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Abstract: Diffusion models specialized in image-to-image translation tasks, like inpainting and
colorization, have outperformed the state of the art, yet their computational requirements are excep-
tionally demanding. This study analyzes different strategies to train image-to-image diffusion models
in a low-resource setting. The studied strategies include incremental learning and task/domain
transfer learning. First, a base model for human face inpainting is trained from scratch with an
incremental learning strategy. The resulting model achieves an FID score almost equivalent to that of
its batch learning equivalent while significantly reducing the training time. Second, the base model is
fine-tuned to perform a different task, image colorization, and, in a different domain, landscape im-
ages. The resulting colorization models showcase exceptional performances with a minimal number
of training epochs. We examine the impact of different configurations and provide insights into the
ability of image-to-image diffusion models for transfer learning across tasks and domains.

Keywords: diffusion probabilistic models; deep learning; adaptive learning; transfer learning; image
inpainting; image colorization; image-to-image translation; training efficiency

1. Introduction

The present work addresses some of the challenges associated with diffusion models
specialized in image-to-image translation tasks, such as inpainting and colorization. We
give particular emphasis to the findings of “Palette: Image-to-Image Diffusion Models” [1],
a widely recognized method with a multi-task generalist approach. Palette introduces a
unified multi-task framework for image-to-image translation. Palette’s approach leverages
the versatility of diffusion models (DMs) and demonstrates superior performance compared
to strong generative adversarial networks (GANs) and regression baselines. However,
while multi-task generalist approaches offer versatility, it is essential to consider their
limitations. In certain scenarios, specialized models tailored specifically to individual tasks
may achieve superior performance, and that is what we aim to reproduce. Additionally,
the training process of a generalist model based on DMs requires substantial computational
resources and extensive datasets, posing challenges in terms of feasibility and accessibility
for developers [2].

In light of these considerations, this study aims to provide a practical approach that
mitigates the challenges associated with image-to-image diffusion models in low-resource
settings, with a special emphasis on multi-task generalist approaches. Specifically, the focus
is on reducing the computational requirements and training time by applying incremental
learning and task/domain transfer learning techniques. We utilize a concrete task, such
as human face inpainting, as the starting point. A base model for this task is trained from
scratch with an incremental learning strategy. We compare the performance achieved by
this model with its batch-learning equivalent. Second, the base model is fine-tuned to
perform a different task, image colorization. We compare the computational cost and the
performance of the resulting model with a multi-task approach and with a specialized
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method. Finally, the study explores an alternative approach that aims to adapt a pre-trained
model from one domain (faces) to another (landscapes). We assess the extent to which
the knowledge embedded in the pre-trained face colorization model can be utilized to
efficiently colorize landscape images with minimal training. We examine the impact of
different configurations and provide insights into the application of a domain transfer
learning approach to this type of model.

Overall, this work contributes to the advancement of DMs by addressing their high
computational requirements and training time [3]. By providing solutions for training
efficiency and knowledge transfer, the proposed approaches enhance the feasibility and
accessibility of DMs for various image-to-image translation tasks and data domains.

2. Diffusion Models Overview

DM architecture consists of two Markov chains [2]. The first one incorporates noise
in its input data at each timestep, making it converge toward a simpler data distribution
(generally Gaussian noise). This one is carefully built to inject the noise so that the data
truly converge toward real Gaussianity. Because of this, no parameters are usually trained
in this half. The second Markov chain is in charge of reversing the noise injection the
previous chain incorporated. This process is achieved by training many transition models,
one for each timestep, where each gradually denoises the data. Once this architecture is
built and trained, the generation of new samples is obtained through the input of real
Gaussian noise (not obtained from the first chain); then, it is forwarded through the second
chain and obtains the newly generated data sample.

Figure 1 shows how the input image x(0) is forwarded through all timesteps until
reaching the final state with a Gaussian noise distribution in x(T). Then, it repeats all the
steps backward until it reconstructs the original image.

Figure 1. Diffusion model architecture from [4], transforming data into a simple noise distri-
bution. Then, this process can be reversed by utilizing the score of the distribution at each
intermediate timestep.

In terms of the model’s architecture, it is important to note that Ho et al. [5] utilized a
U-Net, ensuring that the input and output of the model were of the same size. In essence,
a U-Net is a symmetric architecture that incorporates skip connections between encoder
and decoder blocks, enabling the preservation of feature information [6]. A schematic of
its architecture is shown in Figure 2. Typically, the input image undergoes downsampling
and subsequent upsampling operations until it reaches its original size. In the original
implementation of denoising diffusion probabilistic models, the U-Net architecture consists
of wide ResNet blocks, group normalization, and self-attention blocks [5]. Additionally, to
specify the diffusion timestep, a sinusoidal position embedding is incorporated into each
residual block.
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Figure 2. U-Net architecture (extracted from [6]). Each blue box represents a feature map with
multiple channels, and the number of channels is indicated on top of the box. The x–y size of the
feature map is provided at the lower left edge of the box. White boxes indicate copied feature maps,
while the arrows indicate the various operations performed.

2.1. Three Directions of Improvement

However, we can identify three main issues and areas of improvement for DMs:
sampling-acceleration enhancement, likelihood-maximization enhancement, and data-
generalization enhancement.

2.1.1. Sampling Efficiency

The first issue that DMs present is that, to achieve the desired results, the Markov
chains that build them must have a very large number of steps, with values around
1000 steps, in order to ensure one obtains high-quality samples. Each of these steps
requires evaluating a neural network model once. Adding up all steps, forwarding every
corresponding neural network demands long training times and loads of computational
operations. All this results in obtaining substantially slower models than GANs, which
are also analyzed later, for example, in [3]. Because of this high number of small networks
that DMs require for training, both training and evaluation processes take a very long time,
needing a lot of computational power too. Later, this work specifically tackles this issue as
its main focus, as previously mentioned.

2.1.2. Likelihood Maximization

Given how DMs work, their main objective is to maximize the log-likelihoods of the
data they generate, but log-likelihood is not directly optimized by the weighted combination
of score-matching losses. This is equivalent to minimizing the divergence between the
forward and reverse processes through the whole Markov chain. This is defined as a
variational lower bound (VLB). However, this VLB easily finds sub-optimal log-likelihoods.
Different techniques exist to solve the issue, such as noise schedule optimization, reverse
variance learning, and exact log-likelihood evaluation [2].

Noise schedule optimization: When defining and building diffusion models, noise in-
jection in the forward process is programmed without trainable parameters. By optimizing
the forward noise schedule of diffusion models, one can further maximize the VLB in order
to achieve higher log-likelihood values [7].

Reverse variance learning: Classical definitions of DMs assume that transitions
between timesteps in the reverse Markov chain have pre-established variance parameters.
In addition to maximizing the VLB, some techniques propose training the reverse variances.
Improved denoising diffusion probabilistic models (iDDPMs) [8] propose learning the
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reverse variances by parameterizing them with linear interpolation and training them
using a hybrid objective. This results in higher log-likelihoods and faster sampling without
losing sample quality.

Exact log-likelihood evaluation: This last technique is straightforward but more
computation-heavy, as it aims to extract the log-likelihood formulation by solving the
reverse stochastical differential equation of the model [4].

2.1.3. Data Generalization

DMs have achieved great success in fields such as computer vision. However, within
some other subjects, they do not seem to work equally well. Many important data domains
have special structures that must be taken into account to achieve correct DM function.
As an example, models that heavily rely on score functions defined on continuous data
domains pose a problem for this kind of model. The text-to-image synthesis also exem-
plifies this situation. To solve this scenario, some adjustments to the basic architecture of
the diffusion model have to be made to fit and adapt to the discrete data space [9]. On
the other hand, when working on supported data domains, such as image-to-image trans-
lation, where they operate with no need for any data adaption, DMs showcase excellent
results and superior capabilities over other generative architectures we analyze in the
following section.

2.2. State of the Art

Diffusion probabilistic models are outperforming existing state-of-the-art methods in
various fields and applications [10,11]. Recent advancements in image-to-image translation
tasks, such as inpainting and colorization, have showcased the potential of diffusion models
to achieve superior performance compared to other state-of-the-art generative architectures.
However, they are mostly focused on one target domain and single-task solving.

The RePaint [12] paper introduced a novel approach to free-form inpainting, which
involves filling in missing regions in an image based on an arbitrary binary mask. Un-
like existing methods that are limited to specific mask distributions and often produce
texturally simplistic results, RePaint utilizes a pre-trained unconditional denoising DM
as a generative prior. Instead of training a mask-conditional model, RePaint conditions
the generation process by sampling from the known regions of the image during reverse
diffusion iterations. This allows the model to produce high-quality and diverse output
images for inpainting tasks with any mask type. The paper presented experiments on
the face and general-purpose image inpainting, demonstrating that RePaint outperforms
state-of-the-art autoregressive and GAN-based approaches (e.g., [13,14]) for a variety of
mask distributions. The proposed method leverages the power of DMs for semantically
meaningful generation and texture synthesis, and it provides an effective conditioning
strategy for inpainting. While using a problem-specific algorithm can help reduce training
costs, it often comes at the expense of versatility. These algorithms are specifically designed
to solve a particular problem and may struggle to adapt to new or different tasks. Their
rigid structure limits their ability to generalize and apply knowledge to other domains,
which is what we are aiming to solve in a more generalized and versatile way. On the other
hand, COPAINT [15] also applies a denoising DM to the inpainting problem but addresses
the incoherence between revealed and unrevealed regions with a Bayesian framework,
approximating the posterior distribution in a way that allows the errors to gradually drop
to zero throughout the denoising steps, thus strongly penalizing any mismatches with the
reference image.

Concerning the state of the art in DMs related to colorization, we can find the Palette [1]
paper. It presented a unified framework for image-to-image translation using conditional
diffusion models. The paper focused on four challenging tasks: colorization, inpainting,
uncropping, and JPEG restoration. The authors demonstrated that their implementation
of image-to-image diffusion models surpasses strong GAN and regression baselines in all
tasks without requiring task-specific customization or advanced techniques. They explored
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the impact of different loss functions and neural network architectures, emphasizing the
importance of self-attention layers. The paper also introduced a standardized evaluation
protocol based on ImageNet, incorporating human evaluation and various sample quality
scores. The authors advocated for the versatility and generality of diffusion models in
image manipulation and highlighted the performance of a generalist, multi-task diffusion
model compared to task-specific specialist counterparts. The paper concluded with an
evaluation of Palette on the colorization task, where it achieved state-of-the-art results and
demonstrated close resemblance to the original images in terms of quantitative metrics and
human evaluation.

It is important to highlight that Palette [1] employs a multi-task model that offers
increased versatility but does not specialize in any specific task but in many. Although
our foundation lies in Palette, a multi-task model, our proposed method adopts a single-
task transfer learning approach. In contrast to the parallel learning of shared information
across multiple tasks, our objective is to sequentially utilize knowledge from a source
task to enhance the training of a target task. By training and adapting the model from a
baseline one, it can bend and optimize its performance based on the specific requirements
of the target domain and task. This flexibility enables researchers to tailor the model to
different applications and explore a wide range of image-to-image translation tasks while
still achieving competitive performance and having low training time requirements.

Other works have also tried to compensate for the limitations of DMs. The paper
“Wavelet Diffusion Models are Fast and Scalable Image Generators” [16] addresses the chal-
lenge of slow training and inference speeds in diffusion models despite their high-quality
image generation capabilities. The authors proposed a novel wavelet-based diffusion
scheme that leverages wavelet decomposition to extract low- and high-frequency compo-
nents from images and features. This approach significantly reduced processing time while
maintaining good generation quality. Experimental results on various datasets demon-
strated that the proposed wavelet diffusion framework bridges the speed gap between
diffusion models and GANs, making diffusion models more suitable for real-time and
large-scale applications.

3. Methods

This work is inspired by “Palette: Image-to-Image Diffusion Models” [1]. This paper
presents a novel unified framework for image-to-image translation tasks, such as coloriza-
tion, inpainting, uncropping, and JPEG restoration. Palette’s proposed approach leverages
conditional diffusion models and achieves superior performance compared to strong GAN
and regression baselines without requiring task-specific hyper-parameter tuning, archi-
tectural customization, or additional sophisticated techniques. The authors introduced
a straightforward implementation of image-to-image diffusion models that outperforms
existing methods across all considered tasks. Overall, the presented unified framework for
image-to-image translation utilizing conditional diffusion models demonstrates remark-
able performance, emphasizes the importance of self-attention mechanisms, introduces a
standardized evaluation protocol, and showcases the effectiveness of a generalist approach
in multi-task scenarios. Palette is an image-to-image diffusion model, i.e., a conditional
diffusion model of the form p(y | x), where both x and y are images (e.g., x is a grayscale
image, and y is a color image). A conditional diffusion model converts samples from a
standard Gaussian distribution into samples from an empirical data distribution through
an iterative denoising process conditional on an input signal. The denoising loss function is
obtained by training a neural network fθ . Given a training output image y, a noisy version
ỹ is generated:

ỹ =
√

γ y0 +
√

1− γ ϵ , ϵ ∼ N (0, I) (1)

fθ is trained to predict the noise vector ϵ, i.e., to denoise ỹ given x and a noise level
indicator γ, for which the loss is
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E(x,y)Eϵ∼N (0,I)Eγ

∥∥∥∥ fθ(x,
√

γ y +
√

1−γ ϵ︸ ︷︷ ︸
ỹ

, γ)− ϵ

∥∥∥∥p

p
(2)

Inference is performed via the learned reverse process. Since the forward process is
constructed so the prior distribution p(yT) approximates a standard normal distribution
N (yT |0, I), the sampling process can start at pure Gaussian noise, followed by T steps of
iterative refinement.

Figure 3 graphically shows the workflow of the inference process, which is a reverse
Markovian process that starts with a pure Gaussian noise image yt and a condition image x
(the target image with a missing region in the inpainting task) and iteratively performs a
conditional denoising with the U-Net model fθ .

Figure 3. Conditional (image-to-image) diffusion model inference workflow.

Palette’s architecture employs U-Net, initially introduced by Ho et al. [5], but with sig-
nificant modifications. The network’s structure is based on the 256 × 256 class-conditional
U-Net model proposed by Dhariwal and Nichol [17]. However, two major differences
set their architecture apart: first, they do not use class conditioning, and second, Palette
incorporates additional conditioning of the source image through concatenation, following
the approach of Saharia et al. [18].

In this study, we focus on the drawbacks associated with utilizing a multi-task gener-
alist approach for image-to-image translation. While this approach offers versatility, it is
important to consider its potential limitations. In certain scenarios, employing a specialized
model tailored specifically to a given task may yield superior performance compared to
a generalist model. Moreover, the training process of the generalist model necessitates
significant computational resources and extensive datasets, thus presenting challenges in
terms of feasibility and accessibility for potential developers [19]. Through the examination
of the advantages and limitations of employing a multi-task generalist approach for image-
to-image translation, this paper provides a practical approach that requires an easier and
computationally lighter training process. Figure 4 provides a graphical overview of the
methodology. First, a base model for human face inpainting is trained from scratch with an
incremental learning strategy. Second, the base model is fine-tuned to perform a different
task, image colorization. The resulting colorization model is, in turn, fine-tuned to operate
in a different domain, landscape images.
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Figure 4. Outline of the methodology workflow.

3.1. Baseline—Inpainting

The study begins with training an image-to-image diffusion model for human face
inpainting based on the Palette architecture. This is the base model that is later adapted for
other purposes. Because of its complex requirements, image inpainting has been selected
as the foundational task for the base model. This choice aims to leverage the acquired
skills to subsequently achieve effectiveness in other tasks and domains with minimal cost.
The study focuses on leveraging the CelebA-HQ dataset [20] to train and evaluate the
proposed model.

The CelebA-HQ dataset is a high-resolution dataset, specifically focusing on human
faces. It contains a large collection of high-quality images featuring various individuals,
including celebrities and non-celebrities. The dataset covers a wide range of facial attributes,
expressions, poses, and backgrounds, providing a diverse representation of human faces.
Each image is carefully labeled with rich attribute annotations, enabling research in areas
such as facial recognition, attribute prediction, and facial analysis. The CelebA-HQ dataset
serves as a valuable resource for training and evaluating deep learning models that deal
with facial image processing and analysis tasks like ours.

The base model aims to generate visually plausible and contextually coherent missing
regions within the images. The utilization of the CelebA-HQ dataset during the training
for this task enables the model to learn from diverse examples of human faces, thereby
facilitating the acquisition of facial attributes, color patterns, and spatial relationships,
very useful features that can be exploited in other tasks and applications. The base DM
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architecture was obtained from an existing unofficial implementation of Palette [21], which
was later modified and tuned to fit this work’s scope. The existing code held all four
Palette modules (colorization, inpainting, uncropping, and JPEG restoration), although
only inpainting and uncropping were functional. Moreover, this first step’s goal consisted
solely of image inpainting. There were some pre-trained inpainting models that were used
for the early steps of the project, but in the end, a long-trained model focused on inpainting
was trained from scratch. The software in charge of this task was already built [21], with
small changes required, but hyperparameter optimization was required to obtain better
results, especially adjusting to training time restrictions. The code required a long training
time (as expected) and required GPUs to run it. Because of this, we had to handle the
parameters of the model to minimize the running time but keep a healthy balance so
good results were still obtained. Initially, the model consisted of 2000 timesteps, which
means that it added noise 2000 times and was denoised another 2000 times. We reduced
the number of steps to 1200, as we experimentally found that quality results were still
achieved while minimizing the timesteps. Also, to compensate for this modification, we
proportionally increased the noise addition to end up with the same amount of distortion
at the end of the Markov chain, passing from 0.9999 of maintained information between
timesteps to 0.9983. It is worth mentioning that the limitation to the number of images per
epoch fed to the model was one of the biggest factors that helped reduce the runtime, but
this hyperparameter adjustment provided an extra speed-up.

Incremental Learning

We train all models with a minibatch size of 1024, a standard Adam optimizer, a 10k
linear learning rate warmup schedule, and 0.9999 EMA. Algorithm 1 shows the training
pseudocode inspired by [1] and described in Section 3.

Algorithm 1 Training a denoising model fθ

1: repeat
2: (x, y0) ∼ p(x, y), where x is a grayscale image and y0 is a color image
3: γ ∼ p(yT) (noise level indicator by T steps of iterative refinement)
4: ϵ ∼ N (yT |0, I) (approximating a standard normal distribution)
5: Take a gradient descent step on

∇θ

∥∥ fθ(x,
√

γy0 +
√

1− γϵ, γ)− ϵ
∥∥p

p
6: until converged

As a diffusion model with more than 500M parameters, Palette is very expensive to
train on the CelebA-HQ dataset. In order to enable training in a configuration with few
resources, we adopted an incremental learning strategy. As a low-resource setting, we
selected the free Google Colab tier. In contraposition to batch learning, incremental learning
does not use the same set of images for all training epochs. We trained the model with
episodic training sessions spanning 5 epochs each, which approximately aligns with the
time limit imposed by Colab. After each session, the model’s state was saved to ensure
continuity. Subsequently, for the following 5 epochs, we reloaded the previously saved
model state and continued training from that point onwards. This approach enabled us to
train the model effectively while accommodating the time limitations imposed by the Colab
platform. Yet, completing 5 epochs each session was not enough, as a total of 200 epochs
were needed to obtain the desired results. For this reason, the learning rate and the number
of timesteps were adjusted to reduce the running time.

In order to effectively monitor and reduce the duration of training epochs, it became
necessary to address the number of utilized images. Employing a large number of images
resulted in a significant exponential increase in training time, while excessively reducing the
dataset posed the risk of detrimental effects, such as overfitting or subpar performance. To
address this problem, a new training methodology was designed. The approach consisted
of maintaining the whole dataset, but instead of accessing it all during each epoch, only a
subset of it was considered. For the first epoch, a sub-selection of the images is considered.
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After a few epochs, 3 to be precise, this subset was changed, having access to a different
selection of data. Algorithm 2 shows the pseudocode of this incremental learning strategy.

Algorithm 2 Incremental training model

Require: N ←number of data subsets; E ←epochs per subset; D ←dataset; M ←model (new or
pretrained)

1: Divide the training dataset D into N equal subsets D0, D1, ..., DN−1

2: for i← 0 to N − 1 do
3: for j← 0 to E− 1 do
4: M = train_with_Algorithm_1(Di, M) (three epochs)
5: end for
6: end for

The incremental learning model M was trained with new incoming data Di applied
to the M model obtained in the previous training phase. This approach facilitated shorter
training times while maintaining access to a diverse range of data for learning purposes.
Moreover, this strategy allowed each continuous stream to consume less memory and train
models with limited resources.

To mitigate potential overfitting issues due to having fewer images for short periods
of time, the model’s dropout rate was moderately increased. These adaptations collectively
enabled the training of 15 epochs per session, as opposed to the initial 5, resulting in
notable improvements in overall training time without compromising the quality of the
achieved outcomes.

The existing code already had a pre-trained model trained with 200 epochs as we did,
although the pre-trained model would need a much longer training process than ours did.
The results section further analyzes and compares our model with the pre-trained one, but
with this faster and optimized approach, we obtained very similar results with a much
shorter training process.

Reaching this point, we obtained a trustworthy base model, focused on the inpainting
of human faces, that served as a departure point for all the following experiments.

3.2. Task Adaptation—Colorization

Now, this study investigates the adaptability of the long-trained inpainting model
to the task of colorization. Colorization and inpainting are two challenging image-to-
image translation tasks that entail different difficulties. Inpainting faces the problem
of generating a semantically consistent structure, minimizing the incoherence between
revealed and unrevealed regions. Colorization faces the problem of respecting the different
semantic categories and producing high-fidelity colors. However, while distinct in their
objectives, the basic premise suggests that the complex demands of inpainting likely
involve knowledge that can be beneficially applied to colorization. The study delves into
the learning dynamics of the model, shedding light on the process of acquiring colorization
skills within the existing framework. As mentioned before, when learning from the CelebA-
HQ dataset, the model acquired information about facial attributes, color patterns, and
spatial relationships.

During the present stage, the model was provided with input data consisting of the
original images altered by an incorporated square mask centered in a random point close
to the center of the image, effectively occluding an area encompassing approximately one-
fourth of the total image dimensions. Moreover, the mask consisted of random Gaussian
noise. This approach ensured that the model would encounter a consistent and controlled
input configuration, allowing it to focus specifically on the task of handling the masked
region and generating accurate inpainting results. An example of the ground truth and
the masked image is shown in Figure 5. This was modified to fit the new colorization task.
The mask was no longer applied, and the image was converted to a gray-level scale. A
relevant detail to highlight here is that DMs are known for keeping the same dimensionality
of the data throughout the whole process, working with samples of size 256 × 256 and
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3 channels as we worked with colored images. When obtaining the gray-scale image,
we were cutting down the number of channels from three to one, which did not suit the
architecture anymore. To solve this, the input to the model was adapted, obtaining the
1-channel grayscale image and passing it to a 3-channel image by having all three channels
be the same. In Figure 6, we see the new input and ground truth images given to the model
to train the new task.

With these modifications applied, we loaded the previously trained baseline model
for inpainting and began training with the new grayscale-level input images to achieve
colorization. The same technique of changing to different subsets of images every few
epochs, as described in the previous section, was used again to maintain the speed of the
training process. With only 20 epochs, the model already reached excellent results, show-
casing an extremely short training period compared to the one needed for the inpainting
task and demonstrating an improvement in efficiency when adapting the model to other
tasks within the same data domain.

Figure 5. Masked image for inpainting and ground truth image.

Figure 6. Gray level (3 channels) and ground truth image.

3.3. Domain Adaptation—Landscapes Colorization

This study explores the DM’s domain adaptation capabilities in addition to task
adaptation. Up until now, we modified the task our model aimed to solve, passing from
inpainting to colorization. This was a natural transition, as the DM learned the data features
from the CelebA-HQ dataset, thus requiring a small training process to change from one
task to another within the same scope. In this section, we explore the DM’s capability
of learning features inherent to the task instead of only learning features from the data.
The idea behind this is to show that when you have a colorization model on a target data
domain, the DM has learned how the fed data behaves and how to colorize it, but those
two learned aspects are partially separable. That means that, when training the model
to colorize the CelebA-HQ images, some part of the learning was dedicated exclusively
to learning to colorize, independent of the data. Thus, being able to adapt to a second
domain much faster is thanks to the acquired task-related knowledge.
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In the previous section, we explore the opposite scenario. We assumed that the data
structures were learned, and changing the task only required an extra effort. This time, we
approach this from a less obvious perspective. To prove this, instead of changing the task
of the model, we kept it and changed the data domain instead. We loaded the colorization
model obtained in the previous section and retrained it with images from the Places-2
dataset, aiming to colorize them.

The Places-2 dataset [22] is a large-scale collection of images that encompasses a
wide range of scenes and environments. It consists of diverse images captured from
various locations worldwide, covering urban, rural, natural, and indoor settings. The
dataset contains images depicting landscapes, buildings, interiors, streets, landmarks, and
other visual elements commonly encountered in different geographic locations. It aims
to provide a comprehensive representation of the visual characteristics and diversity of
places, enabling research and development in areas such as scene understanding, object
recognition, and image classification. In order to keep it simpler and require a smaller
set of data overall, reducing its variance, we only considered images from the forest and
mountain sets of the database.

Loading the previously trained model for face colorization, we retrained the model,
this time feeding the Places-2 dataset’s images as input but converted to a gray-level scale.
Figures 7 and 8 show examples of the data fed for this experiment. Places-2 [22] has a
high number of subsets of images featuring different kinds of places. In this experiment,
only images from the folders ’Mountain’ and ’Forest’ were considered. We chose these
images because they held some similarities, but we still had data from more than one class,
increasing the generalization capabilities of our model. For the training, the images were
treated the same way as in previous experiments. With only 25–30 epochs, the model
already reached excellent results, showcasing an extremely short training period compared
to the one needed when training a model from scratch.

Figure 7. Gray level and ground truth mountain image.

Figure 8. Gray level and ground truth forest image.
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Making this differentiation between task and domain, we found that we could main-
tain one and change the other and, with the new setup, adapt the previous model to the
newly defined one. In our case, we changed the task, exchanging inpainting with coloriza-
tion, or we changed the domain by exchanging human faces with landscapes. However,
these alterations have an endless number of possibilities. We could consider uncropping or
image restoration as new tasks, and we could select datasets featuring animals or objects
representing different domains, always making these changes one at a time.

4. Results

This section comprises several components. Firstly, we elaborate on the selection
of our evaluation metric, the reasons why we chose it, and how it works. Subsequently,
we present an analysis of each of the three distinct experiments conducted. The initial
experiment involved the baseline inpainting model for human faces, followed by the
task-adapted model for human face colorization. Finally, we examine the domain-adapted
model specifically designed for landscape colorization. The performance and speed-up time
were both analyzed for each experiment, providing a comprehensive assessment of their
respective outcomes. Some examples of generated images are portrayed for qualitative
results analysis. To quantitatively evaluate the performance of our image generation
models, we adopted the Fréchet inception distance (FID) as a fundamental metric. FID has
emerged as a widely accepted measure for evaluating the visual fidelity and diversity of
generated images. It provides a quantitative assessment of the dissimilarity between the
generated and real image distributions [23].

4.1. Inpainting Baseline Model

This section compares the performance and time efficiency in achieving the desired
results. Specifically, we compare two baseline models: one extracted from the already pre-
trained model provided by the GitHub repository [21] and the other that we trained entirely
from scratch. By examining Table 1, we observe that both models yielded similar FID scores,
indicating comparable image generation quality. However, a noteworthy distinction lies in
the significantly reduced training time of our model trained from scratch, as mentioned in
previous sections.

Table 1 also reflects the results of another state-of-the-art approach based on Hierarchi-
cal VQ-VAE [24]. This method accomplished better results, but it is meant to serve solely as
a comparison of some of the best current techniques. Our model does not aim to compete
in performance but to contribute to making DMs more efficient.

Table 1. Quantitative evaluation for inpainting on the CelebA-HQ dataset.

Model FID Score

VQ-VAE [24] 9.78
Pre-trained model 25.55
Ours 24.93

This finding was crucial, as it assured the quality of our model, providing a solid foun-
dation for subsequent experiments involving colorization tasks. By achieving comparable
FID scores in a considerably shorter timeframe, we established the viability and efficiency
of our training approach, bolstering confidence in the model when we later used it to adapt
to colorization functions successfully in subsequent experiments. Moreover, the speed-up
in the training process saved valuable time and computational resources and allowed us
to iterate more swiftly. This accelerated training pace allowed us to explore a broader
range of hyperparameters and even allowed more images and bigger datasets, leading to a
deeper understanding of the nuances involved in inpainting tasks. This achievement of
comparable FID scores with a significantly expedited training process not only solidifies
the foundation of our model but also expands its possibilities, making it a powerful tool for
both research and practical applications in the fields of image inpainting and beyond.
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On the other hand, Table 2 compares the time required to obtain the mentioned results,
highlighting our greatest virtue, the increase in training speed of our model. All training
times are associated with DMs. Methods that use other techniques do not apply to this
comparison, as we are evaluating our improvement concerning DM performance.

Table 2. Time and efficiency evaluation for inpainting on the CelebA-HQ dataset.

Model Epochs Time/Epoch (min) Total Time (h)

Pre-trained model 200 90 300
Ours 200 8 26.6

Last, a selection of generated images is presented for qualitative evaluation, serving
as visual evidence of the performance and quality attained by our model. First, Figure 9
shows the denoising process carried out to perform the inpainting. The top-left image
was fed to the model to be denoised. Each of the following figures represents the state at
future timesteps until reaching the lower-right image that corresponds to the output and
the restored de-noised result. Some more qualitative results are shown in Figures 10 and 11,
displayed as pairs of ground truth (left) and generated (right).

Figure 9. Process of inpainting through denoising.
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Figure 10. Qualitative comparison for inpainting in the CelebA-HQ dataset. The ground-truth image
is on the left, and the generated is on the right. In the center is the masked image.

Figure 11. More qualitative comparison for inpainting in the CelebA-HQ dataset. The ground-truth
image is on the left, and the generated is on the right for each pair.
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4.2. Face Colorization Model

Now is the opportune moment to assess the performance of our colorization model on
the CelebA-HQ faces dataset. Table 3 provides a comprehensive overview of our results
compared with a reference approach that utilizes wavelet diffusion models [16] for face
colorization purposes.

Table 3. Quantitative evaluation for colorization on the CelebA-HQ dataset.

Model FID Score

Wavelet DM [16] 6.40
Ours 14.18

One remarkable aspect contributing to our model’s efficiency is the small number
of training epochs required to achieve these outstanding results. While in the previous
section, we observed that the reference approach needed 200 epochs to obtain comparable
results and could be further trained, our model achieved this level of performance with
just around 20 epochs. This significant reduction in training time speeds up the process
immensely and allows us to adapt our model to various tasks within the same domain
without requiring extensive training from scratch. Table 4 compares the time required
to obtain the mentioned results. For the comparison, we assumed that, if trained from
scratch, the model would need another 200 epochs and the time per epoch would be
equal to the base model specified in the previous section. On the other hand, our model
required much fewer epochs and a much shorter time per epoch. We can see how training
a model from scratch that took 26.6 h (as seen in Table 2) allowed us to reduce the training
time of obtaining another model with a different scope, only needing 2.6 h to obtain this
second one.

Table 4. Time and efficiency evaluation for colorization on the CelebA-HQ dataset.

Model Epochs Time/Epoch (min) Total Time (h)

Standard trained
model 200 90 300

Ours 20 8 2.6

This accelerated adaptability of our model opens up numerous beneficial avenues for
both research and practical applications in the field. Researchers can now experiment more
swiftly with different colorization tasks and fine-tune the model for specific requirements.
In practical applications, such as real-time image processing or interactive design tools,
this efficiency translates into quicker and more responsive results, greatly enhancing
user experiences.

In summary, our colorization model’s ability to achieve impressive results with a
minimal number of training epochs not only showcases its exceptional performance but
also underscores its versatility and efficiency, making it a valuable asset for a wide range of
image colorization tasks and applications.

Furthermore, we present visual representations of the generated outputs in Figure 12
for qualitative evaluation. Our colorization model demonstrates impressive performance
on the CelebA-HQ faces dataset. The generated results exhibit excellent colorization not
only on the facial features but also on the background of the images. It is noteworthy that
colorizing the background accurately proved challenging during the initial stages of the
training process. However, our model successfully overcame these difficulties and now
produces remarkable colorization results across the entire image.
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Figure 12. Qualitative comparison for colorization in the CelebA-HQ dataset. The ground-truth image
is on the left, and the generated is on the right. In the center is the masked image in a gray-level scale.

4.3. Landscape Colorization Model

Last, we also conducted colorization experiments on the Places-2 dataset, specifically
focusing on the forest and mountain subset of images. Our model’s performance and a
comparison with the Palette approach [1] are summarized in Table 5.
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Table 5. Quantitative evaluation for colorization on the Places-2 dataset.

Model FID Score

Palette [1] 11.70
Ours 17.95

The FID scores indicate the quality of the colorization results, with lower values
corresponding to better performance. In this evaluation, the Palette approach achieved a
lower FID score of 11.70, while our model obtained a slightly higher score of 17.95. It is
important to note that these scores provide a quantitative measure of the performance but
may not capture the full qualitative aspects of the colorization results.

Despite the slightly higher FID score, our model still exhibits commendable col-
orization outcomes for landscape images. The generated results successfully infuse vi-
brant and accurate colors into the landscapes, enhancing their visual appeal, as seen in
Figures 13 and 14. It is worth noting that the two Places-2’s dataset selected subsets, al-
though different, hold some overlap, as can be seen in the fourth row of Figure 13, where
the lower half can be confused with a forest despite belonging to the class mountain.
This selection helps have a wider variety of data and enhances our model, showing its
higher capabilities to generalize. Last, there is room for further improvement; our model
demonstrates promising capabilities in landscape colorization on the Places-2 dataset.
Nevertheless, we present these results for reference purposes.

Additionally, it is worth noting that in this experiment, we also achieved remarkable
results with an exceptionally small number of training epochs. In the first section, where
we used the reference approach, we trained for 200 epochs to obtain comparable results,
and there was still room for further improvement through extended training. However, in
this particular experiment, akin to the previous one, we were able to achieve comparable
results with just around 20 epochs. This drastic reduction in the required training time
signifies a significant leap in efficiency. Table 6 compares the time required to obtain the
mentioned results. For the comparison, we assumed once again that, if trained from scratch,
the model would need another 200 epochs and the time per epoch would be equal to the
base model specified in the previous section. Likewise, our model only needed 20 epochs
to adapt from the previous model to this one, maintaining a similar speed-up and increase
in efficiency. Being a new dataset, the batches of images fed to the model were slightly
bigger, resulting in longer epochs.

Table 6. Time and efficiency evaluation for colorization on the Places-2 dataset.

Model Epochs Time/Epoch (min) Total Time (h)

Standard trained
model 200 90 300

Ours 20 10 3.3

What sets this achievement apart is that, unlike the previous scenario, here we focused
on adapting the domain of our model while retaining the same task (colorization). In
essence, this approach allows us to fine-tune our model for new data distributions. This
level of adaptability is particularly valuable in situations where the model needs to adjust
to different but related data sources, such as transferring knowledge from one type of
image dataset to another while keeping the colorization task consistent.

This demonstration of the model’s versatility, which enables it to adapt to new domains
and tasks while maintaining its efficiency, underscores the immense potential of diffusion
models. While these models are known for their long training times, such as the 200 epochs
required for the reference approach, these optimizations and speed-up techniques have
now proven effective in drastically reducing this training overhead.
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Figure 13. Qualitative comparison for colorization in the Places2 dataset. The ground-truth image is
on the left, and the generated is on the right. In the center is the masked image in a gray-level scale.

Figure 14. Qualitative comparison for colorization in the Places-2 dataset. The ground-truth image is
on the left, and the generated is on the right for each pair.

5. Discussion

The obtained results in our experiments underscore the remarkable performance and
efficiency of our model when compared to various baseline approaches. Both the pre-
trained model and our model trained from scratch achieved similar FID scores, indicating
a comparable level of image generation quality. However, our model truly stands out in
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terms of significantly reduced training time. This outcome not only validates the viability
but also emphasizes the efficiency of our unique training approach. Solving all three of the
models proposed (face inpainting, face colorization, and places colorization) could have
taken an unassuming amount of time (900 h), but thanks to our proposal, this could be
achieved in 32.6 h (having the greatest overhead obtaining the initial model taking 26.6 h),
which led to even further speed-ups the more adaptations we performed. Experiments
regarding other domains and/or other tasks adaptation are a matter of future work, but
with this experiment as a basis, we can prove the proper functionality of our approach.

It is important to note that while state-of-the-art approaches may achieve slightly
better results, they are not direct competitors to our model. Our primary focus revolves
around enhancing the efficiency of deep learning models, and the comparable FID scores
achieved by our model in a significantly shorter timeframe solidify its quality within this
context. Further training and optimizations to achieve state-of-the-art scores are a matter
of future work. The qualitative evaluation further reinforces the impressive performance
of our model. Visual evidence from our experiments showcases the gradual and effective
restoration of images during the inpainting process. Additionally, it highlights the model’s
exceptional capabilities in colorizing both facial features and complex landscapes. While
there may still be room for further refinement and improvement, our model’s performance
in these tasks is undeniably promising.

Regarding our approach’s limitations, there are some aspects to have in mind. The first
model, considered the base one, is key for the quality of further adaptations, so beginning
with a poorly trained base model can be highly detrimental. Furthermore, another issue
our model may suffer from, but one we could not prove, comprises the repercussions and
quality loss if too many adaptation steps are applied. In this paper, we reviewed a total
of two adaptations, portraying a total of three different models. But, if this number were
much higher, some long-training might be needed for some of the steps, especially if the
new domains/tasks to adapt to were very different from the original ones.

In summary, the results obtained in our experiments collectively emphasize our
model’s quality, efficiency, and potential. These findings provide a robust foundation for
further exploration and application across a range of tasks and domains. Our model’s
ability to achieve competitive results with reduced training times makes it a valuable tool
for researchers and practitioners seeking efficient and effective deep learning solutions. It
also opens up new possibilities for real-world applications where speed and performance
are essential, reinforcing its position as a versatile and powerful asset in the field of image
processing and beyond.

6. Conclusions

In this study, we address the challenges associated with image-to-image diffusion mod-
els in low-resource settings, with a special emphasis on multi-task generalist approaches.
While multi-task generalist models offer versatility, they come with computational de-
mands and extended training times that can hinder practicality and accessibility. Building
upon the framework established in [1], we propose a novel approach to reduce the com-
putational demands of this kind of multi-task generalist image-to-image diffusion models
by applying incremental learning and by leveraging their inherent task/domain transfer
learning capabilities.

Our approach starts with a base model trained from scratch for human face inpainting
with an incremental learning strategy. The resultant model achieves performance nearly on
par with its batch-learning counterpart, with a significant reduction in the training duration.
Subsequently, we fine-tune this base model to execute a distinct task, image colorization,
demonstrating the significant advantages of adapting this model for other tasks within
the same data domain. This adaptation is achieved with remarkable efficiency, reducing
training time considerably compared to training from scratch.

Furthermore, we explore the adaptation of a pre-trained model from one domain to
another, showcasing the potential to use a single, long-trained model for various tasks
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and data domains. This transfer learning approach capitalizes on the knowledge encoded
in the pre-trained model, further reducing the computational demands and training time
for tackling problems in different domains. We also delve into various configurations,
offering insights into the image-to-image diffusion models’ potential for cross-task and
cross-domain transfer learning.

Our contributions to the field of DMs are two-fold. First, we have developed tech-
niques that enhance the feasibility and accessibility of DMs by reducing their computational
requirements and training time. Second, we have demonstrated the adaptability and ver-
satility of DMs, making them valuable tools for image-to-image translation tasks across
diverse domains.

In conclusion, this research not only advances the understanding of DMs but also
offers practical solutions to overcome their limitations. Our findings provide a foundation
for more efficient and accessible image-to-image translation using DMs, paving the way for
innovative applications and further exploration in the field. As DMs continue to evolve
and adapt, their potential for addressing complex image translation challenges becomes
increasingly promising.
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