i:;l?é electronics

Article

Forester: Approximate Processing of an Imperative Procedure for
Query-Time Exploratory Data Analysis in a Relational Database

Md Arif Rahman ? and Young-Koo Lee V*

check for
updates

Citation: Rahman, M.A.; Lee, Y.-K.
Forester: Approximate Processing of
an Imperative Procedure for
Query-Time Exploratory Data
Analysis in a Relational Database.
Electronics 2024, 13, 759. https://
doi.org/ 10.3390/ electronics13040759

Academic Editors: Nikolay Hinov,
Ognyan Nakov and Milena Lazarova

Received: 31 December 2023
Revised: 11 February 2024

Accepted: 11 February 2024
Published: 14 February 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Computer Science and Engineering, Kyung Hee University, Global Campus,
Yongin-si 17104, Republic of Korea; ma.rahman@khu.ac.kr or ma.rahman@just.edu.bd
Department of Computer Science and Engineering, Jashore University of Science and Technology,
Jessore 7408, Bangladesh

* Correspondence: yklee@khu.ac.kr

Abstract: Query-time Exploratory Data Analysis (QEDA) is an increasingly demanding aspect of
the data analysis process that entails visually and quantitatively summarizing, comprehending,
and interpreting the primary characteristics of a dataset. Nowadays, an imperative procedure is
popular in relational databases for EDA because it enables us to write multiple dependent declarative
queries with imperative logic. As online analytical processing (OLAP) systems contain extremely
large datasets, data scientists often need quick visualizations of data, using approximate processing
of imperative procedures, before analyzing them in their entirety. We identify gaps in the existing
techniques, in that they are unable to sample both declarative-dependent statements and control logic
at the same time and perform multi-dependent sampling-based approximate processing within the
permitted time in qEDA. Traditional approximate query processing (AQP) involves tuple sampling
for a single query approximation and enables queries to be executed over arbitrary random samples of
tables. However, available AQP methods cannot produce a further representative sample of the data
distribution for the dependent statements to estimate accurately and quickly for multiple dependent
statements. On the other hand, sampling control structures, like loops and conditional statements,
are discussed separately, without regard to the imperative structure of statements in a procedure.
In this study, we propose Forester, a novel agile approximate processing method for imperative
procedures that performs imperative program-aware sampling, which includes both statements with
control regions (i.e., branch and loop) and processes them approximately within the permitted time
in gEDA. Our method produces more targeted samples for each relation, while maintaining the data
and control flow of dependent queries and imperative logic and determining all the conditions for
a relation across all the statements in the sample that guarantee the existence of relevant data for
dependent data distribution. Utilizing a workload of multi-statement imperative procedures from the
Transaction Processing Performance Council Decision Support (TPC-DS) database, our experiment
demonstrates that Forester outperforms the existing system in sampling, producing minimum error,
and improving response time.

Keywords: agile approximate processing; query-time approximate processing; imperative procedure;
Forester; forest data structure

1. Introduction

An imperative procedure that employs the imperative programming paradigm is a
collection of SQL statements stored in a database and executed as a unit. In contrast to
a declarative stored procedure, which focuses on describing what must be done without
specifying the exact steps, an imperative stored procedure specifies the exact order of
operations required to accomplish a specific result. Relational database management
systems (RDBMS) like Oracle, SAP Hana, Microsoft SQL Server, MySQL, and PostgreSQL
typically contain imperative stored procedures. These procedures may contain IF-THEN

Electronics 2024, 13, 759. https:/ /doi.org/10.3390/ electronics13040759

https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13040759
https://doi.org/10.3390/electronics13040759
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13040759
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13040759?type=check_update&version=3

Electronics 2024, 13, 759

2 of 35

[1abC /[taba /[tabB [/ tabD [

(@)

statements, iterations, variable assignments, and other imperative logic structures. They are
frequently employed for complex data manipulations, transaction administration, and the
deployment of business logic within a database.

Exploratory data analysis (EDA) is a data analysis process that involves understanding,
analyzing, and summarizing a dataset’s main features, both numerically and visually.
The practice of using queries to perform exploratory analysis on a dataset in real-time is
known as query-time exploratory data analysis [1]. This entails interactively examining the
data and obtaining knowledge by instantly querying the dataset. It encompasses several
processes such as interactive queries, aggregate and summary statistics, data distribution
analysis, correlation analysis, quality assessment of the data, and iterative exploration.

Approximate processing estimates query responses by analyzing a sample of the data
rather than the complete dataset. This is beneficial for complex queries with enormous
datasets that would otherwise take a long time and a lot of resources. Sample-based
approximate processing is ideal for situations where imprecise results are acceptable be-
cause it trades accuracy for speed. Query-time exploratory data exploration, visualization,
and dashboard applications employ it for real-time or near-real-time answers. It executes
queries faster but sacrifices accuracy. The sample size, representativeness, data, and query
processing affect the estimate’s quality.

An imperative program-aware approximate processing problem is more critical than
declarative approximate processing. It integrates two major problems: (i) sampling for
an imperative procedure should be aware of imperative structures, such as statement
dependencies and control logic, for greater accuracy, and (ii) approximate processing
should be aware of faster processing in query time, when rewriting the procedure, to
process it on the generated sample.

Data sampling and control logic sampling for approximate query processing (AQP)
have been the two separate subjects of a great deal of research. AQP research, especially
in two-stage and adaptive sampling [2—-4] that deals with sampling from previous sam-
pling, is similar to sampling for imperative program-aware data sampling. However, they
cannot solve certain issues such as data synchronization, parameter effects, dependent
sampling criteria, control logic sampling, etc. On the other hand, research in control logic
sampling [5] (i.e., sampling loops and branches) does not deal with data sampling for
imperative procedures.

Using an intuitive example in Figure 1, we demonstrate the problem in the approx-
imate processing of an imperative procedure. The figure shows a control flow diagram
(CFG) of an imperative procedure, where we denote statements as s,,. Directed lines be-
tween statements define the dependencies between statements. Statement s4 contains
imperative loop logic. Statements s1, s, and s3 consume data directly from base tables tabC,
tabA, tabB, and tabD. If we sample for a procedure using the current available methods,
we are only able to sample tuples regarding a base table for a single query. We show these
possible samples for a procedure using dashed, directed lines.

[Table
[Table |
Dependency

Identification

e Imperative Procedure |
£2

|Contro| Logic Sampling|

Sample Selection

Sample Selection

n n
box oz 1z

Creation

(0)

Figure 1. Comparative evaluation for approximate processing of an imperative procedure. (a) Control

flow graph of a procedure. (b) Traditional approximate processing. (c) Proposed approximate processing.

Electronics 2024, 13, 759

3 of 35

We identify the following limitations of this sample for the approximate processing of
an imperative procedure: (i) s4 depends on s; and s;. If statement s4 contains a condition,
sampling from statements s; and s, may not contain tuples that are representative. (ii) We
cannot sample dependent statements. For instance, sampling an additional statement s,
has no effect. It means that we continue to rely on sy, sp, and s3 samples for the approximate
processing of sy. (iii) Imperative logic can be positioned anywhere in the CFG that is de-
pendent on the previous query result (for example, in branches or an iterative or recursive
loop). However, we cannot sample where we can contemplate imperative logic. Finally,
(iv) we can sample a table in a query that consumes from a base table individually. How-
ever, a procedure may comprise a large number of base tables and dependent statements.
Sampling for an entire procedure is missing from the current available techniques.

In this study, we identify a novel problem called query-time exploratory data analysis
that utilizes the approximate processing of an imperative procedure. It integrates two major
problems: (i) imperative sampling, which generates imperative samples for an imperative
procedure at query time to achieve accuracy as a combination of imperative data and control
logic sampling problems, and (ii) imperative sample-aware rewriting of the procedure, which deals
with rewriting the procedure with sampling effects to produce a faster processing time.

In order to solve the problem, we propose Forester, a novel method called agile approx-
imate processing for the approximate processing of an imperative procedure in query-time
data analysis. It represents the data and control logic of an imperative procedure, using
Forest representation to gain insights into the imperative sampling problem. The Forester
extracts forest data structure from the forest to provide solutions for imperative data sam-
pling and a sampling control logic algebraization method to sample imperative control
regions during the rewriting procedure.

Forester employs a novel multi-dependent data sampling method called multi-dependent
layer (MDL) sampling, which utilizes the forest data structure for imperative data sam-
pling. However, there is a technical challenge in imperative data sampling using the MDL
sampling method. If an imperative procedure consists of a large number of dependent
statements, the MDL sampling method creates multiple samples that are aware of each
dependent statement to produce the final sampling at the root, which is referred to as the
cold sampling-based approximate processing. This cold sampling-based method achieves higher
accuracy. However, it may fail to produce a faster processing time in query-time EDA.

In order to handle this issue, Forester employs hot-sampling approximate processing,
which analyzes the partial benefit of MDL sampling to produce faster processing times
while performing cold sampling in the background. Forester utilizes valid cold sampling
when it is available, instead of hot sampling. Cold sampling is not valid if the current state
of the database changes. Forester is useful for precomputed sampling-based approximate
processing by utilizing the cold sampling-based method. On the other hand, runtime
sampling-based approximate processing can be called a synonym of query-time exploratory
data analysis using approximate processing in this study.

Finally, we propose a sampling clause, FORESTSAMPLE, during the calling procedure,
to determine the scale of the imperative sample size.

We summarize the contributions as follows:

* We propose Forester, a novel imperative program-aware sampling-based approximate
processing technique for an imperative procedure. It utilizes a novel forest representa-
tion that includes both imperative data and the logic of a multi-statement procedure
and extracts a forest data structure that represents the imperative data of multiple
relations in a procedure.

e We identify multi-dependent sampling layers to determine imperative samples from
imperative data and propose an algebraization method to sample control logic during
the rewriting procedure.

e We propose a novel agile approximate processing method for imperative procedures
that is aware of processing within query time in gEDA.

Electronics 2024, 13, 759

4 of 35

* We propose two novel imperative sampling methods in agile approximate processing,
such as cold and hot sampling, to trade off between accuracy and speed for qEDA.

* We propose a novel sampling clause FORESTSAMPLE during the calling procedure,
to determine the sampling scale.

We organize the remaining sections as follows. In Sections 2 and 2.1-2.3, we describe
the novel concepts of this study: imperative sampling, imperative data sampling, impera-
tive control logic sampling, and imperative procedure rewriting, respectively. In Section 3,
we discuss the overview of Forester. After that, in Sections 4, 6, 7 and 7.1-7.3, we illustrate
Forester for query-time approximate processing. In Section 9, we discuss the optimization
process in Forester. Section 12 evaluates Forester by demonstrating experiments. We discuss
the related literature in Section 13. We conclude our study in Section 15.

2. Imperative Sampling

Imperative sampling refers to a sampling method that identifies imperative samples
from imperative data and executable control regions for approximate processing. We first
illustrate an imperative procedure using Example 1 in Figure 2. Next, we define imperative
data and an executable control region with proper illustrations in Figure 3. After that, we
define imperative samples.

Example 1 contains multiple imperative SQL statements (1, 2, 3, 4, and 5). We call
these imperative SQL statements because they have producer-consumer relationships and
are combined with variables. Statements 1, 2, 3, and 4 are producer statements of 2, 4, 4,
and 5, respectively. Statements 1, 2, and 3 consume data directly from tabC, tabA, tabB,
and tabD. Additionally, the procedure contains control regions that merge rows iteratively
or gather the outcome of a branch in a table variable, 4.

CREATE PROCEDURE example_procedure(IN param,...)

AS BEGIN

1: t1 = SELECT ... FROM tabC ...;

2: t2 = SELECT ... FROM t1 JOIN tabA ...;
3: t3 = SELECT ... FROM tabB JOIN tabD ...;
4: t4 = SELECT FROM t2 JOIN t3 ...;

WHILE (condition ci1...) DO
IF (condition c2...) THEN

5: t4 = SELECT * FROM t4 UNION ALL (SELECT * FROM t3 WHERE t3.x = param);
EN].)'].IF;
EN[.).‘;]HILE;
END;

Figure 2. Example 1: an imperative procedure.

The data that are manipulated or processed within the context of an imperative
procedure are referred to as imperative data. They depend on dependent data distribution
based on producer-consumer relationships between statements, parameters, local variables,
or temporary storage. Suppose an imperative procedure contains two statements, s; and sy,
with a producer—consumer relationship. Statement s; is a producer statement of Statement
sp. t; and t are the temporary storages (i.e., temporary tables or table variables) that
store the intermediate results of s; and s;. Local variables, or parameters, affect both
statements. Dependent data distribution flows from #; to ¢, based on imperative logic. We
call temporary storages t; and t, imperative data.

In Figure 3, we show that Statement s; contains the imperative data of tabC, denoted
by tabC’, because it evolves its consumer statements using s;. Similarly, tabC" and tabC"”’
in statements s, and s are also imperative data of tabC, because they evolve their consumer

Electronics 2024, 13, 759

5of 35

in statements s, and sy4, respectively. Similarly, we have other imperative data for tabA,
tabB, and tabD.

The executable control region that manipulates or processes executable data within the
context of an imperative procedure is referred to as imperative control logic. In this study,
we explicitly deal with loops and branches as imperative control logic. Let an imperative
procedure contain a loop with condition ¢; and a branch with condition c;. We refer to the
control logic as the statements in control regions based on c; and ¢y, respectively.

In Figure 3, we show that statement s, in the control region that is to be executed. We
call it an executable control region. In the case of a branch, the executable control region
follows the execution path to execute statements.

i ty: tabC'", tabA", tabB", tabD"

Control

ty: tabC", tabA’

ty: tabC’ ty: tabB', tabD’

[tabC /[tabA [/ tabB [/ tabD /

Figure 3. An imperative procedure with imperative data and executable control region.

The problem is to identify samples for the dependent statements or control region that
can more precisely estimate the characteristics of each subgroup of the population while
obtaining accurate estimates of the parameters of the entire population. Nonetheless, it is
essential to design the sampling process with care to ensure that the resulting estimates are
impartial and reliable.

We define imperative samples as follows:

Imperative samples refer to sampled data with a sample of executable control regions
for the approximate processing of an imperative procedure. Let N represent the original
data or control logic, S represent an imperative sampled data or control logic, and the scale
factor of sampling is f. Then, we represent the sampled data from a sample of control
regions as follows:

S=f-N (1)

An imperative sampling problem consists of two sampling problems: (i) imperative
data sampling and (ii) imperative logic sampling. We now discuss these two problems.

2.1. Imperative Data Sampling

Imperative data sampling refers to a data sampling method that identifies imperative
data samples from imperative data for approximate processing. We define imperative data
samples as follows:

The imperative data sampling problem for the approximate processing of a procedure
is how efficiently we can generate a representative sample from imperative data. Using
the existing approximate query processing methods, we are able to generate samples for a
procedure from a relation regarding a statement to a certain extent. We use a mixture of
sampling and filtering. First, we select a random sample from the database and apply a
filter to select only the data that fit the desired criteria. This method is useful when the user
analyzes a subset of the data; however, the database is too large to pick a sample based
on criteria. We represent a relational algebra of data sampling from a relation regarding a
statement in the following Equation (2):

Vi = LIMIT k(wmndom(T)<P(R)) 2)

Electronics 2024, 13, 759

6 of 35

where R is the input relation, P is the row selection probability, and random() produces
a randomly selected number between zero and one. Each row of the input relation is
subjected to the selection condition random() < P, and only rows that meet this condition
are added to the output relation or relational variable V;,. This ensures random sampling
by giving each row in the input relation an equal and distinct likelihood of selection. We
use the LIMIT clause to reduce the returned rows to k. This returns a maximum of k rows
from V,, that meet the random sampling condition random() < P.

We generate data samples for the procedure in the example utilizing Equation (2),
and we are able to generate samples from the base tables regarding a statement. We demon-
strate the relational algebra that represents the sampling for the approximate processing of
the procedure in Figure 4.

t1 = LIMIT k(azmndom(Tc)<P,conditionc (tabC))
tp = LIMIT k(aemndom(Ta)<P(mbA))

ts = LIMIT k(wmndom(Tb)<P,mnd0m(Td)<P,Tbn:Tdn (tabB p< tabD))

(LOOP(condition))
fy = UTa,=Tby,condition, (tZ > t3)
End LOOP

Figure 4. Relational algebra for approximate processing of the procedure in the example.

We analyze the data sampling in Figure 4. We identify the following issues: (i) We
are only able to create data samples for base relations such as tabA, tabB, tabC, and tabD
regarding the first three statements. Sampling from relational variables t, and t3 in a
dependent statement has no effect if we intend to sample for f; and t3, because relational
variables do not support sampling. If we materialize ¢, and 3, we are able to sample f;
and t3. However, random sampling cannot guarantee the targeted representative sample
after materialization for the statement with t4, because t, and t3 are in a join relationship.
As a result, some representative tuples from ¢, may not have any effect regarding joining
with t3. (ii) The existing method considers the condition (it can be parameterized) of
the first statement, condtion., during sampling in t;. However, sampling in {, may not
be representative, as its dependent statement with 3 contains a condition, condition, for
tabA. Finally, (iii) imperative logic depends on the samples in f; and f3. If the samples in
t> and t3 are not representative, it causes a serious performance drawback in executing
imperative logic.

We cannot further sample for the base tables regarding dependent statements that are
more targeted and representative using the existing sampling methods. If we reduce tuples
for a base table from the second sample, we can generate a more targeted sample for the
dependent statement. Moreover, these samples contain less data but have higher chances
of being selected.

However, sampling with dependent statement criteria in a procedure has various
challenges. One problem is choosing a sample size that is accurate and computationally
feasible. Defining relevant sampling criteria is difficult and requires domain expertise to
ensure the sample accurately represents the total flow of data. If we do not define the
criteria or apply the sampling method properly, the selection of criteria may bias the sample.
Finally, meeting the selection criteria while ensuring the sample is representative of the
flow of data is difficult. As a result, we must carefully examine these issues to ensure an
accurate and unbiased sample when sampling with dependent statement criteria.

2.2. Imperative Control Logic Sampling

Imperative control logic sampling refers to a logic sampling method that identifies a
sample of executable control regions for data sampling from imperative control regions for
approximate processing. We define imperative control logic samples as follows:

Electronics 2024, 13, 759

7 of 35

In an imperative program, an imperative control logic sample refers to a conditional
structure that enables the program to perform various operations or apply particular logic
based on specific sampling conditions, as well as a control flow structure that enables us to
choose and process a subset of data from a larger dataset for analysis or manipulation.

In order to speed up processing while compromising some accuracy, loop sampling
techniques for approximate processing include performing a selection of loop iterations
selectively. The main objective of these methods is to conserve computational resources
like time, energy, or memory bandwidth, and they are helpful when approximations of the
results are acceptable. A number of loop sampling strategies, including threshold-based
sampling, stridded sampling, random sampling, regular skipping, and so on, are available
for approximate processing.

However, adapting loop sampling techniques for the approximate processing of an
imperative procedure is not accurate in the case of multiple dependent statements with
filter conditions, because some loops may not be relevant. For example, if the loop condition
is dependent on a declarative statement and the sample of this statement is not targeted
or focused, loop sampling samples the irrelevant subset of data. Thus, loop sampling for
approximate processing cannot be accurate by simply adapting loop sampling; it must be
followed by a focused sampling of the dependent statement.

Branch sampling has traditionally been employed in approximate query processing
(AQP) to accelerate query execution by sampling and evaluating a subset of paths or
branches in a query execution plan. Complex queries with multiple branches, for which
evaluating each branch would be resource-intensive and unnecessary in order to acquire
an approximation of the result, can benefit significantly from this method.

However, sampling a subset of branches is not accurate for the approximate process-
ing of an imperative procedure, because branch sampling misses the dataset of relevant
branches for the data distribution in dependent statements. Therefore, rather than sampling
selective branches, it is important to estimate the potential contribution of the relevant
branch to the final result based on the execution path.

2.3. Imperative Procedure Rewriting

Imperative procedure rewriting refers to the execution plan, which performs approxi-
mate processing that reflects imperative data and control region sampling. This problem
reflects two sampling issues during procedure rewriting: (i) reflecting imperative data
sampling: replace base relations with the sample name from imperative sampling; and (ii)
reflecting imperative control logic sampling: rewrite the imperative logic conditions.

Suppose an imperative procedure contains imperative data from base table B and an
imperative condition C. If we have an imperative data sample B’ from B with an imperative
logic sample C' from C, we rewrite the procedure by replacing B with B and rewriting C
with C'.

In current practice, procedure rewriting problems for approximate processing are
limited to data source replacement, where a procedure uses sampled data instead of
original data. However, it cannot deal with sampling imperative control logic with the
same sampling scale. On the other hand, to support agile approximate processing, we need
to identify the latest imperative sample of a base table to replace the original data source.
However, the existing study cannot solve this.

3. Forester OverView

We propose Forester, a sample-based approximate processing technique for query-time
exploratory data analysis. We named it Forester because it represents imperative data and
control logic using a forest-like representation that consists of multiple trees. The notion
is that a forester plucks parts of trees from the forest, which is similar to extracting an
imperative sample from imperative data and control regions.

We illustrate the Forest in Figure 5. In the figure, the x-axis represents the trees from
every relation in the procedure. For example, trees of tabC, tabA,... in the procedure.

Electronics 2024, 13, 759

8 of 35

The y-axis represents the imperative data of each relation in each statement, including
control regions.

A forest represents the imperative data and control logic of an imperative procedure
using multiple related trees. A tree refers to the imperative data and control region of
a base table. We represent the imperative data and control region as the stem of a tree,
where a stem consists of layers of limbs and twigs from root to leaf. An imperative datum
evolves from base table to root by the imperative statements (i.e., a producer—consumer
relationship), which are represented as layers of limbs of a tree. We represent control logic
(i.e., loops and branches) as twigs attached to a limb. One interesting feature of this forest is
the interdependence of some trees, which signifies that a given statement may incorporate
multiple base tables or consumer statements. We represent the join between imperative
data from multiple base tables as layers of limbs that are dependent on multiple stems.

Bottom-up
Trees in a Forest

NN N b —

Limbs

Ly(tabCrd...) ‘ Lz(tabCl><1 we) ‘ Lz(tabAl><I) ‘ Lz(tabAlx] -) |- = (Dependent Datal

'\A\ N \LT e Twigs J Ne
*’ [Control Logic] R

Leaf J
[Lo | aab) | 5

’ ! 4
Stems
tabC Tree tabA Tree Tree

Imperative Data
with Control Region

Figure 5. Forest representation for sampling in Forester.

Above is a real-life example of agile reporting, to illustrate our intention. A forester,
in the context of this paragraph, refers to a real-life forest officer rather than the name of
our proposed technique. Their responsibility is to report the condition of the forest to the
authority at a given time. Their intention is to take a sample of leaves from representative
limbs that are more representative to prepare the report. They apply an agile (incremental)
reporting method based on time. They start taking leaves from the top, towards stems and
through limbs, for their agile reporting. Plucking leaves from the top means they may not
come from well-representative limbs; however, it is faster. If the forester comes closer to
the stem, they find more representative limbs to pluck leaves; however, it takes more time.
Thus, the forester is aware of the permitted time to conduct agile reporting and how much
they are allowed to pluck the representative leaves to prepare the report.

Similar to this real-life agile reporting, the sampling of a base table may evolve through
a series of dependent statements until it reaches the root. We need to identify a sample
of base tables that are aware of the statement dependencies. Our algorithm utilizes agile
approximate processing that uses hot sampling-based approximate processing in order to
perform query-time exploratory data analysis, based on permitted time. If it finds a valid
cold sampling, it utilizes the cold sampling-based approximate processing.

4. Forest Data Structure

Forest data structure refers to a data structure that consists of multiple tree data
structures for imperative data sampling. We extract this data structure from the forest
representation by separating layers of limbs from the stem of a tree. By employing a data
flow graph, we construct a forest data structure that represents imperative data. We denote
each layer of a limb in the forest data structure as a layer. A layer represents imperative
data distribution from a producer statement to consumer statements.

A Forest of a procedure is a multiple tree structure, T = (N, E), where the following
is true:

Electronics 2024, 13, 759

9 of 35

* Nis a set of nodes that represent the data of a relation and control logic (i.e., roots,
limbs, and leaves). Each node is labeled with L, (R), which corresponds to intermedi-
ate or final data, L,, of a relation, R, at the layer L.

e Eisasetof directed edges that represent the hierarchical relationships between the
nodes. Each edge indicates the relationship between the two data sources.

Figure 6 shows how we extract forest data structure from the data flow graph of a
procedure. Figure 6a shows the data flow diagram of a procedure. In Figure 6b, each
box represents imperative data in a layer of a relation, where the directed lines show the
dependency between two imperative data of the same relation.

The layer is the level at which imperative data for a base relation are generated from
the stored data or previous data of the relation. In each layer, it represents the relational
data of every table. We denote it with L,,,n € RDL, where RDL is relation-dependent level.

The total number of sampling layers, RDL, depends on the level of dependency of
a relation, called the relation-dependent level (RDL) of the relation. The RDL is the level of
a relation at which imperative data from a base relation are used to process a statement
within a procedure. We denote it with RDL(R), where R is a relation. From the data
flow graph of a procedure, we derive the RDL of a relation. The total number of RDLs
corresponds to the number of levels where the relation used in a statement ascends from
the base table to the root. We number the n € RDL in such a way that imperative data at
the same number layer can be processed in parallel. In Figure 6b, tabA has three layers: L,
L3, and L4. Imperative data in all four relations at L and L4 can be processed in parallel.

L,(tabC,s3) ‘L4(tabA,s3) ’ L, (tabB, s3) ‘ Ly(tabD, s3) ‘

N —
/
L3(tabC,s;) /
/
> >
L,(tabC, s;) \\ VA
N /N
\\ / \\ |
b N\
[tabC /[tabA [/ 1abB [/ tabD / Ly(tabC,) ‘ ‘ Ly (tabA, 9) ‘ ‘ Ly (tabB, ©) H Ly(tabD, ®) ‘

@))

Figure 6. Forest data structure. (a) Data flow graph; (b) Four trees inside Forest.

Imperative data in a tree have two major parts: (i) Top Leaf: the original data of a base
table. In Figure 6b, the data at the L; layer are the top leaves. (ii) Leaf at Layered Limb:
imperative data after the base table to the root. In Figure 6b, the data at the L, n > 1 layer
are the leaves at layered limbs. Each imperative datum of a relation in the L, layer depends
on one or multiple relational data in the L,_1 layer, excluding the data in the first L; layer.

We use the data flow graphs of a procedure to construct a forest. A forest is a combina-
tion of multiple trees. Each tree is responsible for the imperative data, from the base table
to the root statement. We demonstrate a forest using our running example in Figure 7. We
achieve the forest of the example procedure using a data flow graph. In Figure 7, the forest
is the combination of four sampling trees for tabA, tabB, tabC, and tabD, respectively.

We provide a pseudocode for creating a forest graph of an imperative procedure in
Algorithm 1. It initializes an empty graph F with the Forest() process. Initially, it generates
anode N in the graph for every variable or data object (V) in the procedure that depends on
base tables. After that, it iteratively looks for a series of consumer data objects, generating a
node N in the graph for each variable or data object (V) in the process. In the event that
data flows from variable V to variable Vp, the process establishes an edge in F between the
nodes representing V and Vp. Finally, it returns graph F.

Electronics 2024, 13, 759

10 of 35

g [tabAs):[tabA,, tabC,, tabB,, tabD;]
[tabAs]:{tabAy, tabCy, tabBy, tabD,] E [tabA,]:[tabAy, tabCy]
[tabCs]:[tabAy, tabCy, tabBy, tabD,] £ [ohd,]{fal]
[tabB):[tabA;, tabCy, tabB,, tabDi] $ [tabCs)tabAy, tabCy, tabBy, tabD,
[tabD,]:[tabA,, tabC,, tabB,, tabD;] 'G [tabC,]:[tabAy, tabCy]
[tabA,):[tabAy, tabCy] S [tabC,ltabC]
[tabC,]:[tabA, tabCy] @
[tabA]:[tabA] E [tabB,]:[tabA,, tabC,, tabBy, tabD,]
[tabC,]:[tab(C] 'S [tabB;]:[tabB]
[tabB,]:[tabB] N
[tabD,]:[tabD] E [tabD,]:[tabA,, tabC,, tabBy, tabD;, |
S [tabD,):(tabD]
(a) S

(b)

Figure 7. Forest and tree construction; (a) Forest construction; (b) Tree construction.

Algorithm 1: Algorithm for Forest Construction.

Input: Data Flow graph (D) in a Procedure
Output: Forest(F)
Forest(D):
Initialize an empty graph F;
V < getBaseTables(D) //Returns base relations;
FOREACHv inV:
RDL + getRDL(v,D); //Returns RDL
FOREACH n in RDL:
consumerData < getConsumerDataObj(n, D)
Create anode N for nin F
Create an edge from node representing v to consumerData in F
n < consumerData; / /next layer
Return the constructed graph F

© ® g O Ul kR W N =

e
N = o

Y
w

5. MDL Sampling

MDL sampling refers to an imperative data sampling method that samples imperative
data from their producers. It utilizes the forest data structure. MDL sampling creates a

series of dependent sampling layers from the tree structure of each base table by utilizing
sampling criteria.

5.1. Sampling Layer

Sampling layer refers to layers of forest data structure that are required for sampling.
We identify which layer in the forest data structure is required for sampling or we use the
sample from the previous layer. Suppose there are three layers, L1, Ly, and L3, in the forest
data structure. L3 depends on Lp, and L, depends on L;. We identify L; and L3 layers
that are required for sampling, and L, uses the sample from L;. We call L; and L3 the
sampling layers, d; and 03, where L and L, are merged in d;. The imperative sampling of
all relations at the same sampling layer must be performed in parallel, to produce the latest
sample for the dependent sampling layers.

We identify the imperative samples of a relation at each layer to construct the MDL
sampling from leaf to root of the forest data structure. MDL sampling has two major parts:
(i) sampling fresh leaves, and (ii) sampling leaves in layered limbs.

We perform the sampling fresh leaves method in the first layer, L1, using a combination
of a sampling technique and the criteria of the layer. We identify the samples of the first
layer from base relations by combining the criteria of the first layer, L, of each relation.
We perform sampling leaves in the layered limb method at higher layers, L,,,n > 1. We

Electronics 2024, 13, 759

11 of 35

identify the latest imperative samples of relations to generate a sample at higher layers,
Ly, n > 1, using the criteria for each layer of a relation.

The goal of MDL sampling is to make the imperative samples more focused and
targeted. We employ a sampling technique combined with criteria in the first layer to
generate preliminary samples from the original base table. If we employ a sampling
technique combined with criteria from the second layer, it generates a subset of the first
layer sample that is more targeted; however, it reduces tuples based on the same scale factor.
The problem is that if the number of layers is large, it generates a sample that contains a
few (possibly zero) tuples at the higher layers. It creates inconsistencies with the imperative
samples. Thus, we only utilize criteria to sample imperative data at higher layers, rather
than combining a sampling technique with criteria. It guarantees the imperative samples
are more targeted at the final layer.

Let P be an imperative procedure with X number of relations. Let Ry, x € X represent
relations containing n(Ry),x € X tuples, and let Sy, x € X represent a sample of size
m(Sx), x € X. We achieve the samples 9y, g, of relation R, at the L; and L,, with the criteria
Cr,r(x), using the following Equations (3) and (4), respectively:

LR, = (m(Sx)/n(Rx)) * {x|x € Ry N Cp,r (%)})

oL,k = {x[x € RyNCp,r(x)} (4)

where (m(Sy)/n(Ry),x € X is the scale factor, f, used to adapt each relation’s sample
result to the actual data.

We determine the requirement of sampling in a layer of forest data structure using an
RDL degree. The RDL degree of a relation refers to the number of dependencies on other
relations or relational variables at n € RDL. We denote it with D(n).

We determine the first sampling layer, L;, by determining D(1) = 1, and sampling
depends on a single base relation. We determine the higher sampling layers, L;, of a
relation by identifying D(n), where D(n) > 2. It indicates that, except for L1, we do not
generate a sample in an L, where D(n) =1, but instead use a sample from the previous
layer, L,,_1, of the relation. If we sample a higher layer where D(n) = 1, we sample the same
relational data, which have no dependencies with another relation. It reduces the sample
size; however, it loses some targeted data in higher sampling layers. Therefore, the total
number of sampling layers, L, in a relation equals the number of D(n) in a relation where
D(n) > 2 plus one.

Figure 8 shows the sampling layers of four relations in an imperative procedure. 9, is
the generated sample for a relation in a RDL. It shows that tabC, tabA, tabB, and tabD have
3, 3,2, and 2 sampling layers, respectively. We observe that d; samples from every relation
are at L1, where D(1) = 1. This indicates that, in the first layer, L1, we generate 01 samples
of every relation from the base tables. In the case of the second layer, L, of tabC, we do
not increase the sampling layers, L,, of the relation because it contains D(2) = 1. It means
that in the L; of tabC, we use the sample of L, 01 of tabC. In the remaining case from the
second layer, we generate a new sample in every L, of a relation because it has D(n) > 1.
We provide the pseudocode for the MDL sampling in Algorithm 2.

04(tabC, {s3}) 03(tabA,{s3}) | |0y(tabB,{s3}) | |02(tabD,{s3})
L e

ST A

d3(tabC,{s5)) | |0y(tabA,{s,}) | |0:(tabB,{@}) || d.(tabD,{8})

01(tabC, {sq, 0}) 01(tabA4, {8})

Figure 8. MDL sampling.

Electronics 2024, 13, 759 12 of 35

Algorithm 2: Algorithm for MDL Sampling.

1 Input: Forest(F)
2 Output: MDLSequence(9)
3 LayerSeq(F):

4 9 < Queue(empty)

5 | RDL « getRDL(F)

6 FOREACH I in RDL:

7 L < getImperativeData(l) / /returns the imperative data Layers
8 FOREACH I in L:

9 if | =1 then

10 ‘ o =1

11 else

12 if degree; > 1 then

13 ‘ al =1

14 else

15 ‘ o=1-1

16 end

17 end

18 FOREACH 3 in 9y:

19 ImpDatas < getImperativeLayers(i)

20 d.push(ImpDatas) / /layer wise Imperative data

5.2. Sampling Criteria

Sampling with criteria is a statistical method for selecting a sample of data from a larger
population using specific conditions or criteria. This method has been frequently employed
in previous research to represent the population that satisfies specific requirements or
possesses particular characteristics.

We denote sampling criteria with Cr, g(x), which indicates that C is the criteria of
relation, R, with x tuples in the sampling layer, L,,. We achieve the sample, dr r, of relation,
R, in sampling layer, L,, with the criteria, Cr r(x), using Equations (3) and (4). It indicates
that the criteria, Cy g (x), must be satisfied for an element of tuple x to be included in the
sample, dr, ;.

We apply two types of criteria for sampling fresh leaf at the first layer and sample leaf
at the layered limbs at the higher layers. These two types of criteria depend on the unary
and N-ary filters, respectively.

Unary Filters: The unary filter refers to static or parameterized filters based on the
attributes of a relation. In the case of conditions inside a loop, we include a range of criteria
in the first layer sampling. We express it with f,/z (x),x € R. Tt indicates that the unary filter,
f,,(x), must be satisfied for an element of a tuple x in a relation, R.

In the criteria of the first sampling layer, we combine all unary filters across all
statements in a procedure. We express the criteria of relation in the first sampling layer, L,,
using the following equation:

N
Crr(x),n=1,x€R= ﬂf,;(x),xeR (5)

n=1

N-ary Filters: The N-ary filter refers to dependent filters and joining conditions with
other relations or declarative expressions. We express it with f,;/ (x),x € R. It indicates that
the N-ary filter, f;, (x), must be satisfied for an element of a tuple x in a relation, R.

In the criteria of the higher sampling layer, we combine all N-ary filters at a layer, Lj.
We express the criteria of relation in the higher sampling layer, L,, using the following
equation:

N
Crr(x),n>2,xeR= ﬂf,:(x),xER (6)

n=1

Electronics 2024, 13, 759

13 of 35

The existing query parser method determines the filter condition for each table, view,
or table variable. It analyzes the syntax of the SQL code and finds the procedure’s state-
ments to create a parse tree, where CFG shows the dependency between statements. This
tree structure has a top-level node for the stored procedure and child nodes for its name
and parameters. SQL statements in the procedure are the remaining child nodes. Each
SQL statement in the stored procedure has its own parse tree, which reflects its structure.
The top-level node in this individual statement tree structure depicts the SELECT statement,
while child nodes represent the columns to select, the table to select FROM, and the WHERE
clause filter condition.

5.3. Sampling Algebra

Sampling algebra refers to a relational algebra for expressing DDL queries to generate
imperative samples in relational databases. We utilize the forest data structure to develop
sampling algebra. We follow the bottom-up traversing of MDL layers to sequence the DDL
expressions. We express the sampling algebra for DDL queries that utilize unary and N-ary
filters in Figure 9.

LIMITk(wmndom (x) <P,condition(R.x),condition(R.y),... (R))

(a) Relational algebra for the statement with Unary filters

k(0y<p R xIN (1, (1)), RyIN (g (V). (R))

(b) Relational algebra for the statement with N-ary filters based on Join.

k(o-x<P,R.xIN(7rx(U)),R.xNOTIN(nX(U)),... (R))
(c) Relational algebra for the statement with N-ary filters based on left Join

Figure 9. Sampling algebra for sampling expressions.

In Figure 9a, we express the sampling algebra for the root nodes of the sampling
forest, using the unary filters in Equation (5). We observe that the sampling statement
contains only one relation, R, and that it defines statement criteria based on the relation’s
attributes. It combines a sampling technique with the static or parameterized valued
criteria to generate the sampling data from the statement. In Figure 9b,c, we express the
sampling algebras for the remaining nodes of the sampling forest, using the N-ary filters in
Equation (6), based on JOIN and LEFT JOIN, respectively. We observe that the sampling
statement of relation R relates multiple relations, U and V, and that it defines statement
criteria based on the join condition using the IN operator. We design the relational algebra
such that the attribute of R must exist in those of U and V. In the case of a left join (for
example, a left join with U), we design an additional NOT IN.

5.4. Sampling Expression

Sampling expression refers to generating queries for sampling that utilize sampling
algebra. We utilize table-level samples rather than view-level samples in each MDL layer.
Sampling from the view may yield an inaccurate depiction of the complete data distribution
if it originates from a subset of data subject to particular conditions. If the view excludes
specific subsets of the data, this becomes especially problematic.

On the other hand, table-level sampling requires physically storing data; it creates
overhead. However, it also produces accuracy in sampling from sampled data from the
upper layers. Our cost model considers the sampling cost that includes this overhead.

Electronics 2024, 13, 759

14 of 35

We represent the sampling expression using DDL statements, called sampling state-
ments, that utilize the sampling algebra in Figure 10. We generate samples in a sampling
layer for a relation, so each node contains a distinct data source. We name each data source
by following a naming convention (naming conventions for a sampling source combine the
relation name and sampling layer number, concatenating all the values of the parameter
of a procedure). It ensures the use of sample data from a relation for appropriate parame-
ter settings. Figures 10a, 10b, and 10c represent sampling statements from the relational
algebra in Figures 9a, 9b, and 9c, respectively.

CREATE TEMPORARY TABLE R_L_n_param

AS SELECT x FROM R <sampling clause(size)> WHERE R.x

.ORR.y=...;
(@)

CREATE TEMPORARY TABLE R_L_n_param

AS SELECT x FROM R WHERE R.x IN (SELECT x FROM U) OR R.y IN (SELECT y FROM V);
(b)

CREATE TEMPORARY TABLE R_L_n_param

AS SELECT x FROM R WHERE R.x IN (SELECT x FROM U) OR R.x NOT IN (SELECT x FROM U);
()

Figure 10. Sampling expressions. (a) Expression for the statement with unary filters; (b) Expression
for the statement with N-ary filters based on JOIN; (c) Expression for the statement with N-ary filters
based on LEFT JOIN.

6. Sampling Control Logic Algebraization

Sampling control logic algebraization refers to sampling the control logic with the scale
factor, f, using the algebraization technique. We use the sampling algebraization method to
sample loops. In the case of branches, we do not sample branches; however, we sample
data based on the execution path. The sampling twigs from the forest represent samples
from the imperative control region. We employ the algebraization method to sample twigs
for data sampling with the scale factor.

We apply algebraization techniques for sampling control logic using scale factor. We
transform the loop. If there are multiple nested loops, we follow the same technique. We
sample loops through stridden sampling. It selects the iteration by transforming loops into
regular skips, which involves skipping a fixed number of elements or iterations between
each selected element or iteration. This technique is useful to determine a certain percentage
of total loop numbers; for example, if we want to determine the scale factor of 20 percent of
the total iterations, we can process every fifth (100/20) element.

This method is faster because it does not check the data but rather deals with only the
looping criteria. On the other hand, we are able to use the same scale of sample size in the
data sampling when measuring loop counts.

We use the following algebraization method to sample loops:

LIMIT k(Lyangom (LOOP (condition)){...}

Figure 11 represents the algebraization technique for loop sampling. Figure 11a shows
the original loop statement. Figure 11b represents the relational algebra expression for loop
sampling.

Electronics 2024, 13, 759

15 of 35

WHILE (condition...) DO

i=1;
IF d(i, ND (1 N
WHILE (condition...) DO nod (1, ROUND (100/11))
THEN
Statements; <Statements>;
END WHILE; i ,
i++;
END IF;
(@) END WHILE;

(b)
Figure 11. Relational algebra for loop sampling. (a) Original loop statement; (b) Sampling loop.

7. Agile Approximate Processing

Agile approximate processing refers to an approximate processing method to achieve
imperative samples in a best-effort manner within a permissible query time. Suppose the
imperative data of a relation R evolve through a series of dependent consumer statements,
51, 52, 83,-.. Su. A complete imperative sample utilizes all the consumer statements and
produces a sample at the root. Agile approximate processing enables the execution of
imperative samples within a permitted query time that utilize a number of intermediate
statements (i.e., any statements preceding s,). Furthermore, it continues to complete
imperative samples. It utilizes the complete imperative sample if it is available, rather than
the best-effort imperative sample.

The problem of agile approximate processing is identifying the beneficial imperative
samples within a permitted query time and replacing the sample with the original data source.
It employs two MDL sampling techniques: (i) cold sampling and (ii) hot sampling. Cold
sampling completes the MDL sampling to generate imperative data samples. On the other
hand, hot sampling provides imperative samples at any layer based on a permissible time.

We provide an intuition for the agile approximate in Figure 12. Suppose we have
a threshold cost at which we are allowed to perform sampling and processing of the
procedure. Agile approximate processing estimates the cost of sampling at each layer,
starting from the leaf (91, 93, 93,...), followed by the procedure processing. It finds the lowest
benefit of approximate processing at the threshold cost. The lowest benefit permits sampling
from the highest possible layer, which produces more targeted samples. Meanwhile, if it
finds a valid cold sampling, it utilizes the cold sampling for approximate processing.

Cost Estimation

=3 T %

§ l 9, Sampling | AP | : §

8 s

e ‘ d; Sampling ‘ 9, Sampling I AP I :E

o =

© : : " = Desired

5 \ d; Sampling ‘ d, Sampling | 05 Sampling . Processing
g ‘ d; Sampling ‘ 9, Sampling | 95 Sampling | 3, Sampling | AP

o 1

= ‘ 2, Sampling ‘ d, Sampling | 05 Sampling ‘ d, Sampling H 0, Sampling | AP |
= I

o

< :

1
>

MDL Sampling

Figure 12. Agile approximate processing.

7.1. Cold Sampling

Cold sampling refers to the complete MDL sampling of every sampling layer until
the root and storing the final layer of sampling for approximate processing. This process is
costly; however, it provides more accuracy. Forester performs this method in the background
and performs agile approximate processing. If it finds a valid cold sample within the
permitted query time, it uses cold samples in approximate processing. This sampling
method is also used for precomputed sampling-based approximate processing.

Let there be n sampling layers: d1, do, and d;,. Cold sampling completes the sampling
at each layer and provides the imperative sample at layer d,,. We provide the mechanism

Electronics 2024, 13, 759

16 of 35

of cold sampling in Algorithm 3, where it produces the imperative sample at a layer and
deletes that of the preceding layer.

Algorithm 3: Algorithm for Cold Sampling.

1 Input: MDLSequence(d)
2 Output: ImperativeSample(S)
3 ImperativeSamples(F):

4 S <+ NULL

5 FOREACH i in o:

6 if i = 1 then

7 ‘ S <— Samples from base tables;

8 else

9 ‘ S <— sample from the latest S and replace S;
10 end
11 i+ +

7.2. Hot Sampling

Hot sampling refers to the process of MDL sampling, where it may not complete the
sampling of every layer until the root and stores the intermediate or final layer sampling for
approximate processing. This sampling method is also used for runtime sampling-based
approximate processing.

In this process, MDL sampling performs the sampling of an ascending subset of layers,
from leaf to root, based on benefit estimation in runtime. It performs similarly to cold
sampling, if it completes the sampling of every layer. In this technique, the latest layer
of sampling can be stored temporarily for frequent use or erased after the processing of
a procedure.

Let there be n sampling layers: d1, 02, and 9,,. Hot sampling may not complete the
sampling at each layer and provide the imperative sample at any layer between d; and
dn. We provide the mechanism of hot sampling in Algorithm 4, where it produces the
imperative sample at a layer based on benefit estimation using a threshold and deletes
that of the preceding layer. The threshold value indicates the permitted query time for hot
sampling. We continue to estimate the sampling cost to sample at the upper layer until it
reaches the threshold time. We estimate the sampling cost of each layer using the forest
data structure.

7.3. Cost Model for Agile Approximate Processing

Our cost model searches for incremental benefits at the highest possible RDL by
comparing the agile approximate processing cost estimate of a procedure (Xj) to the
threshold cost (T). We express the benefit using the following formula:

RDL
Benefit=T —) X5>0 (7)
9=1

We estimate the agile approximate processing cost, Xy, using the following formula:
Xy =5+Cy (8)

where S; is the total sampling cost up to the sampling layer 9, and C; is the sampling-aware
procedure cost.

Sampling Cost: This refers to the total execution time of sampling statements. In the
case of cumulative sampling cost, up to the sampling layer, 9, it refers to the sampling cost
of the imperative samples of all relations up to the layer 9, as determined by the sampling
forest data structure.

R
Sy =) sa(r),r€R)

Electronics 2024, 13, 759

17 of 35

where, sc, (r) refers to the sampling cost of each RDL within a relation 7 (r € R, where R is
all the relations in a procedure), as determined by the sampling forest data structure.

Algorithm 4: Algorithm for Hot sampling

1 Input: MDLSequence(d) and Threshold(Thr)
2 Output: ImperativeSample(S)
3 ImperativeSamples(0, Thr):

4 T <+ Thr

5 FOREACH i in o:

6 if i = 1 then

7 S <— Samples from base tables;
8 t < getcost(sampling S);

9 T+ T-—t;

10 else

11 t < getcost(sampling S);

12 T+ T-t

13 if T > 0 then

14 ‘ S <— sample from the latest S and replace S;
15 else

16 | BREAK;

17 end
18 end
19 i++

Sampling-aware procedure cost: This refers to the total execution time of sampling-aware
statements within a procedure after replacing the base data sources with the sampled data
sources. We represent the sampling-aware procedure cost as follows:

n
Cr =Y c (10)
s=1

where s is the statement of a procedure.
The statement cost is represented by the following equation:

tpts,s € S s is independent
Cs = { tpts — tpt;,s € S:s is dependent (11
tpts x loop count,s € S:s in loops

where tpt;,s € S is the total processing time of s, and tpty is the total processing time of all
the dependent ancestor statements without s.

Threshold Cost: This refers to the total execution time of the approximate processing
of an imperative procedure using base-relation samples. We denote it as T. We estimate
the threshold cost based on agile approximate processing using the samples of the first
sampling layer, where 0 = 1. If we apply the existing AQP techniques for the approximate
processing of an imperative procedure, it produces the threshold cost. Hence, finding the
benefit over the threshold cost shows the better performance of our algorithm.

Assumption

Sampling Forest Data Structure Maintenance: During procedure construction, we con-
struct the sampling forest data structure. We store it as metadata for a procedure. When we
invoke the procedure with the FORESTSAMPLE clause for approximate processing, we
utilize this information. We clear this information when we drop the procedure.

Historical Data Maintenance: As historical data, we store the sampling cost of each
layer and the processing cost of a procedure employing each sampling layer for a given
parameter setting and time flag.

Electronics 2024, 13, 759

18 of 35

MDL Sampling Maintenance: We always materialize the view in each layer in MDL
sampling. We store only the final layer sampling in the MDL sampling as historical data for
a parameter setting. We delete the sampling generated in intermediate layers. We maintain
this storage for MDL sampling until the procedure’s relations are updated. We assume that
the OLAP database system deletes the sampling when it updates those relations.

8. FORESTSAMPLE Clause

We propose a clause that utilizes a sample size during the calling procedure. The call-
ing procedure, incorporating the proposed clause, comprises (i) exploiting sampling at
runtime; (ii) rewriting the procedure; and (iii) executing the rewritten procedure on the
sampled data.

Let the scale factor, f, be 0.2. We call the example_procedure as follows:

CALL example_procedure(param value,...) FORESTSAMPLE (0.2)

9. Optimization Process
9.1. Optimization Workflow

Optimization Approach: Our optimization strategy is based on the following two prin-
ciples: (i) generating a more targeted sample by incorporating conditions, multi-level
relationships between relations, and imperative logic sampling; and (ii) providing quick
runtime approximation results by analyzing the tolerable subset layer sampling from
MDL sampling.

We show our total optimization process in Figure 13. We call a procedure using
the FORESTSAMPLE clause to perform approximate processing. It first checks for valid
cold samples to perform approximate processing. Otherwise, it performs hot sampling.
After it decides the sampling method, it starts sampling and rewrites the procedure for
approximate processing.

| FORESTSAMPLEClause |

Yes

Cold
Sampling

Cold Sampling
Ready?

No

| Sampling Forest Construction |

Sampling-Aware Execution Plan
Enumiration

Benefit Estimation |
Hot Sampling

-| Sampling Code Generation |
l

| Rewritten Procedure |
[
A 4

| Approximate Execution |

Figure 13. Optimization process.

9.2. Optimization Steps

Forester optimization has five major steps, as follows: (i) forest representation, where
the input is the data and control flow graphs of the imperative procedure and the output
is the Forest graph representing the imperative data structure and control logic; (ii) MDL
construction, where the input is the forest data structure and the output is the series of
sampling layers of all the imperative data; (iii) cold sampling formulation, where the input
is the sampling layers and the output is the final layer samples; (iv) hot sampling, where
the input is the output of cold sampling and sampling layers and the output is the latest

Electronics 2024, 13, 759

19 of 35

layer sampling from the subset of sampling layers; and (v) sampling control logic, where
the input is the procedure script, and the output is the rewritten procedure script.

9.3. Process of Agile Approximate Processing

The agile approximate processing in Forester consists of the following five significant
steps: (i) a hot sampling cost estimation, which continuously estimates the cost of cumula-
tive sampling layers; (ii) a procedure cost estimation, which continuously estimates the cost
by replacing the relations with the latest sampling layers; (iii) a benefit estimation, which
continuously measures the benefit of each progressive sampling compared to the threshold
cost; (iv) an approximate processing employment, which applies the steps from (i) to (iii) in
runtime after the final benefit estimation in step (iii); and (v) conducting cold sampling in
the background for frequent approximate processing when it is complete.

9.4. The Lowest Benefit-Aware Execution Plan

We enumerate all sampling-aware execution plans and select the one with the lowest
benefit in step 3 of optimization. The lowest benefit permits the deepest possible layer of
sampling, which includes a more targeted sample for the approximate processing of the
imperative procedure.

We formulate the lowest benefit-aware execution in Algorithm 5. First, we check
the availability of cold sampling. If we obtain valid cold sampling, we use it for hot
sampling using PlanGeneration(C, P); otherwise, it seeks the plan with the lowest benefit
by enumerating all the possible plans using PlanEnumeration(F, P).

Algorithm 5: Algorithm for Hot sampling Construction in Forester

Input: Sampling Forest (F) and Procedure(P)
Output: Optimized Plan(E)
ExecutionPlan(F, P):
C + ColdSampling(F)
if Cis NULL then
‘ E < PlanEnumeration(F, P)
else
| E < PlanGeneration(C, P)
end

PlanEnumeration(F, P):
PlansWithBenefit <— NULL
T < getThresholdCost(P)
L < getSamplingLayer(F) / /Returns Sampling Layers
FOREACH lin L:
SS < getSampledSources(I)
RP « reWrittenProcedure(P, SS)
E < PlanGeneration(l, RP)
B < BenefitEstimation(E, T)
10 PlansWithBenefit < APPEND(E, B)
1 E < minBenefit(PlansWithBenefit)
12 RETURN E

1
2
3
4
5
6
7
8
9
1
2 Function: PlanEnumeration(F, P)
3
1
2
3
4
5
6
7
8
9

Function: BenefitEstimation(E, T)

PlanCost < getCost(E)

1

2

3

1 BenefitEstimation(E, M):

2

3 Benefit <~ T — PlanCost

Electronics 2024, 13, 759

20 of 35

We enumerate each plan that includes an MDL layer sample with the necessary
rewritten procedure. Thus, a procedure has a maximal number of alternative execution
plans that corresponds to the number of MDL layers in the sampling forest.

We measure the benefit of each generated plan relative to the threshold cost using
BenefitEstimation(E, T) and select the plan with the lowest benefit.

10. Accuracy of Sampling Generation

Forester selects high-quality, targeted samples for the approximate processing of an
imperative procedure. Initially, it samples from the base relations at the first sampling layer
by combining a sampling technique with all the unary filters, using Equation (5). It ensures
that the sample data are applicable at the first level for all types of data distribution. In the
subsequent layer, Forester samples from the previous samples of the most recent sampling
layer of relations, using the same sampling technique as the previous sampling layer, and
N-ary filters with Equation (6). It refines the samples from the previous sampling layer
of relations by removing the data from the previous samples that cannot be selected. We
represent it using the relational algebra in Figure 14, where Forester removes the tuples
at the higher layer from the previous layer. It continues the process till it finds the final
sampling layer of a relation.

(Urandom(x)<P,R.x NOT IN(m,(U)),R.y NOT IN(ny(V)),...(R)

Figure 14. Tuples removal at the higher sampling layers in Forester.

Existing AQP techniques can only generate samples at the first level of the first
statement containing a relation with criteria. In contrast, Forester improves sampling at the
first layer by integrating all the unary filters of a relation across all the statements within
a procedure. In addition, it takes into account the interdependencies between multiple
statements and generates high-quality, targeted samples for the approximate processing of
the imperative procedure.

Accuracy in imperative logic sampling: Forester produces a high-quality sample that takes
imperative logic into account. It executes imperative logic using appropriate sample data.
It is able to execute imperative logic using data from the first sampling layer or higher.
In both cases, there is no possibility that the tuples in Figure 3 will satisfy an imperative
condition. It guarantees that no unnecessary iteration, branch, or function call is executed
with data that have no possibility of being selected.

11. Semantic Preservation of Procedure

Preserving semantics, as it pertains to approximate queries in a relational database,
entails permitting a degree of approximation in the results while preserving the intent or
meaning of an imperative procedure. This becomes especially significant when dealing
with extensive datasets or when fast responses are critical.

We transform the original query into an equivalent form that is amenable to ap-
proximate processing. We replace certain original data sources with their approximate
counterparts, which are imperative samples. Imperative data evolve from the dependent
statement; however, it includes either the subset or the entire data of a relation. Thus,
imperative samples are proven to be approximate counterparts of the original data.

12. Experiment

This section discusses the evaluation of Forester . In Section 12.1, we discuss the overall
settings for our experiment, and in Sections 12.2 and 12.3, we discuss the experimental results.

12.1. Experimental Settings
12.1.1. Workload

The OLAP (online analytical processing) workload, which involves imperative proce-
dures in a data warehouse or data mart, is our sole focus. Our synthetic OLAP workload

Electronics 2024, 13, 759

21 of 35

for imperative procedure approximate processing investigates the following facts: (i) Data
distribution: well-behaved data with a predictable distribution work best for approximate
analysis. The error limits of AQP techniques may be unreliable if the data are skewed or
have outliers. (ii) Procedure kinds: Some OLAP procedures can be approximated better than
others. A statement in a procedure that uses aggregation functions over a lot of rows is
a good choice for approximate processing. An OLAP procedure has multiple dependent
statements with imperative logic (loops and conditionals). (iii) Error tolerance: Application
and user needs determine acceptable error levels. Some applications need precise answers,
while others can handle a little error. (iv) Statement complexity: Approximate processing
works better for simple statements than complex ones. Simple statements have a smaller
search area, making approximate solutions with a tiny error bound easier to find.

Approximate processing of imperative procedures provides approximate results for
procedures faster than accurate procedure processing. Approximation processing is gen-
erally employed in exploratory data analysis, data visualization, and large-scale data
processing. We synthesize fifteen imperative procedures (available at: https://github.com/
arifkhu/Forester.git, accessed on 31 December 2023) in our workload using the TPC-DS
with a database size of 1 GB that covers the following aspects: (i) multiple statements
with loops and branches; and (ii) a last statement that contains aggregate functions (i.e.,
average).

12.1.2. Baseline Evaluation

To the best of our knowledge, we have not found research that deals with the approxi-
mate processing of imperative procedures to compare Forester. Currently, we are able to
approximate the processing of procedures using the existing AQP techniques.

AQP for the procedure (AQPP): This algorithm is derived from the deployment of an
existing approximate query processing technique, utilizing query time sampling for the
approximate processing of an imperative procedure [1]. The original work [1] was applied
to declarative queries. In the context of imperative procedures, we apply this technique to
statements that contain base relations and consume data directly from the database.

AQPP determines that the sampling operator allows queries to be conducted over
ad-hoc random samples of tables, that samples are computed uniformly over data items
qualified by a columnar basis table, and that the single query approximation uses tuples
sampling regarding a table. Figure 15 illustrates an example for our baseline. It shows that
AQPP is able to accomplish the task in example 2, where TABLESAMPLE is a sampling
operator and scale factor is one. It indicates that it only identifies a one percent sampling
from the base tables, tabA, tabB, tabC, and tabD, with criteria within a single statement.

CREATE PROCEDURE example_procedure(IN param,...)

AS BEGIN
1: t1l =
2:
3: t3 =
4:

SELECT. . .FROM tabC TABLESAMPLE SYSTEM(1)...;

t2 = SELECT...FROM t1 JOIN tabA TABLESAMPLE SYSTEM(1) ...;

SELECT. ..FROM tabB TABLESAMPLE SYSTEM(1) JOIN tabD TABLESAMPLE SYSTEM(1)...;
t4 = SELECT...FROM t2 JOIN t3 ...;

WHILE (condition ci...) DO
IF (condition c2...) THEN

5: t4 = SELECT * FROM t4 UNION ALL (SELECT * FROM t3 WHERE t3.x = param);
END TF ;
END WHILE ;
END;

Figure 15. Example 2: traditional approximate query processing for an imperative procedure.

https://github.com/arifkhu/Forester.git
https://github.com/arifkhu/Forester.git

Electronics 2024, 13, 759

22 of 35

12.1.3. Physical Environment

We present our experimental findings using the SAP HANA in-memory database,
which is publicly accessible at www.sapstore.com, accessed on 1 June 2020. We utilize a
Python library, pyhdb, that provides an interface to communicate with the database. Our
machine features 45 Silver 4216 2.10GHz Intel Xeon (R) processors and 512GB of RAM.
In the case of fewer resources, our algorithm may find a difference in cost estimation.
However, it shows the same improvement over the baseline approach.

We use the SAP Hana in-memory database because it supports table variables in
imperative procedures like other modern DBMSs, such as SQL Server, etc. As a result, the
results produced in SAP Hana also represent the same performance in other DBMSs that
support table variables in an imperative procedure. In the case of PostgreSQL, Oracle, etc.,
we need to use temporary tables instead of table variables.

12.1.4. Performance Measures

We identify the following performance measures to evaluate Forester.

Accuracy: This metric compares the approximation processing system’s results to the
exact ones. We utilize a numerical error measure (i.e., relative error (RE)) to quantify the
accuracy. We express the formula for the accuracy as follows:

Accuracy = 100 — |E1;7A1| % 100 (12)
1
where 7 is the number of results and E; and A; are the exact and approximate results in
measuring the average of a projection in the final statement of the ith procedure.
Speed: Speed compares the total processing time of an imperative procedure with
approximate processing to the same procedure without approximate processing. The
following is a typical formula for measuring speed:

Speed — Total Processing Timewithout AP
peed = Total ProcessingTimewith AP

(13)

where the total processing time without approximate processing refers to the overall
procedure execution time without approximate processing, and the total processing time
with approximate processing refers to the overall time to process the procedure, which
includes the compilation time, to generate the execution plan, and the execution time, to
process the sampling and approximate processing of the procedure.

In query-time exploratory analysis, accuracy and speed are essential metrics for
approximate processing. When using exploratory analysis, users usually anticipate correct
and significant insights from the results. Ensuring accuracy guarantees that the outcomes
displayed to users accurately reflect the distribution of the underlying data. Even though
accuracy is crucial, there are situations where a small loss of accuracy is acceptable in
return for appreciable increases in speed. To get the best results in approximate processing,
the trade-off between speed and accuracy is frequently taken into account. Although speed
and accuracy are important metrics, it’s also important to take other factors, like scalability,
robustness, sensitivity, etc., into account. We discuss these factors in the experimental section.

12.2. Experimental Results For Overall Evaluation

This section evaluates the overall performance of Forester. In Sections 12.2.1 and 12.2.2,
we evaluate the accuracy and speed of Forester, respectively. In Section 12.2.3, we eval-
uate the performance of precomputed sampling using the available cold sampling. In
Section 12.2.4, we evaluate the targeted sampling generation in MDL sampling. Next,
we show the compilation overhead in Section 12.2.6. We discuss optimal performance in
Section 12.2.5.

https://www.sapstore.com/solutions/99055/SAP-HANA---express-edition
www.sapstore.com

Electronics 2024, 13, 759

23 of 35

12.2.1. Evaluation of Accuracy

Figure 16 shows the overall performance evaluation using our workload, where
Figure 16a depicts the accuracy of the sample across all of our procedures. We use a
1GB database and a parameter setting of 2000-2020 to conduct this experiment. In this
experiment, we use the scale factor f = 0.2. We also conduct sensitivity testing by varying
the database size in Section 12.3.3, varying the parameters in Section 12.3.4, and varying
the projection columns in Section 12.3.2. For example, we call the P1 procedure as follows:

CALL P1(2000, 2020) FORESTSAMPLE (0.2);

Forester performs with more than 95% accuracy in all the cases using agile processing,
whereas AQPP shows below 95% in the majority of cases. We report all the data for overall
accuracy in Appendix A.1. In each case, Forester finds the MDL sampling at the second
sampling layer. We discussed in Section 10 that the higher levels of MDL layers produce
more targeted data, and we will evaluate the MDL sampling in Section 12.2.4. For example,
procedure P1 uses a sample from the second sampling layer, which generates a more
targeted sample than the first layer. AQPP is able to use only the first sampling layer.
Hence, Forester obtains higher accuracy than AQPP.

00 Forester 10 AQPP
100 - -
£ 98- B
& 96 -
g
5 94 —
9 92 H H
< - H .
oo i Hm [1 | [l la]
Pp Pb P3 P4 Ps P P, Pg Py Py Py Pp Pz Py Pis
Procedures (P;,)
(a)
6, .
i 4 .
8
Q.
o
0

P Pb P35 P Ps P P, Pg Py Py Py Pio Pz Py Pis
Procedures (P;,)

(b)

Speed
S N B O @
[
|

0 O A O

P P P35 Py Ps Ps P, Pg Py P P P Pz Py Prs
Procedures (P;,)

(0)

Figure 16. Overall performance evaluation. (a) Performance evaluation for accuracy; (b) Performance
evaluation for speed-up; (c) Performance evaluation for speed-up using only cold sampling.

12.2.2. Evaluation of Speed-Up

Figure 16b illustrates the approximate processing performance of all procedures during
the runtime. We utilize the same setting as in Section 12.2.1 to conduct this experiment.

Electronics 2024, 13, 759

24 of 35

Forester is faster by more than four times in the majority of cases, whereas AQPP is
slower in the majority of cases. We report all the data for overall speed in Appendix A.1,
Table A2. We discussed in Section 10 that the higher imperative samples at higher levels
produce fewer rows. We discuss the number of rows in MDL sampling in Section 12.2.4.
Processing with fewer rows is faster. On the other hand, generating imperative samples in
higher layers requires additional processing costs. In this case, our cost model finds the
benefit of producing the samples.

Overall, Forester obtains a higher speed. For example, procedure P1 uses a sample
from the second sampling layer, which generates fewer rows in imperative samples than
the first layer. AQPP is able to use only the first sampling layer, which contains a larger
number of rows of samples. Hence, Forester obtains a higher speed than AQPP.

12.2.3. Evaluation of Precomputed Cold Sampling

We conducted the experiments to observe the speed of Forester if the cold sample
is precomputed and valid. As we discussed, some DBMSs store precomputed sampling
for future approximate processing. In order to show the performance of approximate
processing with precomputed sampling, we assume that the cold sampling was stored in
DBMSs previously, and we perform approximate processing using cold samples. In this
case, we do not utilize agile processing using hot samples. Hence, the processing cost of
sampling generation is not taken into account.

Figure 16c¢ illustrates the approximate processing performance of all procedures that
utilize cold sampling. We utilize the same setting as in Section 12.2.1 to conduct this
experiment.

We observe that cold sampling is faster. We report all the data for precomputed
approximate processing in Appendix A.1, Table A2. In the case of hot sampling, Forester
uses best-effort sampling to determine the optimal plan, which requires additional cost to
find samples. In the case of cold sampling, we already have the samples, which are stored.
Moreover, cold sampling contains the least number of rows, as discussed in Section 12.2.4,
and takes less time for approximate processing. However, if the state of the database
changes, cold samples are not valid. As a result, the lifespan of a cold sample is very short.
Hence, hot samples are more reliable than cold samples.

12.2.4. Evaluation of MDL Sampling

We conducted this experiment to evaluate how MDL sampling produces more targeted
samples. We demonstrate the decomposition of MDL sampling using P;. Figure 17 depicts
the sample size for each relation from the leaf to the root layers. We observe that the sample
size of a relation decreases as the sampling depth increases, while the overall accuracy
remains unchanged. This occurs because Forester generates the sample for the deeper
layer by contemplating dependencies with other relationships in the same layer, using
samples from higher layers. It reduces the number of rows without affecting the overall
approximation; hence, the accuracy remains constant. This experiment demonstrates that
Forester produces more targeted samples for all MDL relations.

12.2.5. Evaluation of Optimality

Forester always generates an optimal execution plan using cold sampling because it
takes the sample from the root. However, it may sacrifice some optimality in hot sampling
in the case of smaller relations and computations, as discussed in Sections 12.1.1 and 12.2.4.
Forester will be very useful in generating an optimal plan using cold sampling because,
in a real scenario, OLAP procedures deal with a large amount of data, and the frequent
synchronization of the OLAP database from OLTP transactions is costly, except for the
HTAP environment. In the case of the HTAP environment, Forester frequently performs hot
sampling because cold sampling may be valid for a shorter period of time as HTAP deals
with real-time data for OLAP query processing.

Electronics 2024, 13, 759 25 of 35

DDR]DDRQDDR3I|R4I|R5I|R6
1.5-10° - -~ 7

1-106 - -

5.10° - .

Number of Rows

MDL Sampling Layers (L)
Figure 17. MDL sampling evaluation.

12.2.6. Evaluation of Compilation Overhead

Figure 18 depicts the Forester compilation overhead. We observe that it creates a
negligible amount of compilation overhead, in all cases less than 0.5 s. Consequently, it is

highly beneficial in any DBMS.

0.1 - _ -
~ 81072 .
g
=
S 6102 2
<]
S
9] 4-1072 |- B
£

0 0 m i H

P P P35 Py Ps P P Ps Py Py Pu P P13 Py Prs
Procedures (P;)

Figure 18. Compilation overhead of Forester.

12.3. Experimental Results For Sensitivity

We evaluate the sensitivity performance of Forester. In Section 12.3.1, we vary sample
sizes to evaluate the sensitivity of sample size. We evaluate the sensitivity of projection
by varying the projection in Section 12.3.2. In Section 12.3.3, we evaluate scalability by
expanding the database size. In Section 12.3.4, we undertake parameter sensitivity testing
by changing the parameters of the procedure. We use a subset of our workload with
distinct categories that represent the sensitivity performance of all workload procedures.
We selected two procedures, P; and Py, containing a loop and a branch, respectively.

12.3.1. Evaluation of Sample Size Sensitivity

We conducted this experiment to observe the robustness of Forester in the case of
sample size variation. We keep the settings that were set out in Section 12.2.1, except for
the sample size. We vary the sample sizes using 0.2, 0.3, and 0.4 to observe the accuracy
and speed.

Figure 19 shows that in both cases of P1 and P2, Forester achieves more than 95%
accuracy and more than three times faster speed, which definitely outperforms AQPP. We
report the complete data in Appendix B.

Electronics 2024, 13, 759 26 of 35
00 Forester 10 AQPP 00 Forester 10 AQPP
100 : : : 4 ~
< 30 i
S 95 -5
9] 1
g 0 H &
< H 1r i
85 1 1 1 0 1 1 \
0.2 0.3 0.4 0.2 0.3 04
Sample Sizes Sample Sizes
(a) Accuracy for P; (b) Speed-up for Py
00 Forester 10 AQPP 00 Forester 10 AQPP
100 : : : 4 ~
S 3- i
S 95 1)
9] 1
& T 20 1
g 90 i 2.
<(EJ 43 1 |
85 1 1 1 0 1 1 \
0.2 0.3 0.4 0.2 0.3 0.4
Sample Sizes Sample Sizes
(c) Accuracy for Py (d) Speed-up for Py

Figure 19. Evaluating the sample size sensitivity of Forester.

We have an interesting observation in accuracy measuring in both Forester and AQPP.
Forester always guarantees similar accuracy for all sample size variations because it samples
in a targeted manner at the initial layers, using leaf sampling based on sample size. It
continues sampling the upper layers by reducing data that are not responsible for the
imperative sample. Thus, the samples become more targeted, making the approximate
processing faster. On the other hand, AQPP cannot guarantee a similar accuracy for sample
size variation because it only samples from the relations based on sample size.

12.3.2. Evaluation of Projection Sensitivity

We conducted this experiment to observe the robustness of Forester in the case of projection
column variation, because exploratory data analysis may require multiple columns. We vary
the projection column in the final statement in the procedure and keep the other settings set out
in Section 12.2.1. We use store_sales_price, store_wholesales_cost, and other_than_wholesale_cost
projection columns for P1 and ss_quantity, i_item_sk, and cnt for Py, to observe the accuracy
and speed.

Figure 20 shows the performance of Forester in variation of projection columns. We
observe that, in all cases of accuracy and speed, Forester outperforms AQPP. We report the
complete data in Appendix C. The reason is the same as in Sections 12.2.1 and 12.2.2.

12.3.3. Evaluation of Scalability

We conducted this experiment to observe the scalability of Forester in the case of larger
database sizes. We vary the size of the database, using 50 GB and 100 GB, while keeping
the other settings set out in Section 12.2.1. We observe that Forester achieves more than 95%
accuracy in all the cases of P1 and P2.

Figure 21 shows the performance of Forester in variation of database sizes. Here, we
observe that Forester finds the benefit of the root layer in MDL sampling in the cases of
50 GB and 100 GB, whereas we find the benefit at the second layer in 1 GB size. Thus, we
can say that Forester produces the optimal plan in the case of large data.

Electronics 2024, 13, 759

27 of 35

100
T %8
=
§ 96
B 94
3
< 92

90

100
I
2
s 90
=]

3
g 8

80
Figure 20.

100
< 98
& 96
g
B 94
3
< 92

90

100
T %8
=
§ 96
B 94
3
< 92

90

Figure 21.

00 Forester 10 AQPP

[

1
P PP Py
Procedures (P}')

(a) Accuracy for Py

00 Forester |0 AQPP ‘

I HH]

p} P; P}
Procedures (Py)

(c) Accuracy for Py

Speed-up

Speed-up

Evaluating the projection sensitivity of Forester.

00 Forester |0 AQPP
.
1GB 50GB 100GB
Database Sizes

(a) Accuracy for P;
00 Forester 10 AQPP
1GB 50GB 100GB

Database Sizes

(c) Accuracy for Py

Evaluating the scalability of Forester.

Speed-up

Speed-up

0o Foresterl0 AQPP
6 _
4 |
2 H H H |
0 1 T 1
p} P? p}
Sample Sizes
(b) Speed-up for P;
00 Forester 10 AQPP
6 — .
4 - |
i H H H |
0 \ \ 1
P! p? p3
* Samplé1 Sizes ¢
(d) Speed-up for Py
00 Forester 10 AQPP
10 -
8 |
6 |
4 |
; HH]
0 1 T
1GB 50GB 100GB
Database Sizes
(b) Speed-up for Py
00 Forester 10 AQPP
10 -
8 - |
6 - |
4 - |
o] HH]
0 1 T 1
1GB 50GB 100GB

Database Sizes

(d) Speed-up for P;

Electronics 2024, 13, 759

28 of 35

12.3.4. Evaluation of Parameter Sensitivity

We conducted this experiment to observe the scalability of Forester in the case of
computational variation. We vary the parameter to make it larger in loop processing while
keeping the other settings set out in Section 12.2.1. We utilize three variants of P1, where
we determine the loop iterations at 20, 40, and 60, respectively.

Figure 22 shows the performance of Forester in variation of parameters. We observe
that Forester achieves more than 95% accuracy in all the cases of P1, which outperforms
AQPP. Here, we observe that Forester finds the benefit at layer 2 in MDL sampling in the
case of 40 and 60 iterations. On the other hand, Forester also capable of imperative logic
sampling based on sample size. For example, it iterates 13, 25, and 38 times in the case of a
sample size of 0.2. As a result, we achieve more improvement in speed for larger iterations.

00 Forester 10 AQPP 00 Forester 10 AQPP
100 n 6

g 98 - - o

> 9% 4T i
< o

5 o4 - B

g & 20 i
< 92 -

90 [[i 0 T T 1
P} P? P} P} p? p}
Procedures (Py') Sample Sizes
(a) Accuracy for Py (b) Speed-up for P;

Figure 22. Evaluating the parameter sensitivity of Forester.

13. Related Works

Previous studies in sampling-based query-time exploratory data analysis, discussed
in Section 13.1, utilized only declarative queries. They were unable to solve the issues
that utilized imperative procedures containing imperative data and control logic. On the
other hand, previous studies on the approximate processing of a procedure, discussed
in Section 13.2, limited themselves to ad-hoc random sampling table-based approaches
that are able to sample only base relations. They are unable to sample imperative data
and control logic. Apart from this, previous studies on the control region sampling-based
approach, discussed in Section 13.2, only dealt with sampling loops or branches inside a
procedure. They, however, cannot deal with the imperative data inside a procedure.

To the best of our knowledge, we are the first to explore sampling-based query-time
exploratory data analysis that utilizes imperative structures such as imperative data and
control regions in procedures. We found no research work in this area, which represents
the originality of our work. We limit ourselves to studying the related work in those areas,
such as exploratory data analysis for approximate query processing and sampling for
approximate processing, which are related to individual parts of our research. Hence, we
found fewer works that are relevant to our work.

13.1. Literature on Exploratory Data Analysis for Approximate Query Processing

Explored data analysis (EDA) is significant because data scientists require tools for
fast data visualization and want to discover subsets of data that need additional drilling-
down before performing computationally expensive analytical procedures. Meng [1]
covers query-time sampling with stratified and hash-based equi-join samplers to facilitate
approximate query processing for exploratory data research. However, they only sample
from base tables in a query, not dependent queries’ data sources.

The use of exploratory data analysis in approximate query processing has also drawn
attention from researchers. Fisher [6,7] discussed the usage of queries that function on
progressively larger samples from a database, to allow people to interact with incremental

Electronics 2024, 13, 759

29 of 35

visualization, and that handle incremental, approximative database queries, trading speed
for accuracy by taking a sample from the entire database, enabling the system to answer
questions quickly. In order to reduce the requirement for repeated exploratory searches,
Kadlag [8] recommended using exploratory “trial-and-error” queries.

Numerous studies on EDA have been carried out; for example, Javadiha [9] identifies
the shortcomings of conventional table-based techniques for sensor technology analysis,
while Yang [10] addresses exploratory graph queries.

In relational databases, exploratory data analysis (EDA) is an essential tool for de-
ciphering the underlying relationships, patterns, and trends in the data [11-20]. There
are numerous research articles and resources that cover different facets of EDA in the
context of data stored in relational databases, even though there may not be a single study
that is exclusively focused on EDA in relational databases. For instance, Savva [21] ex-
plains how predicting the outcomes of aggregate queries is one way that machine learning
can be utilized to speed up the data exploration process. Nargesian [22] is a recent data-
driven framework that restructures queries to assist users in locating relevant data entities
in situations involving large dimensionality and a lack of in-depth data understanding.

13.2. Literature on Sampling for Approximate Processing

Our approach adapts the existing sampling method by sampling from top leaf, which
is the relation of sampling from base. One efficient technique to handle a large number of
requests on a large database is to use approximate query processing using relatively small
random samples. Multidimensional cluster sampling [23], stratified random sampling of
the original data [24-27], sampling databases that follow the same distribution for specific
fields [28], adaptive random sampling [29], and simple random sampling [30] algorithms
are proposed for approximate query processing. However, in the case of multi-dependent
statements, it is not possible to sample from all the statements with imperative structures
inside a procedure.

Two-stage sampling [2,3] and adaptive sampling [4] have been studied in large and
heterogeneous populations. Two-stage cluster and adaptive sampling is a simpler version
of multi-stage sampling that can work when deeper multi-stage sampling is not necessary.
It is useful when the population is naturally clustered and sampling individuals from the
total population is not necessary.

In multi-layer sampling for approximate imperative procedure processing, two-stage
cluster and adaptive sampling techniques have the following drawbacks: (i) Biased sample:
the problem with this method is that, in the first stage of a two-stage sampling technique, it
is possible to select a biased sample. This can occur if the first-stage sampling frame does
not accurately represent the population. (ii) Data synchronization: coordinating the data
flow and ensuring the sampled data match the procedure steps may need careful planning
and monitoring (i.e., an imperative method may use loops or conditionals). (iii) Dependent
layer criteria: two-stage sampling of sample data in multistages for the same data source.
In a procedure, layer sampling of a relation may depend on layer sampling of other relations,
due to joining. Thus, two-stage sampling struggles to determine sample criteria. Finally,
(iv) parameter setting: two-stage sampling might generate bias or inconsistencies if the
sampling method or parameters change between stages.

Zar [5] introduced probabilistic samplers in the random-bit model, which is aware of loops
and conditioning. However, in the case of the multi-statement imperative procedure, we are
focusing on generating samples through dependent statements. In order to acquire that, we sam-
ple loops that are well representative of the dependent data distribution. On the other hand, we
do not sample branches because they lose some representative samples. As a result, systematic
loop sampling fits well for sampling imperative data rather than probabilistic sampling.

14. Future Scope

We acknowledge the threats and limitations of our research. Our cost estimation for
agile approximate processing depends on some estimated values, such as sampling layer

Electronics 2024, 13, 759

30 of 35

costs, procedure costs, and threshold costs. If the values are not properly maintained or
estimated, our algorithm may have difficulties finding benefits for agile processing. In this
research, we utilize historical data for the cost estimation of sampling layers, procedure
costs, and threshold costs to find the benefit of agile approximate processing. In our future
work, we will extend our work to find some efficient techniques for estimating those costs.

15. Conclusions

Database administration and computing efficiency have advanced significantly with
query-time approximate processing for imperative algorithms. Through the use of novel
approaches that integrate the concepts of query optimization and data approximation,
Forester has the potential to completely transform the ways in which data are stored,
accessed, and examined in intricate database systems.

Agile approximation processing represents a major paradigm shift in our understanding
of the trade-off between processing speed and result accuracy, as well as a significant change in
the design and execution of stored procedures. Through the precise adjustment of the degree
of approximation and the incorporation of sophisticated error handling procedures, this new
methodology enables database administrators and developers to traverse the complex terrain
of data administration with unparalleled accuracy and computing efficiency.

Additionally, the fact that this innovative idea was successfully implemented, utilizing
forest representation, highlights how approximation approaches may significantly improve
the responsiveness and scalability of modern database systems. This innovative approach
paves the way for a new era of data-driven insights and empowers organizations to extract
actionable intelligence from massive repositories of complex, dynamic data, as the demand
for real-time data analytics and streamlined decision-making processes grows.

As we look to the future, the key to achieving previously unattainable efficiency in data
management and helping businesses stay ahead in a more competitive and data-centric
world lies in the ongoing research and refining of Forester in the approximate processing of
essential tasks. The integration of approximation processing is poised to redefine the limits
of what is possible in the field of database management and computation as research and
development in this area advance, resulting in a new wave of innovation and revolutionary
possibilities for the future.

Author Contributions: Conceptualization, M.A.R. and Y.-K.L.; methodology, M.A.R.; formal analysis,
M.AR. and Y.-K.L,; investigation, M.A.R. and Y.-K.L.; data curation, M.A.R.; writing—original draft prepa-
ration, M.A R.; writing—review and editing, Y.-K.L.; visualization, M.A.R ; supervision, Y.-K.L.; project
administration, Y.-K.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant, funded by the Korean government (MSIT) (No. 2021-0-00859,
Development of a distributed graph DBMS for intelligent processing of big graphs.

Data Availability Statement: We provide a workload with imperative procedures at https:/ /github.
com/arifkhu/Forester.git, accessed on 31 December 2023.

Conflicts of Interest: The authors declare no conflicts of interest.

https://github.com/arifkhu/Forester.git
https://github.com/arifkhu/Forester.git

Electronics 2024, 13, 759 31 of 35
Appendix A. Data for Overall Evaluation
Appendix A.1. Overall Accuracy Measurement Data
Table Al. Overall accuracy measurement data.
Original Forester AQPP
Procedure Results Results Accuracy% Results Accuracy%
P 38.66 37 95.70 35.15 90.9208
P 38.66 37 95.70 35.15 90.9208
P 51.865 51.02 98.37 55.23 93.51
Py 51.865 50.23 96.84 55.6 92.79
Ps 50.382 48.23 95.72 46.2 91.69
Py 3658.89 3520.23 96.21 3420.02 93.47
p; 3255.94 3125.23 95.98 35.23.02 91.79
Pg 58,256.23 59,238.2 98.31 61,235.05 94.88
Py 57,671.76 58,147.01 99.17 60,025.89 95.92
Py 254.32 250.235 98.39 235.2 92.48
Py 1847.38 1841.002 99.65 1779.225 96.31
Py 3259.23 3221.23 98.83 3002.006 92.10
Pi3 269.23 261.223 97.02 245.203 91.07
Py 5236.001 5200.02 99.48 5002.002 95.53
Pis 51.2 53.002 96.48 55.02 90.53
Appendix A.2. Overall Speed Measurement Data
Table A2. Overall speed measurement data.
Original Forester AQPP
Procedure P}‘ocessmg Agile Pro- Speed(X) Processing Speed(X) P_rocessmg Speed(X)
Time(s) . . . Time(s)
cessing Time with Pre-
Time(s) Computed
Sampling(s)
P 104.2 30.20 3.45 24.63 4.23 47.15 221
P 104.6 32.09 3.26 20.84 5.02 51.79 2.02
P 23.43 6.73 3.48 3.76 6.23 8.10 2.89
Py 23.18 5.05 4.59 3.72 6.23 9.27 25
Ps 53.47 17.70 3.02 10.65 5.02 23.25 2.3
Py 61.15 17.03 3.59 12.15 5.03 29.12 21
Py 61.49 17.17 3.58 11.64 5.28 27.33 2.25
Pg 65.23 15.31 4.26 10.43 6.25 30.77 212
Py 21.01 6.50 3.23 3.99 5.26 10.04 2.09
Pio 38.67 9.41 3.89 6.56 5.89 6.56 2.02
Py 59.38 15.34 3.87 11.85 5.01 28.55 2.08
Py 61.47 14.43 4.26 10.22 6.01 26.04 2.36
Pi3 37.89 8.91 4.25 6.42 5.9 14.68 2.58
Py 20.03 6.16 3.25 3.99 5.01 6.97 2.87
Pis 23.15 6.12 3.78 4.74 4.88 9.08 2.55

Electronics 2024, 13, 759 32 of 35
Appendix B. Data for Evaluating Sample Size Sensitivity
Appendix B.1. Accuracy Measurement Data for Evaluating Sample Size Sensitivity
Table A3. Accuracy measurement data for evaluating sample size sensitivity.
Original tSocrale Fac- Forester AQPP
Procedure Results f Results Accuracy% Results Accuracy%
P 38.66 0.2 37 95.70 35.15 90.92
P 38.66 0.3 36.95 95.57 35.89 92.83
P 38.66 0.4 36.89 95.42 34.89 90.24
Py 51.23 0.2 49.26 96.15 47.97 93.63
Py 51.23 0.3 49.01 95.64 47.56 92.83
Py 51.23 0.4 48.99 95.62 47.32 92.36
Appendix B.2. Accuracy Measurement Data for Evaluating Sample Size Sensitivity
Table A4. Speed measurement data for evaluating sample size sensitivity.
Original tSocrale Fac- Forester AQPP
Processing Processing Processing
Procedure Time (s) f Time (s) Speed (X) Time (s) Speed (X)
P 104.20 0.2 30.20 3.45 47.15 2.21
P 104.20 0.3 29.35 3.55 44.34 2.35
P 104.20 0.4 28.16 3.70 42.53 2.45
Py 10.52 0.2 3.008 3.49 4.62 2.28
Py 10.52 0.3 2.924 3.60 4.53 2.32
Py 10.52 0.4 2.845 3.70 4.29 2.45
Appendix C. Data for Evaluating Projection Sensitivity
Appendix C.1. Accuracy Measurement Data for Evaluating Projection Sensitivity
Table A5. Accuracy measurement data for evaluating projection sensitivity.
Original Projection Forester AQPP
Procedure Results Columns Results Accuracy% Results 1?:2;;/
Pi 38.67 store_sales_price 37 95.70 35.15 90.92
P5 50.94 store_wholesale_cost 49.67 97.50 49.25 96.68
P 60.52 other_than_wholesale_cost 59.27 97.91 58.23 96.26
p; 51.23 ss_quantity 49.26 96.15 47.97 93.63
P} 24.06 i_item_sk 26.79 88.68 28.44 81.80
p; 1.12 cnt 1.08 96.42 1.01 90.17

Appendix C.2. Accuracy Measurement Data for Evaluating Projection Sensitivity

Table A6. Speed measurement data for evaluating projection sensitivity.

Original Projection Forester AQPP

Processing Processing Speed Processing Speed
Procedure 7 e (s COlumns Time (s) (X) Time (s) (X)
Pl1 125.32 store_sales_price 22.27 5.62 54.85 2.28
p; 103.46 store_wholesale_cost 22.93 4.51 42.50 2.43
Pi;’ 111.23 other_than_wholesale_cost 30.89 3.60 49.77 2.23
o 10.52 ss_quantity 3.008 3.49 4.62 2.28
p; 10.68 i_item_sk 3.005 3.55 4.58 2.32
p} 10.68 cnt 2.995 3.56 4.75 2.24

Electronics 2024, 13, 759 33 of 35

Appendix D. Data for Evaluating Scalability
Appendix D.1. Accuracy Measurement Data for Evaluating Scalability

Table A7. Accuracy measurement data for evaluating scalability sensitivity.

Original Database Forester AQPP
Procedure Results Size Results Accuracy% Results Accuracy%
P 38.67 1GB 37 95.70 35.15 90.92
P 39.56 50 GB 38.22 96.61 36.01 91.00
Py 41.12 100 GB 39.52 96.10 39.52 92.90
Py 51.23 1GB 49.26 96.15 47.97 93.63
Py 53.02 50 GB 51.28 96.71 49.01 92.41
Py 55.23 100 GB 53.00 95.97 51.25 92.80

Appendix D.2. Accuracy Measurement Data for Evaluating Scalability

Table A8. Speed measurement data for evaluating scalability.

Original Database Forester AQPP
Processing . Processing Processing

Procedure Time (s) Size Time (s) Speed (X) Time (s) Speed (X)

P 104.20 1GB 30.20 3.45 47.15 2.21

Py 3123.21 50 GB 453.07 6.90 707.28 4.42

P 7294.50 100 GB 906.14 8.05 1414.57 5.15

Py 10.52 1GB 3.008 3.49 4.62 2.28

Py 315.80 50 GB 45.12 6.99 69.31 4.55

Py 736.88 100 GB 90.24 8.16 138.63 5.31

Appendix E. Data for Evaluating Parameter Sensitivity
Appendix E.1. Accuracy Measurement Data for Evaluating Parameter Sensitivity

Table A9. Accuracy measurement data for evaluating parameter sensitivity.

Original Forester AQPP
Procedure Results Parameter Results Accuracy% Results Accuracy%
p! 38.66 2000-2020 37 95.70 35.15 90.92
P£ 38.66 20002040 37.07 95.88 35.14 90.89
P% 38.66 2000-2060 37.09 95.93 35.14 90.89
p; 51.23 20002020 49.26 96.15 47.97 93.63
P} 51.23 20002040 49.2 96.03 47.95 93.59
p; 51.23 2000-2060 48.15 95.93 47.9 93.49

Appendix E.2. Accuracy Measurement Data for Evaluating Parameter Sensitivity

Table A10. Speed measurement data for evaluating parameter sensitivity.

Original Forester AQPP
Processing Processing Processing

Procedure Time (s) Parameter Time (s) Speed (X) Time (s) Speed (X)

Pi 104.20 2000-2020 30.20 3.45 47.15 2.21

P 104.20 20002040 29.35 3.55 44.34 2.35

p; 104.20 20002060 28.16 3.70 42.53 2.45

PA; 10.52 20002020 3.008 3.49 4.62 2.28

P 10.52 20002040 2.924 3.60 4.53 2.32

P% 10.52 20002060 2.845 3.70 429 2.45

Electronics 2024, 13, 759 34 of 35

References

1.

b

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Meng, X.; Alug, G. Exploratory Data Analysis in SAP IQ Using Query-Time Sampling. In Proceedings of the 2021 IEEE 37th
International Conference on Data Engineering (ICDE), Chania, Greece, 19-22 April 2021; pp. 2381-2386.

Du, Q.Q.; Gao, G;; Jin, Z.D.; Li, W,; Chen, X.Y. Application of monte carlo simulation in reliability and validity evaluation of
two-stage cluster sampling on multinomial sensitive question. In Proceedings of the Information Computing and Applications:
Third International Conference (ICICA 2012), Chengde, China, 14-16 September 2012; Proceedings 3; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 261-268.

Naddeo, S.; Pisani, C. Two-stage adaptive cluster sampling. Stat. Methods Appl. 2005, 14, 3-10. [CrossRef]

Muttlak, H.A.; Khan, A. Adjusted two-stage adaptive cluster sampling. Environ. Ecol. Stat. 2002, 9, 111-120. [CrossRef]
Bagnall, A.; Stewart, G.; Banerjee, A. Formally Verified Samplers from Probabilistic Programs with Loops and Conditioning. Proc.
ACM Program. Lang. 2023, 7, 1-24. [CrossRef]

Fisher, D.; Drucker, SM.; Konig, A.C. Exploratory visualization involving incremental, approximate database queries and
uncertainty. IEEE Comput. Graph. Appl. 2012, 32, 55-62. [CrossRef]

Fisher, D. Incremental, approximate database queries and uncertainty for exploratory visualization. In Proceedings of the 2011
IEEE Symposium on Large Data Analysis and Visualization, Providence, RI, USA , 23-24 October 2011; pp. 73-80.

Kadlag, A.; Wanjari, A.V.; Freire, J.; Haritsa,].R. Supporting exploratory queries in databases. In Proceedings of the Database
Systems for Advanced Applications: 9th International Conference (DASFAA 2004), Jeju Island, Republic of Korea, 17-19 March
2003; Proceedings, 9; Springer: Berlin/Heidelberg, Germany, 2004; pp. 594-605.

Javadiha, M.; Andujar, C.; Lacasa, E. A Query Language for Exploratory Analysis of Video-Based Tracking Data in Padel Matches.
Sensors 2022, 23, 441. [CrossRef] [PubMed]

Yang, C.; Qiao, S.; Ozsoyoglu, ZM. An exploratory graph query interface for biomedical data. In Proceedings of the 6th
ACM Conference on Bioinformatics, Computational Biology and Health Informatics, Atlanta, Georgia, 9-12 September 2015;
pp. 527-528.

Nuiiez von Voigt, S.; Pauli, M.; Reichert,]J.; Tschorsch, F. Every Query Counts: Analyzing the Privacy Loss of Exploratory
Data Analyses. In Proceedings of the Data Privacy Management, Cryptocurrencies and Blockchain Technology: ESORICS 2020
International Workshops, DPM 2020 and CBT 2020, Guildford, UK, 17-18 September 2020; Revised Selected Papers 15; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 258-266.

Giannakopoulou, S. Query-Driven Data Cleaning for Exploratory Queries. In Proceedings of the CIDR, Asilomar, CA, USA,
13-16 January 2019 .

Abeysinghe, R.; Cui, L. Query-constraint-based mining of association rules for exploratory analysis of clinical datasets in the
national sleep research resource. BMIC Med. Inform. Decis. Mak. 2018, 18, 89-100. [CrossRef] [PubMed]

Ma, C.; Zhang, B. A new query recommendation method supporting exploratory search based on search goal shift graphs. IEEE
Trans. Knowl. Data Eng. 2018, 30, 2024-2036. [CrossRef]

Khan, H.A.; Sharaf, M.A. Model-based diversification for sequential exploratory queries. Data Sci. Eng. 2017, 2, 151-168.
[CrossRef]

Guo, C.; Wu, Z.; He, Z.; Wang, X.S. An adaptive data partitioning scheme for accelerating exploratory spark SQL queries. In
Proceedings of the Database Systems for Advanced Applications: 22nd International Conference (DASFAA 2017), Suzhou, China,
27-30 March 2017; Proceedings, Part I 22; Springer: Berlin/Heidelberg, Germany, 2017; pp. 114-128.

Moritz, D.; Fisher, D. What users don’t expect about exploratory data analysis on approximate query processing systems. In
Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics, Chicago, IL, USA, 14-19 May 2017; pp. 1-4.
Qarabaqji, B.; Riedewald, M. Merlin: Exploratory analysis with imprecise queries. IEEE Trans. Knowl. Data Eng. 2015, 28, 342-355.
[CrossRef]

Gkorgkas, O. Database Content Exploration and Exploratory Analysis of User Queries. Ph.D. Thesis, Norwegian University of
Science and Technology, Torgarden, Norway, 12 October 2015. Available online: http://hdl.handle.net/11250/2354160 (accessed
on 1 February 2024).

De Vocht, L. Iterative query refinement for exploratory search in distributed heterogeneous linked data. In Proceedings of the
ISWC-DC 2015 The ISWC 2015 Doctoral Consortium, Bethlehem, PA, USA, 12 October 2015 ; p. 1.

Savva, F. Query-Driven Learning for Automating Exploratory Analytics in Large-Scale Data Management Systems. Ph.D. Thesis,
University of Glasgow, Glasgow, UK, 12 January 2021. Available online: https://theses.gla.ac.uk/id/eprint/81907 (accessed on 1
February 2024).

Nargesian, F. Data-driven recommendations for exploratory query formulation. In Proceedings of the 2014 SIGMOD PhD
Symposium, Snowbird, UT, USA, 22-27 June 2014; pp. 31-35.

Inoue, T.; Krishna, A.; Gopalan, R.P. Multidimensional cluster sampling view on large databases for approximate query processing.
In Proceedings of the 2015 IEEE 19th International Enterprise Distributed Object Computing Conference, Adelaide, SA, Australia,
21-25 September 2015; pp. 104-111.

Chaudhuri, S.; Das, G.; Narasayya, V. Optimized stratified sampling for approximate query processing. ACM Trans. Database
Syst. (TODS) 2007, 32, pp. 1-50 . [CrossRef]

http://doi.org/10.1007/BF02511571
http://dx.doi.org/10.1023/A:1013723226430
http://dx.doi.org/10.1145/3591220
http://dx.doi.org/10.1109/MCG.2012.48
http://dx.doi.org/10.3390/s23010441
http://www.ncbi.nlm.nih.gov/pubmed/36617041
http://dx.doi.org/10.1186/s12911-018-0633-7
http://www.ncbi.nlm.nih.gov/pubmed/30066656
http://dx.doi.org/10.1109/TKDE.2018.2815544
http://dx.doi.org/10.1007/s41019-017-0038-0
http://dx.doi.org/10.1109/TKDE.2015.2496270
http://hdl.handle.net/11250/2354160
https://theses.gla.ac.uk/id/eprint/81907
http://dx.doi.org/10.1145/1242524.1242526

Electronics 2024, 13, 759 35 of 35

25.

26.

27.

28.

29.

30.

Li, RH,; Yu,].X.; Mao, R;; Jin, T. Efficient and accurate query evaluation on uncertain graphs via recursive stratified sampling.
In Proceedings of the 2014 IEEE 30th International Conference on Data Engineering, Chicago, IL, USA, 31 March—4 April 2014;
pp. 892-903.

Li, RH,; Yu,].X,; Mao, R,; Jin, T. Recursive stratified sampling: A new framework for query evaluation on uncertain graphs. IEEE
Trans. Knowl. Data Eng. 2015, 28, 468—482. [CrossRef]

Joshi, S.; Jermaine, C. Robust stratified sampling plans for low selectivity queries. In Proceedings of the 2008 IEEE 24th
International Conference on Data Engineering, Cancun, Mexico, 7-12 April 2008; pp. 199-208.

Buda, T.S.; Cerqueus, T.; Murphy, J.; Kristiansen, M. CoDS: A representative sampling method for relational databases. In
Proceedings of the Database and Expert Systems Applications: 24th International Conference, DEXA 2013, Prague, Czech
Republic, 26-29 August 2013; Proceedings, Part I 24; Springer: Berlin/Heidelberg, Germany, 2013; pp. 342-356.

Lipton, R.J.; Naughton,].E,; Schneider, D.A.; Seshadri, S. Efficient sampling strategies for relational database operations. Theor.
Comput. Sci. 1993, 116, 195-226. [CrossRef]

Olken, F; Rotem, D. Simple Random Sampling from Relational Databases. Lawrence Berkeley National Laboratory. Available
online: https://escholarship.org/uc/item/9704f3dr (accessed on 1 June 1986).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TKDE.2015.2485212
http://dx.doi.org/10.1016/0304-3975(93)90224-H
https://escholarship.org/uc/item/9704f3dr

	Introduction
	Imperative Sampling
	Imperative Data Sampling
	Imperative Control Logic Sampling
	Imperative Procedure Rewriting

	Forester OverView
	Forest Data Structure
	MDL Sampling
	Sampling Layer
	Sampling Criteria
	Sampling Algebra
	Sampling Expression

	Sampling Control Logic Algebraization
	Agile Approximate Processing
	Cold Sampling
	Hot Sampling
	Cost Model for Agile Approximate Processing

	FORESTSAMPLE Clause
	Optimization Process
	Optimization Workflow
	Optimization Steps
	Process of Agile Approximate Processing
	The Lowest Benefit-Aware Execution Plan

	Accuracy of Sampling Generation
	Semantic Preservation of Procedure
	Experiment
	Experimental Settings
	Workload
	Baseline Evaluation
	Physical Environment
	Performance Measures

	Experimental Results For Overall Evaluation
	Evaluation of Accuracy
	Evaluation of Speed-Up
	Evaluation of Precomputed Cold Sampling
	Evaluation of MDL Sampling
	Evaluation of Optimality
	Evaluation of Compilation Overhead

	Experimental Results For Sensitivity
	Evaluation of Sample Size Sensitivity
	Evaluation of Projection Sensitivity
	Evaluation of Scalability
	Evaluation of Parameter Sensitivity

	Related Works
	Literature on Exploratory Data Analysis for Approximate Query Processing
	Literature on Sampling for Approximate Processing

	Future Scope
	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2

	Appendix B
	Appendix B.1
	Appendix B.2

	Appendix C
	Appendix C.1
	Appendix C.2

	Appendix D
	Appendix D.1
	Appendix D.2

	Appendix E
	Appendix E.1
	Appendix E.2

	References

