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Abstract: The whole world is quickly transforming into an information world with the setup of
smart cities, among other things. Information and other forms of privacy are therefore at risk due to
the growing intelligence of hackers. Therefore, to enhance the security of information, a capacity-
raising interpolation method based on histogram shifting is proposed. According to the experimental
results, the capacity-raising interpolation method based on histogram shifting produces high-quality
images with a significantly high embedding capacity, outperforming other methods. Apart from
the already-mentioned advantages, the proposed method is reversible and can recover images in a
lossless manner.

Keywords: data hiding; steganography; histogram shifting; interpolation; prediction errors

1. Introduction

The internet age has seen a vast amount of developments in all aspects of the internet
and information and technology. Such technology includes, but is not limited to, media,
especially digital media such as videos, images, and audio. All of these are vulnerable
to hacking and thereby raise a security risk, as unauthorized personnel could access
information. To solve this problem, computer scientists and information security engineers
have developed some techniques, and these techniques include cryptography [1] and
data hiding techniques [2]. The aforementioned problems are mainly a result of shared
channels [3]. Cryptography mainly refers to using a mathematical function such as a
hashing function to encode a message such that it cannot be understood and is unusable
without a decryption key [4].

Steganography [5] is one of the many data-hiding techniques available. In steganogra-
phy, many types of media can be used, which include images, videos, and audio. Steganog-
raphy is simply a method of embedding messages into any of these already-mentioned
media types. Steganography should not be confused with cryptography, but should be
understood as information hiding. Of note is that encrypted messages can also be hidden
in these types of media.

In information hiding, the aforementioned multimedia may suffer permanent dis-
tortion depending on the data-hiding technique used. Sometimes, permanent distortion
cannot be tolerated; therefore, many different reversible data-hiding schemes have been
proposed. These data-hiding schemes are meant to extract information and recover the
cover image in a lossless manner [6–21]. Some of these reversible data-hiding schemes
(RDH) include difference expansion (DE); histogram shifting (HS) [6], from which the
proposed method draws some ideas; prediction error (PE) [7,10,19], from which some ideas
were drawn; and pixel value ordering (PVO) [13–16,20,21], which shall be compared with
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the proposed method in the results section of this paper. Reversible data hiding [15] in-
volves embedding information into host data while maintaining the ability to fully recover
both the original host data and the hidden information. This method ensures that no data
loss occurs during the embedding process, allowing for accurate retrieval. Reversible data
hiding also allows for the integrity of the host data to be preserved, making it suitable
for applications where accuracy is crucial. For example, in hospitals, information can
be hidden in medical images, and both the hidden data and the original medical image
should be recoverable. Non-reversible data hiding, on the other hand, involves embedding
information in a way that compromises the ability to fully recover the original host data.
This method is often used for security or copyright protection, but comes with inherent
data loss.

The above schemes can generate different types of resolution images. Although not
mentioned above, one scheme to generate high-resolution images is image interpolation [8,12].
It is, therefore, needless to say that interpolation can be used in combination with other
schemes to generate a better algorithm with a good imperceptibility and embedding capacity.
The interpolated image usually has different values as compared to the original image, and
through this, data hiding can occur at a larger scale. Some of the known existing interpolation
methods include neighboring pixels, enhanced neighboring mean interpolation, and modified
neighbor mean interpolation, among many others.

During the embedding process in data hiding, one or more stego images are generated
depending on the data hiding algorithm used. A stego image, short for steganography im-
age, refers to an image that has been altered to conceal the presence of hidden information.

In this paper, we propose a four-stage interpolation-reversible data-hiding method
with high visual image quality and a high embedding capacity (EC). In the first stage, we
downsize the original image using selected fixed pixels. In the second stage, we interpolate
the downsized image pixels to obtain new pixels, and from there, we move on to stage three,
where we calculate the prediction errors. The last stage involves adjusting the prediction
errors using the given secret binary message. During the last stage, shifting and embedding
are performed with a maximum of one bit, thus increasing the embedding capacity of the
proposed method.

The rest of this paper is organized into four sections. In Section 2, related works are
reviewed. In Section 3, the proposed method is described. In Section 4, the experimental
results are shown and discussed. The conclusions are presented in Section 5.

2. Related Works

This section introduces and reviews various reversible data-hiding methods, including
enhanced neighbor mean interpolation (ENMI), the conventional PEE method, and the
pixel-based pixel value ordering (PVO) method. The conceptual basis of our method aligns
with the aforementioned schemes, which are further elaborated in the following section.

2.1. Conventional Prediction Error Expansion

Thodi et al. [9] introduced a novel prediction expansion (PEE) method within the
context of reversible data hiding. In their proposed approach, they employed gradient-
adjusted prediction (GAP) to predict the pixel values of the cover image subsequent to
determining the predicted sequence. Prediction errors were computed across the cover
pixels, and the prediction error sequence guided the prediction of pixel values. The
resulting prediction error sequence was utilized to generate prediction error histograms
(PEHs). Subsequently, secret messages could be embedded by expanding and shifting the
histogram. This process led to the creation of a stego image. The embedding procedure for
the aforementioned PEE method adheres to the following sequence:

Step 1. Divide the cover image C into 2 × 2 non-overlapping blocks, as shown in
Figure 1. Here, x1, shown in a yellow highlight, is the current pixel, and ci, i = 1 to 3, are the
neighboring pixels.
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Step 2. Contemplate the present pixel x1 employ the gradient-adjusted prediction
(GAP) predictor, as depicted in Equation (1), to derive the predicted pixel x̂i.

x̂i =


max(c2, c3), i f c1 ≤ min(c2, c3)

min(c2, c3), i f c1 ≥ max(c2, c3)

c2 + c3 − c1, otherwise

(1)

Step 3. Compute the prediction error Pi by considering neighboring pixels and the
predicted image, utilizing Equation (2).

Pi = xi − x̂i (2)

Step 4. Aggregate all prediction errors Pi to formulate a histogram.
Step 5. Identify the threshold T and employ Equation (3) to conceal the binary secret

in an expanding and shifting manner.

P′
i =


2Pi + s, i f Piϵ[−T, T)
Pi + T, i f Piϵ[T,+∞)
Pi − s, i f Piϵ[−∞,−T)

(3)

Step 6. Utilize Equation (4) to calculate the stego-pixel x′i. Repeat this process for all
stego pixels, culminating in the construction of the stego image S.

x′ i = P′
i + x̂ (4)

2.2. Pixel-Based Pixel Value Ordering Predictor

In 2007, an improved PVO method called pixel-based pixel value (PPVO) was pro-
posed by Qu and Kim [10]. According to their proposition, their method could predict
pixels using sorted context pixels. The smallest and largest pixel values were used to
predict the value, and this meant that their method could predict almost all pixels, thus
preserving more space for carrying secret messages, thereby increasing the embedding
capacity. Their embedding process can be summarized in the following steps:

Step 1. Process pixels to avoid overflow/underflow by changing the boundary pixels
of images 0 and 255 to 1 and 254, respectively, and then recording the processed pixel
positions on a location map (LM).

Step 2. Select context pixels, define neighboring pixels, and predict pixels C.
Step 3. Determine the maximum and minimum pixel values within the context of the

prediction context pixels, Cmax and Cmin, respectively. Throughout the data embedding
phase, classify each prediction pixel of t into one of four sets, W1–W4, using Equation (5).

W1 = {t|Cmax ̸= Cmin, t ≥ Cmax}
W2 = {t|Cmax ̸= Cmin, t ≤ Cmax}
W3 = {t|Cmax = Cmin, t ≤ Cmax, Cmin ̸= 254}
W4 = {t|Cmax = Cmin, t ≥ Cmax, Cmin = 254}

(5)
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Step 4. Using Equation (6), determine the pre-predicted value Ptd. If the pixels are not
in any of the above-discussed sets, the pixels cannot hide any secret bit.

Ptd =

{
Cmax , i f t

′ ∈ W1 ∪ W4

Cmin , i f t
′ ∈ W2 ∪ W3

(6)

Step 5. The prediction error e is computed utilizing Equation (7).

e = t − Ptd (7)

Step 6. The binary secret bit is embedded into the prediction error e, and a new
prediction error e’ is obtained based on Equation (8).

e
′
=


e + b, i f t ∈ W1 ∪ W4 and e = 0
e + 1, i f t ∈ W1 ∪ W4 and e > 0
e − b, i f t ∈ W2 ∪ W3 and e = 0
e − b, i f t ∈ W2 ∪ W3 and e < 0

(8)

Step7. Compute the stego pixel t’ by using Equation (9).

t′ = Ptd − e′ (9)

2.3. Enhanced Neighbor Mean Interpolation (ENMI)

To enhance the visual quality of magnified images, Chang et al. [11] introduced an
extension of the interpolation method proposed by Lee and Huang [12], known as interpo-
lation by neighboring pixels (NMI). Using this approach, the computational procedure for
diagonal pixels in NMI was substituted with the average of the four closest original pixels,
as depicted in Figure 2. It is important to emphasize that this modification adheres strictly
to the original equation and format. The blue color in Figure 2 shows the fixed pixels.
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2.4. Research Motivation

The previously mentioned techniques, namely, conventional prediction error expan-
sion and pixel-based pixel value ordering predictor, demonstrate proficiency in generating
stego images characterized by elevated PSNR values. Nevertheless, these methodologies
exhibit shortcomings in terms of security and embedding capacity. A primary deficiency in
conventional prediction error expansion lies in its susceptibility to sophisticated attacks.
The method is vulnerable to statistical analysis, which may enable adversaries to discern
patterns and potentially unveil concealed information.

Conventional prediction error expansion facilitates data concealment within prediction
errors; however, its embedding capacity is constrained. The method encounters challenges
accommodating larger volumes of data without compromising the quality of the resultant
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stego content. Such limitations pose practical hindrances in applications necessitating
substantial data-hiding capabilities. Analogously, the pixel-based pixel value ordering
predictor method faces analogous constraints.

To facilitate the secure transmission of larger volumes of data, we propose a high-
payload scheme grounded in interpolation and histogram shifting. In Section 3, we describe
our proposed method.

3. Proposed Method

This section provides a detailed introduction to the proposed method, which is based
on enhanced neighbor mean interpolation (ENMI) [11]. The framework of the proposed
method is depicted in Figure 3. On the sender side, prior to the embedding process, the
image boundary pixels are adjusted, and the adjusted pixel locations are recorded in a
location map (LM), which is then compressed into a compressed location map (CLM),
shown with a blue background in Figure 3. The image with adjusted boundary pixels
is then downsampled. The downsized image with fixed pixel values is used to make
an interpolated image. Prediction errors are then calculated. These prediction errors are
then adjusted using the secret message (bits) or by shifting. On the receiver side, we first
downsample the received stego image and then perform image interpolation. Prediction
errors are calculated and adjusted to recover the image and also to extract the secret message.
The received compressed location map (LM) is decompressed, the decompressed location
map is used to readjust the recovered image, and a fully recovered image is attained. The
proposed method was adapted from Chang et al. [11], although it does not follow the same
procedures as ENMI [11].
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3.1. Overflow/Underflow

Prior to delving into a comprehensive discussion of the proposed method, it is im-
perative to acknowledge that the introduced approach is vulnerable to underflow and
overflow at the boundary pixels of 0 and 255. This susceptibility may give rise to minor
distortions. The distortion in this method may not be severe, since embedding and shifting
are accomplished by −3 and 3, as shall be discussed below. To avoid this situation, the
boundary pixels 0 and 255 were changed by 3 units. The grounds for changing by one unit
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are based on the shifting and embedding being conducted by a three-value unit (3 and
−3). As an illustration, 0 has been altered to 3, and 255 has been adjusted to 252. These
boundary pixels necessitate preprocessing, after which a location map (LM) is employed to
retain pixel information, ensuring pixel reversibility. Utilizing arithmetic coding, the LM
can be condensed to generate a compressed location map (CLM).

3.2. Embedding

The embedding process is conducted in a series of steps to obtain the stego image.
These steps include downsampling, the interpolation process, calculation of prediction
errors, adjustments to prediction errors, and secret embedding and generation of the
stego image.

3.2.1. Downsampling

In this step, the image has to be sampled using certain fixed pixel values. The choice
of fixed pixel values for utilization during the downsampling process can be executed
through various methods, and these methodologies do not impact the performance of the
proposed method. For illustration in this method, odd pixel positions were selected as the
fixed pixel positions from both the row R and column C., i.e.,

Ri = {1|3|5|. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .n},

Ci = {1|3|5|. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .n}

where n is an infinite positive odd number. Please note that both C and R must be odd if the
pixel position is to be considered as a fixed pixel position. The downsampled pixel is referred
to as dy. The selected fixed pixel position values are used as the downsampled pixels. Figure 4
is an example to demonstrate this. The yellow highlight represents the fixed pixel positions
while the arrows show these fixed pixel positions which are used during downsampling:
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In this example, the downsampling process is demonstrated using four fixed pixels
selected through the row and column odd position number system discussed above. Here,
R1C1 represents row R = 1 and column C = 1. The same goes for the rest of the highlighted
pixel positions. These pixel positions are all from odd positions. Pixel 51 comes from the
odd position RC (3,1). The downsampling is shown in the last part of the above image as
pixels 50, 51, 50, and 52.

3.2.2. Interpolation

The next step after the downsampling is interpolation. Interpolation generally means
fitting data points onto something to represent data. In this method, interpolation refers to
fitting pixels to represent the original image pixels and the downsampled pixels. To achieve
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this, each even pixel point position value is determined by computing the average of two
fixed-position pixels from the downsampling. For instance, if the required even position is
RC (1,2), the pixels from RC (1,1) and RC (1,3) are averaged and then rounded off to the
nearest integer if the average is a floating-point number. The pixel at position RC (1,2) will
have a value equal to this average. This can be carried out using Equation (10).

Pi =

 (d y + dy+1

)
2

 (10)

where Pi is the interpolated image pixels, d is the downsampled pixels, and y is the position
of each downsampled pixel in terms of RC. Figure 5 is an example of how the interpolated
pixels would look given the previous downsampling example:
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3.2.3. Prediction Errors

To obtain the prediction errors Pe, the interpolated pixel values Pi for each pixel
position are subtracted from the corresponding original pixels Po using Equation (11).
Figure 6 shows an example of this. The yellow highlight marks the fixed pixel positions.
The rest of the colors have no significant meaning apart from distinguishing between the
original and interpolated pixels.

Pe = Po − Pi (11)
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3.2.4. Adjusted Prediction Errors

To embed the secret message S, adjusted prediction errors Pa are used. The fixed
prediction errors Pe are not used in the embedding, and as such, they are not adjusted;
rather, they are directly copied as adjusted pixel errors Pa. The rest of the prediction errors
are either shifted or used to embed the secret message by subtraction or addition using
Equation (12):

Pa =


Pe − S, i f Pe = 0
Pe + S, i f Pe = 1
Pe + 3, i f Pe > 1
Pe − 3, i f Pe < 0

(12)

where Pa is the adjusted prediction error, Pe is the prediction error, and S is the secret
message bit. For this method, shifting is only performed by a maximum of 3 bits during
embedding (for Pe = 1 and Pe = 0) and normal shifting (for Pe < 0 and Pe > 1). This
causes some distortion, and, therefore, the PSNR of this method cannot be significantly
high. However, it allows for more data to be embedded, hence improving the embedding
capacity. Figure 7 is an example to demonstrate the above explanation. The change in Pe
by +/−3 changes the pixel intensity, subsequently shifting the histogram of the original or
stego image. The yellow highlight represents fixed pixel positions while the red font is the
secret message to be hidden in the example in Figure 7.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 17 
 

 

 

Figure 6. Prediction error calculation example. 

3.2.4. Adjusted Prediction Errors 

To embed the secret message S, adjusted prediction errors Pa are used. The fixed pre-

diction errors Pe are not used in the embedding, and as such, they are not adjusted; rather, 

they are directly copied as adjusted pixel errors Pa. The rest of the prediction errors are 

either shifted or used to embed the secret message by subtraction or addition using Equa-

tion (12): 

𝑃𝑎 =  {

𝑃𝑒  − 𝑆, 𝑖𝑓 𝑃𝑒  = 0
𝑃𝑒  + 𝑆, 𝑖𝑓 𝑃𝑒  = 1
𝑃𝑒  + 3, 𝑖𝑓 𝑃𝑒  > 1
𝑃𝑒  − 3, 𝑖𝑓 𝑃𝑒  < 0

       (12) 

where Pa is the adjusted prediction error, Pe is the prediction error, and S is the secret 

message bit. For this method, shifting is only performed by a maximum of 3 bits during 

embedding (for Pe = 1 and Pe = 0) and normal shifting (for Pe < 0 and Pe > 1). This causes 

some distortion, and, therefore, the PSNR of this method cannot be significantly high. 

However, it allows for more data to be embedded, hence improving the embedding ca-

pacity. Figure 7 is an example to demonstrate the above explanation. The change in Pe by 

+/−3 changes the pixel intensity, subsequently shifting the histogram of the original or 

stego image. The yellow highlight represents fixed pixel positions while the red font is the 

secret message to be hidden in the example in figure 7. 

 

Figure 7. Adjusted prediction error calculation example. Figure 7. Adjusted prediction error calculation example.

In Figure 7, secret message S is 10110112. Using the above equation, the adjusted
prediction errors can be found. The fixed pixel positions’ prediction errors will not be
adjusted because they are fixed anyways and cannot be used to conceal the secret message.
The positions with values less than 0 in the prediction errors Pe will be shifted left by 1, i.e.,
−1 will be shifted to −2. The positions with values greater than 1 in the prediction errors
Pe will be shifted right by 1 to obtain the adjusted pixel prediction errors Pa, i.e., 2 will be
shifted to 3. The positions with values equal to 1 in the prediction errors Pe will embed
the secret message by adding the secret message bit to the prediction error Pe to obtain the
adjusted pixel prediction errors, i.e., if the secret bit = 1 and the prediction error = 1, the
adjusted pixel errors Pa will be 2.

3.2.5. Obtaining the Stego Image

The last stage in the embedding process is obtaining the stego image. To obtain the
stego image, the adjusted pixel errors Pa are added at the corresponding position to the
interpolated image pixels Pi at that position using Equation (13):

Ps[y] = P
a[y]

+ Pi[y] (13)

where PS is the stego image pixel and y is the position of the pixel or prediction errors. For
example, PS [1] = Pa [1] + Pi [1]. Figure 8 is an example.
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After this step is finished, the embedding process is complete. The sender can send
the stego image and the compressed location map (as overhead information) to the receiver
through a secure channel. Figure 8 is an embedding example where the yellow highlights
represent the fixed pixel positions.

3.3. Extraction and Recovery

Upon receiving the stego image, the receiver has the capability to extract the concealed
secrets and restore the image. The extraction and recovery procedures closely mirror the
embedding process. The subsequent steps outline the process of secret extraction and
image recovery:

3.3.1. Downsampling

Since the stego image’s fixed pixels and the original image’s pixels at the corresponding
positions are equal, the same downsampling method can be used as in the extraction
process. In this part, just like in the embedding process, the image has to be sampled
using certain fixed pixel values. The selection of the fixed pixel values to be used during
the downsampling process can be carried out in many different ways; however, the same
method that was used for selecting the fixed pixel positions during embedding must be used
in selecting the fixed pixel positions during the extraction process, since the fixed pixels
are not modified. Following the proposed method of embedding process downsampling,
odd pixel positions were selected as the fixed pixel positions from both the row R and the
column C, using the same equation as in Section 3.2.1. Please note that both C and R must
be odd if the pixel position is to be considered as a fixed pixel position. The selected fixed
pixel position values are used as the downsampled pixels in the extraction process.

3.3.2. Interpolation

Since downsampling is the same as in the embedding process, the interpolation process
in extraction and recovery also follows the same rules and steps as in the embedding process.
To accomplish this, each even pixel point position value is found by calculating the average
of two fixed position pixels from the downsampling. For instance, if the required even
position is RC (1,2), the pixels from RC (1,1) and RC (1,3) are averaged and then rounded
off to the nearest integer if the average is a floating-point number. The pixel at position RC
(1,2) will have a value equal to this average. The extraction part of interpolation is carried
out using Equation (10), as in the interpolation in the embedding process.

3.3.3. Prediction Errors

After interpolation has been completed, the next step is to calculate the prediction
errors. To obtain the prediction errors Pe, the interpolated pixel values Pi for each pixel
position are subtracted from the corresponding stego pixels Ps using Equation (14):

Pe = Ps − Pi (14)
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3.3.4. Adjusted Prediction Errors

To extract the secret message S, predicted error Pe equals 0 or 1, with an exception: the
fixed positions’ predicted errors will result in an S value that is equal to 0, while predicted
errors with a −1 or 2 value will result in an S value that is equal to 1. Predicted errors
with a −2 or 3 value and predicted errors with a −3 or 4 value will have S values of 2 and
3, respectively. Other predicted error values apart from those discussed will not have an
S value, which means that there is no secret embedded at that position. To calculate the
adjusted prediction errors Pa, the secret S is subtracted from the predicted errors Pe at each
corresponding position, with Pe = 4, Pe = 3, Pe = 2, or Pe = 1. Further, the secret S is added
to the predicted errors Pe at each corresponding position, with Pe = 0, Pe = −1, Pe = −2, or
Pe = −3. To obtain the adjusted prediction errors for other values, 3 is subtracted from the
predicted errors Pe at each corresponding position with Pe > 4, and the 3 is added to the
predicted errors Pe at each corresponding position with Pe < −3. Equations (15) and (16)
are used in this calculation:

S =


0, i f Pe = 0 or 1
1, i f Pe = −1 or 2
2, i f Pe = −2 or
3, i f Pe = −3 or 4
N
A , otherwise

(15)

Pa =


Pe + S, i f Pe = 0 or − 1 or − 2 or − 3
Pe − S i f Pe = 1 or 2 or 3 or 4
Pe − 3, i f Pe > 4
Pe + 3, i f Pe < −3

(16)

Finally, to recover the image, the interpolated pixels Pi are added to the adjusted
prediction errors Pa. The image should be recovered in a lossless fashion. The image
recovery is performed using Equation (17):

Ir = Pi + Pa (17)

where Ir is the recovered image pixel at each position. If any of the boundary pixels were
adjusted from the location map, readjust the pixels to obtain the real cover image pixels.
Figure 9 is an example of the whole secret message extraction and recovery process. The
pixels with a yellow background are the fixed pixels. The same pixels are marked using a
red circle to indicate that they are the pixels selected for down sampling purposes.
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3.4. Generic Rivet Cipher 4(RC4 Encrption) Algorithm

The RC4 algorithm, also known as Rivest Cipher 4 or ARC4, is a symmetric stream
cipher widely used for encryption in various security protocols. It is known for its simplicity
and efficiency. RC4 generates a pseudo-random stream of bits, which is XORed with the
plaintext to produce the ciphertext. The algorithm has three main steps: key scheduling,
pseudo-random generation algorithm, and encryption.

Step 1. Key Scheduling:

1. Initialize an array S of 256 bytes with values from 0 to 255;
2. Create a key-dependent permutation of S using the Key Scheduling Algorithm

(KSA);
3. The KSA involves iterating through each element of S, updating it based on the

key and its position.

Step 2. Pseudo-Random Generation Algorithm (PRGA):

1. Initialize two pointers, i and j, both set to 0;
2. Use the PRGA to generate a stream of pseudo-random bytes;
3. In each iteration, update i and j, swap values in S, and calculate a pseudo-random

value K from S;
4. Output K as part of the keystream.

Step 3. Encryption:

1. Input the plaintext message and the encryption key;
2. Initialize the internal state of RC4 using the key by performing the Key Schedul-

ing step;
3. Generate a pseudo-random keystream using the PRGA;
4. XOR each byte of the plaintext with the corresponding byte from the keystream.
5. Output the resulting ciphertext;
6. Note that this algorithm does not influence the performance of the proposed

method, but it is rather used to further protect secret data.

4. Experimental Results

The experiments for the proposed method were performed using Python 3.7 and
Jupiter Notebook, running on a MacBook pro M1 with an Apple m1 chip and an 8GB RAM.
For the sake of experimenting with this method, 10 images were adapted from USC-SIPI
and used. All images used in the experiment were 512 × 512 pixels in size. The comparison
was performed using the embedding capacity, the structural similarity index (SSIM), the
peak signal-to-noise ratio (PSNR), and the prediction error histogram. The embedding
capacity is a measure of how much data can be embedded into the cover image using
the proposed method. In normal cases, a high embedding capacity results in a low PSNR
value; however, this is not the case with the proposed method. The proposed method
demonstrated a high embedding capacity average of 108,801.1 and an average PSNR value
of 40.6 dB when considering the seven images in Table 1.

The peak signal-to-noise ratio (PSNR) serves as a quantitative metric for comparing
images or signals. It is a mathematical equation that articulates the ratio between the power
of a signal and the inherent distortion noise that could impact its quality representation.
Typically, this expression is conveyed on the logarithmic decibel scale to prevent the
representation of excessively large numbers.

In the context of images, the peak signal-to-noise ratio (PSNR) [13–18] is commonly
employed to assess the distortion introduced in image steganography. A lower PSNR value
indicates a more distorted image. For effective steganography algorithms, the PSNR value
is expected to exceed 30 dB, as a value beyond this threshold implies that the distortion
is imperceptible to the human eye. Additionally, a PSNR value greater than 30 dB is a
common benchmark that signifies a good trade-off between the amount of hidden data and
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the perceptual quality of the stego image. The PSNR value is contingent upon the mean
squared error (MSE), as illustrated in Equation (18).

PSNR = 10·log10

(
MAX2

MSE

)
(18)

where MAX is the maximum possible value. In the context of the proposed method, 8-bit
grayscale images were employed, and consequently, the MAX value used was 255. The
PSNR equation can be expressed as Equation (19).

PSNR = 10·log10

(
2552

MSE

)
(19)

The structural similarity index (SSIM) [17] is utilized for assessing the quality of
stego images. A stego image with a value closer to 1 signifies higher image quality. The
computation of SSIM can be performed using Equation (20).

SSIM =
(2pq + c1 )

(
2σpq + c2

)(
p2 + q2 + c1

)(
σ2

p + σ2
q + c2

) (20)

where p, p2, σ2
p and q, q2, σ2

q represent the mean pixel number, variance, and the standard
deviation of the original image and stego image, respectively. 2σpq is the covariance for
the original and stego images. The symbols c1 and c2 are constants, where c1 = k1L
and c2 = k2L. The value of k1 = 0.01, k2 = 0.03, and L is 255 [19].

Table 1. Results of the proposed method using the maximum embedding capacity.

512 × 512 PSNR EC SSIM

Lena 40.7 124,054 0.96

Airplane 40.8 146,170 0.97

Peppers 40.6 113,056 0.95

Jet 40.9 124,192 0.99

Boat 40.5 95,344 0.93

House 40.6 119,226 0.95

Baboon 40.1 39,566 0.92

Average 40.6 108,801.1 0.95

The PSNR and SSIM are vital in measuring the performance of the algorithm. Both
the structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR) are metrics
used to assess the quality of reconstructed signals or images, but they provide different
insights. While PSNR focuses on the level of noise or distortion in the signal, SSIM takes
into account structural information and human perception. Having both SSIM and PSNR
values can offer a more comprehensive evaluation of the quality of a stego image.

Table 1 presents the experimental outcomes for select images utilized in the evaluation
of the proposed methodology. The minimum peak signal-to-noise ratio (PSNR) value
recorded was 40.1 dB, observed in the case of the baboon image. Conversely, the maximum
PSNR value achieved was 40.8 dB. The mean PSNR value for the proposed method,
considering the seven images delineated in Table 1, stood at 40.6 dB. Notably, the proposed
method demonstrated an elevated embedding capacity, as evidenced in Table 1, with
an average embedding capacity of 108,801 bits. Across our experiments, the range of
embedding capacities varied from a minimum of 39,566 bits to a maximum of 146,170 bits.
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Table 1 further demonstrates the SSIM value of the proposed method. As shown, the
SSIM values for all the stego images were closer to 1, and therefore, as per the definition
and description of the SSIM, the proposed method produced great stego images.

Some of the images (512 × 512) used in our experiments included a baboon, a boat,
Lena, and an airplane, and these images are shown in Figure 10.
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Table 2 is a comparison of the proposed method with other methods in terms of the
PSNR with an embedding capacity of 10,000 bits. As can be seen, the proposed method
could not outperform the other compared methods concerning the PSNR value; however,
its PSNR value was above 30 dB, which can be recognized by the human eye. There is
usually a trade-off between the embedding capacity and the PSNR. Since the proposed
method improved the embedding capacity, it did not perform better than the compared
methods with regard to the PSNR.

Table 2. PSNR (dB) comparison of the proposed method with other methods at 10,000 bits EC.

Images HPPVO
[13]

OPPVO
[14]

IPPVO
[15]

IPVO
[16]

GS-LPVO
[20]

LPVO
[21] Proposed

Lena 60.34 60.83 61.14 60.49 62.86 62.0 56.05

Airplane 63.78 62.93 64.09 62.99 64.44 65.0 51.62

Boat 58.4 59.08 58.83 58.4 59.69 N/A 52.56

Baboon 54.02 55.07 54.75 53.69 56.37 62.5 45.01

Average 59.13 59.47 59.70 58.89 60.69 63.2 51.31

In the realm of data hiding, the embedding capacity (EC) denotes the quantitative
extent to which information can be surreptitiously integrated within a host medium without
perceptibly altering its intrinsic attributes. This crucial metric, intrinsic to the discipline of
steganography, encapsulates the maximum volume of concealed data that can be seamlessly
incorporated while mitigating discernible deviations in the quality or characteristics of
the host medium, whether it be an image, audio file, video, or analogous data construct.
The pursuit of an optimal embedding capacity resides in the delicate equilibrium between
concealing a substantial quantum of information and minimizing any discernible impact,
thereby ensuring that the covert alteration remains indiscernible to an observer. This,
therefore, means that an increase in the embedding capacity (EC) leads to a decrease in the
PSNR value. The embedding capacity, in this context, means the number of bits that can be
hidden in the image. The embedding capacity was calculated based on Equation (21).

EC = 2 × ∑(nPe=0 + nPe=1) (21)

where npe is the number of prediction errors.
Refs. [13–16,20,21] all describe reversible data-hiding methods in the histogram shift-

ing and/or interpolation domains. All of these methods can produce very high PSNR
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values and high embedding capacities. Table 3 shows a comparison of the proposed
method with these other previously proposed methods. HPPVO [13] has an average EC
of 37,995 bits, OPPVO [14] has an average PSNR value of 30,555 bits, IPPVO [15] has an
average EC of 33,723 bits, IPVO [16] has an average EC value of 32,218 bits, GS-LPVO [20]
has an average EC value of 34,301, and LPVO [21] has an average EC value of 43,006,
while the proposed method has a high EC of 101,283.5 bits. As can be seen, the proposed
method has the highest average EC value when compared to these methods; thus, the
proposed method is superior to the compared methods with regard to the embedding
capacity. The airplane image, which usually has the highest EC in this domain, also shows
that the proposed method still has the highest embedding capacity of 146,170 bits, as
compared to 51,511 bits from [16], 60,054 bits from [15], 53,122 bits from [14], 62,273 bits
from [13], 49,719 bits from [20], and 50,129 bits from [21] using the same image (airplane).
The minimum EC that could be produced for all the methods was obtained for the baboon
image, for which the proposed method still outperformed the aforementioned ones. The
proposed method had an EC of 39 566 bits for this image, as can be seen in Table 3.

Table 3. EC comparison of the proposed method with other methods in bits.

Images HPPVO
[13]

OPPVO
[14]

IPPVO
[15]

IPVO
[16]

GS-LPVO
[20]

LPVO
[21] Proposed

Lena 45,906 34,071 36,643 37,667 45,196 43,645 124,054

Airplane 62,273 53,122 60,054 51,511 49,719 50,129 146,170

Boat 29,693 23,759 25,782 26,315 29,188 N/A 95,344

Baboon 14,109 11,269 12,416 13,381 13,099 35,245 39,566

Average 37,995.3 30,555.3 33,723.8 32,218.5 34,301 43,006 101,283.5

Figure 11 provides a visual representation of the performance of the proposed method
at various embedding capacity (EC) values; the graph indicates that the method achieved
high peak signal-to-noise ratio (PSNR) values for EC values below 20,000 bits, with a
subsequent decline as EC increased. The house image, depicted in green, exhibited a
particularly smooth quality, attaining an EC value exceeding 46 dB for EC values below
50,000 bits; however, a further increase in EC led to a 2 dB drop, resulting in a less smooth
curve compared to other images.
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4.1. Security

Information concealment techniques, such as the one proposed, facilitate the sur-
reptitious transmission of sensitive data within ostensibly innocuous files. This covert
methodology poses a formidable challenge for unauthorized entities attempting to de-
tect or intercept the concealed information. A multitude of data-hiding algorithms have
been devised across diverse domains, rendering it infeasible for hackers to ascertain the
specific method employed for data concealment. Consequently, this complexity deters
unauthorized access to the hidden confidential data, thereby fortifying the security of the
information. Furthermore, information concealment frequently incorporates encryption,
wherein data undergo transformation into an unreadable format without the requisite
decryption key. This precaution ensures that, even if unauthorized individuals gain entry
to the data, comprehension or utilization remains unattainable without the corresponding
decryption key.

In the proposed methodology, for instance, the utilization of the RC4 algorithm can
precede the embedding process, contributing to an additional layer of security. Moreover,
in data concealment, the stego image typically closely resembles the original image, com-
plicating the ability of hackers to differentiate between an image containing secret data
and one that does not. Consequently, it can be asserted that the security of hidden data is
substantially elevated. Rigorous assessments are commonly conducted on stego images to
validate the algorithm’s resilience against potential attacks. If the algorithm demonstrates
robustness in the face of such assessments, the proposed methodology can be deemed
secure. One such attack is the rotation attack.

In steganography, a rotation attack [19] refers to a technique used by adversaries to
detect, manipulate, or uncover hidden information within images or other media. This
attack involves rotating the carrier medium, typically an image, to reveal patterns or
inconsistencies that might indicate the presence of concealed data. Attackers may employ
rotation to achieve goals such as detecting hidden information, extracting it, or disrupting
it. To counter rotation attacks and enhance steganography security, advanced techniques
are used that can withstand rotations and other transformations while maintaining the
integrity of the hidden data. Rotations by 0, 45, 135, 90, 180, 30, and 270 degrees were
applied to the images. Usually, when a rotation attack can be detected, the PSNR of the
images is significantly reduced; however, the proposed method can withstand this kind of
attack because the PSNR values produced are not too different from each other as shown in
Figure 12.
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4.2. Additional Information

It should be noted that the original binary secret denoted SLai is first encrypted using
RC4 encryption or simple XOR (⊕) to form a new binary secret, denoted as SHui. Before the
embedding process, SHui is divided into groups of 2 to create the to-be-embedded secret
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S using Equation (22). The final secret after extraction is the decrypted secret SLai. The
implementation of RC4 encryption has not been added to this paper.

s =


0, i f sb = 00
1, i f sb = 01
2, i f sb = 10
3, i f sb = 11

(22)

5. Conclusions

In this research endeavor, a method founded upon EMNI [11] was introduced, em-
ploying a capacity-enhancing interpolation and histogram-shifting technique. The original
image underwent a reduction in size, followed by interpolation to generate novel pixels.
Subsequently, prediction errors were computed, and these errors underwent adjustments to
integrate the covert message, resulting in the production of the stego image. This approach,
surpassing contemporary techniques such as IPPVO and IPVO, exhibited an augmented
embedding capacity. The proposed method yielded a superior average embedding capacity
of 101,283.5 bits across the four images employed in the comparative analysis. Further-
more, the suggested method was characterized by reversibility. Notably, its security was
fortified against rotation attacks, employing RC4 encryption on the secret message before
integration. The applicability of this method extends to domains requiring the transmission
of substantial data, such as the medical field.

In forthcoming investigations, efforts to enhance the peak signal-to-noise ratio (PSNR)
value merit exploration. Additionally, fortification of the proposed method’s security can
be achieved through the incorporation of image encryption techniques.
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