. The work of Supachai et al. is particularly
noteworthy, as they explored the connection between EMG signals and grip strength using
the Myo armband [5]. This study affirmed the relationship between grip strength and
EMG signals and demonstrated the potential of the Myo armband in remote rehabilitation.
Achmad et al. advanced this field by effectively integrating therapeutic gloves with the
Myo armband for rehabilitation treatment [6]. Similarly, Ho et al. used the Myo armband
alongside steady-state grip strength data [7], using classification models to differentiate
dumbbell weights with a notable accuracy of 77.1%. Furthermore, a comprehensive review
by Mario et al. recognized EMG signals as a valuable resource to evaluate muscle strength
and fatigue [8].

The adoption of wearable devices for the assessment of hand function is growing,
particularly in the rehabilitation training of stroke patients. The study by Fardipour et al. in-
vestigated the therapeutic impacts of wearable robotic gloves on improving hand function
in these patients [9], revealing promising results. Furthermore, the integration of virtual
reality systems with assistive gloves has led to advances in rehabilitation assessment [10].
Despite these developments, there is a noted need for more detailed evaluations, particu-
larly in areas such as grip strength assessment.

3. Framework of the Wearable Hand Function Evaluation System
3.1. Architecture of Wearable Hand Function Assessment Products

The process of information transmission in wearable hand function assessment de-
vices is intricately detailed in Figure 1. The data captured by these devices can either be
exchanged locally with other devices via Bluetooth or directly transmitted to the server
cloud through network connections. Within the cloud server, both personal privacy data
and common health big data are stored and utilized to refine the wearable device’s data
processing capabilities. Importantly, these data can be shared with doctors, medical insti-
tutions, or family members, provided there is appropriate authorization, thus facilitating
remote medical care and helping to develop and execute rehabilitation plans.
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Figure 1. Information transmission diagram for hand-held function assessment devices.

3.2. Wearable EMG Device

Figure 2 presents the product composition diagram of the wearable wristband. De-
signed to be worn on the patient’s forearm, a region well-suited for EMG signal collection
due to its rich musculature and minimal fat, this product ensures effective data collection.
The wristband comprises several components, including an EMG sensor, various other
sensors (such as heart rate, body temperature, accelerometer, etc.), a power unit, a comput-
ing unit, and an IoT unit, among others. The EMG sensor is the cornerstone of the device
and meets most requirements for assessing hand function through EMG signal analysis.
The raw EMG data undergoes filtration and rectification by the computing unit before
becoming analyzable. The processed EMG data, coupled with the corresponding feature
labels, is used to train gesture classification models and grip strength curve regression
models. By incorporating these trained models into the computing unit, the device can
automatically determine gestures and evaluate grip strength. These effectively transformed
information streams are then distributed to other devices or cloud platforms through IoT
modules such as WIFI, cellular networks, or Bluetooth, playing a crucial role in remote
health monitoring, user interaction, and device control.

Figure 2. Composition of the wearable armband product.
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4. Evaluation of Hand Function

Gesture recognition and grip strength assessment constitute fundamental components
in evaluating hand function. Given the extensive research already conducted on EMG-
based gesture recognition, this paper eschews redundant validation. However, existing
research uses primarily dumbbells to test grip strength, with a focus on weight classification.
This study posits that fitting a continuously varying force curve is more appropriate for
authentic hand function evaluation. Thus, the research centers on the regression adjustment
of the grip strength curve.

4.1. Data Collection and Processing
4.1.1. Experimental Equipment

The experimental setup encompasses both hardware and software components:

(1) Hardware Environment: As illustrated in Figure 3, the apparatus for collecting EMG
data comprises the Myo armband by THALMICLABS, the EH102R type electronic
hand dynamometer from Xiangshan, and various dumbbells with different weights.
The Myo armband, capable of rapidly capturing EMG data from eight regions and
transmitting them wirelessly via Bluetooth at a 200 Hz frequency, constitutes a vital
part of the set-up. The experimental environment utilizes the Windows 10 operating
system and a Lenovo E570 laptop for model training.

(2) Software Environment: The software for data collection and processing is custom-
developed. Using the PyCharm 2021 platform, it incorporates the pyomyo library for
Myo armband integration and the sklearn library for training and evaluating SVR,
KNN, and RF models, as well as the Keras library for LSTM model training.
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4.1.2. Preparation of the Experiment

The study categorizes the force into two types: instantaneous and stable. The Myo
armband records EMG signal variations during force application. Figure 4 demonstrates the
experimental methodology, where the instantaneous force is measured using the EH102R
type electronic hand dynamometer and stable force through 5 kg and 8 kg dumbbells.
Before testing, subjects sit upright with their arms naturally hanging, ensuring no external
hand support. The experiment proceeds after confirming the comfort of the subject. During
stable force tests, the seat height is adjusted to allow natural finger positioning on the
dumbbell bar, reducing the force of the auxiliary muscle.
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The subjects gave written informed consent for the study after receiving a detailed
explanation of the purposes, potential benefits, and risks associated with participation.
All procedures used in this study were approved by the Research Ethics Committee of
Zhejiang Sci-Tech University and were in accordance with the Declaration of Helsinki.

4.1.3. Data Collection and Processing

The participants were all young people, but relevant studies have shown that in
sustained isometric tasks, the older adults’ susceptibility to fatigue is the same as or even
better than that of the younger adults [11]. Furthermore, when the maximal voluntary
contraction (MVC) of older adults and younger adults is the same [12], there is no significant
difference in most cases, and only when they are at 20% MVC or 25% MVC will the
RMS show a significant difference, whereas the EMG will not show a difference, so the
present study concluded that under this scenario condition, the use of younger adults’ data
is informative.

Table 1 details information about the six volunteers who participated in the experiment,
balanced between sexes and aged 23–26 years. They refrained from intense physical activity
24 h before the experiment. All right-handed, they provided uniform EMG data from
their right forearms. Pre-experiment grip strength tests were conducted three times to
determine the average value (1). Using different weights or a hand dynamometer, data was
collected over two trials per set, repeated over five sets with a 15 s intermission. More than
45,000 sample groups were ultimately collected after processing.

Table 1. Basic Volunteer Information.

Number Gender Age Grip
Strength 1

Grip
Strength 2

Grip
Strength 3

Average
Strength/kg

1 Male 23 26.4 27.6 24 26
2 Male 26 27.2 36.6 38.5 34.1
3 Male 24 39.5 40.6 41.7 40.6
4 Female 23 19.7 21.4 20.4 20.5
5 Female 22 21.5 20.6 20.9 21
6 Female 23 22.6 22.4 21.6 22.2
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y[n] = |x[n]| (1)

The study combines EMG data from eight regions with grip strength data, aligned
through linear interpolation (2). DTW, Pearson, and cosine correlation tests were conducted,
with results shown in Figure 5. Deeper colors indicate stronger correlations between regions
and grip strength. This suggests a correlation between EMG signals and grip strength.

y = y0 + (x− x0)
y1 − y0

x1 − x0
= y0 +

(x− x0)y1 − (x− x0)y0

x1 − x0
(2)
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Figure 5. Illustration of grip strength and EMG correlation (DTW and Person correlation and
cosine similarity).

Table 2 presents the results of the nonparametric correlation test between various
sizes of grip strength and EMG signals from eight regions, employing the Kruskal-Wallis
H-value as an indicator. Analysis of H-values and p-values leads to the conclusion that
EMG signals from specific regions are more sensitive to changes in grip strength, affirming
the relevance of the experiment.

Table 2. Grip strength and EMG correlation nonparametric test results.

EMG Channel Kruskal-Wallis H Rate p Rate

1 15.871 0.070
2 38.616 0.000 **
3 13.531 0.140
4 27.977 0.001 **
5 16.618 0.055
6 51.702 0.000 **
7 39.036 0.000 **
8 34.045 0.000 **

** p < 0.01.

Different data selection strategies were applied for different exertion states. Figure 6
displays the total strength curve of the EMG signals for instantaneous force, identifying the
peak samples closest to the maximum grip strength. Three samples preceding each peak,
including the peak, were selected, with the corresponding grip strength as an EMG feature.

Figure 7 depicts the total strength curve of EMG signals for a stable force. This study
interprets the curve’s progression from excessive to appropriate exertion, with the excessive
force phase occupying about one-fourth of the exertion period and the stable force phase
three-fourths. Consequently, the data in the post-peak stable force phase are deemed more
relevant and referential. Initially, the study delineated the movement phase data using
a total signal strength of 50 as a boundary, applying forward and reverse ordering for
boundary delineation. To avoid misjudgments due to occasional fluctuations, a boundary
is considered valid only if two out of three data points exceed the threshold. Furthermore,
to prevent signal fluctuation from declining due to muscle fatigue, the 50% middle section
of the exercise area is selected as the stable force phase. However, this section still contains
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a large number of samples, and using all would likely lead to overfitting in subsequent
models. Therefore, the data in the stable force phase are further reduced by dividing it into
three equal parts in a matrix (3), Ak representing the average EMG signal value for each
area in Ak (4), where k ∈ {1, 2, 3}. Ultimately, each trial yields three sets of data samples
with ten labels.

A1, A2, A3 = split(A, 3) (3)

Ak =
1
n
3

∑
n
3
j=1 Ak[:, j] (4)
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4.1.4. Dataset

Table 3 includes a compilation of 483 effective samples, including 183 stable forces,
153 instantaneous forces, and 147 relaxation balance samples. This table represents a
comprehensive data set containing 5313 data points, which encompass EMG signals from
eight distinct regions, corresponding grip strength measurements, overall signal strength,
and inter-time intervals. To discern the disparities between instantaneous and stable
forces, the dataset for instantaneous force alongside the complete dataset will be utilized
to evaluate the stable force data, thus affirming the versatility of multistate force data in
practical applications.
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Table 3. Composition of the sample data set.

Average Weight/kg Kind Sample

5 Stable 90
8 Stable 93
0 Relax 147

5.4~16.8 Instantaneous 153

4.2. Methods and Models

To identify the optimal algorithm for fitting the force curve, the study selects several
regression algorithms for comparison, including traditional machine learning and deep
learning algorithms. Before processing, the data is standardized (5), where z is the stan-
dardized value, x is the original data point, µ is the mean of the original data and σ is the
standard deviation of the original data. This standardization results in a dataset with a
mean of 0 and a standard deviation of 1, making the data more comparable across different
features and also aiding in algorithm convergence and performance enhancement. 20% of
the data are used as a test set, with a random seed of 42.

z =
(x− µ)

σ
(5)

4.2.1. KNR Parameters

K-Nearest Neighbors Regression (KNR) is a regression model derived from the KNN
algorithm, adept at predicting and analyzing data. In the realm of EMG signal analysis or
grip strength analysis, KNR can forecast muscle activity or grip strength levels considering
the characteristics of the nearest neighbors. A notable application of KNR is found in the
research conducted by Shin et al., where KNR was used to analyze the data and predict the
reaction time of the grip strength and the changes in muscle strength using EMG and the
grip strength data [13]. This research highlights KNR’s proficiency in accurately assessing
and comprehending the intricacies of hand movements and strength.

• Neighbor numbers: [3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25].
• Modes: [‘uniform’, ‘distance’] combined to retain the advantages of both proximity

modes.
• Algorithms: [‘auto’, ‘ball_tree’, ‘kd_tree’].
• Leaf sizes: [20, 30, 40, 50], affecting tree construction and query speed.
• Minkowski distance power: [2, 3].
• Cross-validation folds for learning curve generation: 5.

4.2.2. SVR Parameters

Support Vector Regression (SVR), a regression methodology based on SVM, proves
effective in predicting muscle strength or grip levels, particularly when processing EMG
signals or grip strength data. For example, the approach proposed by Liu et al. involved
the use of an optimized SVR algorithm for training regression models based on sEMG
signals [14]. This method demonstrated its precision in forecasting muscle strength and its
value in comprehending muscle fatigue levels and optimizing rehabilitation training plans.

• Number of trees: 100.
• Maximum depth of trees: 200.
• Minimum samples required to split an internal node: 2.
• Minimum samples required at a leaf node: 5.
• Cross-validation folds for learning curve generation: 10.

4.2.3. RFR Parameters

Random Forest Regression (RFR) stands as a powerful machine learning approach,
especially suitable for complex data sets and prediction tasks. In the context of the EMG
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signal or grip strength analysis, RFR is capable of predicting muscle activity or grip levels.
The research of Manuel et al., which employed RFR to analyze variations in maximum
force [15], maximum muscle activity, and muscle thickness during handshake gestures,
exemplifies the capacity of RFR to manage numerous features and offer precise predictions.
Such capabilities are vital for deciphering complex biomechanical patterns and improving
rehabilitation strategies.

• The regularization C value is set to 1.0.
• Cross-validation folds for learning curve generation: 10.

4.2.4. LSTM Parameters

Long-Short-Term Memory (LSTM) networks, a specialized category of recurrent neural
networks, are particularly adept at processing time series data, such as EMG signals. In
analyses involving grip strength or muscle activity, LSTM networks are capable of capturing
long-term dependencies in time series data, providing a profound understanding of muscle
activity patterns. The study by Ravi et al. utilized LSTM networks in conjunction with
fuzzy inference systems (FIS) to classify movement states based on EMG signals [16]. This
research underscores the effectiveness of LSTM in accurately classifying different hand
movements and yielding interpretable outcomes, making it a valuable asset for applications
in rehabilitation and the medical device industry.

• Number of units in the LSTM layer: 128.
• The addition of a dropout layer with a dropout rate of 20% will reduce overfitting.
• The addition of a dense layer with one unit for the output of prediction values.
• Training epochs: 300, batch size: 32.

5. Results
5.1. Evaluation Metrics

To ensure a precise evaluation of model performance, this study uses mean square
error (MSE), root mean square error (RMSE), and R squared (R2) scores as the primary
evaluation metrics.

The MSE, denoted as a metric (6), represents the average of the squared discrepancies
between the model predictions and the actual values. Lower MSE figures are indicative of
higher accuracy of the prediction model.

MSE =
1
N ∑N

i=1 yi − ŷ2
i , (6)

RMSE, labeled as a metric (7), calculates the square root of the squared deviation of
the predictions from the actual values, divided by the number of observations. This metric
is particularly sensitive to outliers within the data.

RMSE =

√
1
N ∑n

i=1 (Yi − f (xi))
2 (7)

The R2 score, referred to as a metric (8), serves as a performance metric to evaluate
the correlation between the data applied to the regression models and the model itself.
R2 scores range from 0 to 1, with values approaching 1 indicating a stronger correlation
between the regression model and the applied data.

R2 = 1− T − P2

ΣT − A2 (8)

5.2. Experimental Results Analysis

Table 4 enumerates the training and test scores for the four models under consideration.
These scores illustrate that both traditional machine learning models and advanced deep
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learning models possess substantial capabilities for fitting grip strength curves effectively.
The KNR (TEST) and KNR (TRAIN) display the lowest MSE and RMSE values, which
signifies a superior model to fit compared to other models. Furthermore, the high R2

scores of the KNR model indicate an excellent match with the data. However, the MSE and
RMSE for KNR (TRAIN) exhibit significantly anomalous values, suggesting issues in its
computational method that make it prone to overfitting. Therefore, this paper concludes
that KNR may not be the optimal choice for this type of data fitting.

Table 4. Training scores for each model.

MSE RMSE R2

KNR (TEST) 0.98 0.99 0.9699
KNR (TRAIN) 0 0 1

RFR (TEST) 1.4241 1.1934 0.9563
RFR (TRAIN) 0.8665 0.9308 0.9720
SVR (TEST) 2.5626 1.6008 0.9214

SVR (TRAIN) 2.2407 1.4969 0.9277
LSTM (TEST) 1.6712 1.2928 0.9487

LSTM (TRAIN) 1.6005 1.2651 0.9483

Both RFR (TEST) and RFR (TRAIN) demonstrate low MSE and RMSE values, along
with exceptionally high R2 scores, indicating that the model predicts values very close
to the actual data. The success of the RFR model can be attributed to its proficiency in
handling complex non-linear relationships in the data and its reduced sensitivity to outliers.
In contrast, SVR (TEST) and SVR (TRAIN) exhibit relatively high MSE and RMSE values,
possibly due to SVR’s sensitivity to outliers or noise in the EMG data. However, its R2

score, though lower, remains within a commendable range, indicating a strong correlation
between predicted and actual values. LSTM (TEST) and LSTM (TRAIN) maintain a balance
between accuracy and fit, displaying satisfactory MSE, RMSE, and R2 scores. While RFR
emerges as the most accurate and reliable model for fitting grip strength curves in this
dataset, the time-series nature of EMG signals might be better suited for LSTM.

5.3. Model Graph Analysis

Monitoring training and testing changes in models is crucial for optimizing the model
structure and identifying problems. Accordingly, learning curves were generated for each
model, providing a more intuitive visualization of changes during the training process.

Figure 8 illustrates the learning curves for training the four models using hair power
data. The KNR model, in the region of the graphs, shows significantly abnormal training
results, persisting even after several debugging attempts, suggesting a mismatch between
the KNR model and this kind of data. Other graphs show a more effective fitting process,
with training and test sets maintaining a generally consistent trend, indicating minimal
overfitting. The d region of the LSTM model is particularly noteworthy, as it demonstrates
rapid decreases in training and validation losses while maintaining a fit, with increased
training enhancing the model’s fit without overfitting. The RFR model in area b and
the SVR model in area c show similar trends, with the RFR model’s cross-validation
score decreasing faster and remaining more stable with increased training. Taking into
account these findings, this article concludes that RFR is the optimal model in terms of the
performance-to-speed ratio, while the LSTM model can also achieve high accuracy and
fitting effectiveness with increased epochs.
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6. Conclusions

The IoT system for remote rehabilitation devices, as an augmention force in medical
resources, is experiencing rapid growth, especially in the market for wearable devices.
Products about hand function evaluation are showing expansive prospects. This paper
introduces an architecture of an IoT system for home-based assessment of hand function
using wearable devices, detailing its composition and technical foundations. The crucial
aspect of the evaluation of hand function based on EMG signals involves regression fitting
of the grip strength curve, comparing four traditional machine learning and deep learn-
ing models. The assessment method is natural, precise, and comfortable. Experiments
demonstrated that RFR performed best in regression fitting of force curves, achieving an
R2 score of 0.9563 for its test data. Although the fit accuracy is already notable, there is
potential for further enhancement, particularly in aspects such as model training speed.
Future efforts will focus on integrating additional sensors to capture a wider array of
data types for composite experiments, thereby enriching the assessment’s dimensionality
and comprehensiveness.
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