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Abstract: Knowledge graph completion (KGC), the process of predicting missing knowledge through
known triples, is a primary focus of research in the field of knowledge graphs. As an important
graph representation technique in deep learning, graph neural networks (GNNs) perform well in
knowledge graph completion, but most existing graph neural network-based knowledge graph
completion methods tend to aggregate neighborhood information directly and individually, ignoring
the rich hierarchical semantic structure of KGs. As a result, how to effectively deal with multi-level
complex relations is still not well resolved. In this study, we present a hierarchical knowledge graph
completion technique that combines both relation-level and entity-level attention and incorporates a
weight matrix to enhance the significance of the embedded information under different semantic con-
ditions. Furthermore, it updates neighborhood information to the central entity using a hierarchical
aggregation approach. The proposed model enhances the capacity to capture hierarchical semantic
feature information and is adaptable to various scoring functions as decoders, thus yielding robust
results. We conducted experiments on a public benchmark dataset and compared it with several
state-of-the-art models, and the experimental results indicate that our proposed model outperforms
existing models in several aspects, proving its superior performance and validating the effectiveness
of the model.

Keywords: knowledge graph completion; hierarchical semantic feature; graph neural network

1. Introduction

In recent years, the exponential growth of information technology and data resources
has generated significant interest in organizing and processing data effectively. Conse-
quently, in 2012, Google introduced the concept of knowledge graphs, which have received
widespread attention. In essence, a knowledge graph is a semantic network that stores
structured knowledge as triples. Each triple is a fact pair consisting of (head entity, relation,
tail entity) or (h, r, t). For example, (The Great Wall, IsLocatedIn, China).

Knowledge graphs have revolutionized many solution paradigms in natural language
processing and bolstered numerous downstream applications of artificial intelligence.
Representative examples include recommender systems [1], question answering [2], and
dialogue systems [3]. Although knowledge graphs such as FreeBase [4], YAGO [5], and
WordNet [6] have incorporated millions of triples, they are still not enough to meet de-
mand, as modern society continues to evolve and knowledge expands dramatically [7].
Consequently, this prompts us to undertake the task of predicting missing links, termed
knowledge graph completion or link prediction.

One prevalent technique for complementing knowledge graphs is via knowledge
graph embedding. Typically, this technique involves utilizing the existing fact triples in
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the knowledge graph as a foundation, and embedding entities and relations into low-
dimensional vectors to obtain their knowledge representation. Ultimately, the trustwor-
thiness of each fact triple is assessed by optimizing a scoring function. Knowledge graph
embedding models can be classified into three categories: translation distance models
[8–11], bilinear models [12–15], and neural network models [16–19]. While these models
have achieved impressive performance, they neglect significant semantic information, such
as graph structure information. As a result, graph neural networks (GNNs) have emerged.
GNN-based models are capable of effectively capturing graph information and propagat-
ing it hierarchically through various graph aggregation mechanisms [20,21] to obtain the
corresponding entity embeddings. For instance, CompGCN [22] suggests constructing an
encoder–decoder framework in knowledge graph complementation utilizing the excep-
tional aggregation capability of a GCN as an encoder, and then utilizing a convolutional
neural network (CNN) as a decoder for scoring purposes.

Although current graph neural networks have made considerable progress in aggregating
graph information, they still lack the ability to extract diverse semantic hierarchies of graphs.
An example of a graph for Harry Potter and its associated characters can be seen in Figure 1.
The entity Harry Potter has four distinct relations: friend_of, enemy_of, teacher_ of, and married.
When the entity Harry Potter is paired with a particular relation, the effect varies depending on
the different semantic characteristics of the relation. Different relations hold various levels of
importance for the central entity, as seen in this example mapping where the friend_of relation is
stronger for Harry Potter than the married relation. Moreover, distinct entities within the same
relation also hold different levels of significance for the central entity. Different individuals
who are connected to Harry Potter through the friend_of relation are {Ron Weasley, Hermione
Granger, Neville Longbottom}. However, our focus will be primarily on the first two protagonists.
Furthermore, it should be observed that the significance of an entity varies in various triple
compositions. For instance, Ron Weasley has a different semantic importance when he is linked
to Hermione Granger as a tail entity in a married relation than when he is linked to Harry Potter as
a head entity in a friend_of relation.
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Figure 1. An illustrative example of a knowledge graph. Centre entity connects different tail entities
through different relations.

In this paper, we present a novel Hierarchical Perceptual Graph Attention Network
(HPGAT) that uses hierarchical attention to aggregate information from neighborhood
entities and relation features. Initially, the attention mechanism [23,24] at the relation
level combines the features of the central entity and the relations to create entity–relation
vector embedding. Subsequently, the attention coefficients for each relation are acquired
through the attention mechanism. For each entity involved in a particular relation under
the central entity, the entity-level attention mechanism combines the features of the relation
and different entities, creating relation–entity vector embedding. Then, entity attention is
calculated, and the attention coefficients for each triple level can be obtained. Finally, the
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vector embedding of the central entity is updated by aggregating the feature information
from each neighborhood triple in a hierarchical manner.

The contributions of our work are summarized as follows:

• We propose HPGAT, which is based on the attention mechanism that aggregates
information by learning the hierarchical structure information in a given knowledge
graph and the importance of entities and relations in different semantics.

• We implement HPGAT, which can hierarchically aggregate neighborhood feature
information through entity-level attention and relation-level attention and obtain
semantic weights of entities under different triples through weight matrices to obtain
more accurate central entity embeddings.

• We conducted a number of comparison and ablation experiments on different datasets
to validate the effectiveness of our model. The experimental results show that our
model HPGAT outperforms the state-of-the-art models in knowledge graph comple-
mentation, demonstrating the effectiveness of the hierarchical structure for knowledge
graph complementation.

2. Related Work
2.1. Knowledge Graph Embedding

The principal objective of embedding knowledge graphs is to master the technique
of representing entities and relationships within a low-dimensional, distributed frame-
work [25]. Broad classifications of these models include those based on translational
distances, those that employ semantic matching techniques, and those that utilize neural
network architectures. For every triple (h, r, t), the translation distance model interprets
the relationship r as a transformation that maps the head entity h to the tail entity t.
TransE [8], an initial portrayal of such models, roughly depicts each triple by h + r ≈ t.
However, TransE [8] exhibits limitations in its capacity to handle intricate relational patterns,
including one-to-many, many-to-one, and many-to-many associations. Consequently, sev-
eral derived models such as TransH [9], TransD [10], and TransR [11], among others, attempt
to project the representations of entities and relations onto alternative spaces in order to
address the challenge of representing complex relations.

Semantic models evaluate the likelihood of a fact represented as a triple by employing
a scoring function based on similarity, which aligns the potential meanings of both entities
and relationships within the vector space. The bilinear model known as RESCAL [12]
pioneered this approach using tensors and matrices to encapsulate entities and relationships,
respectively. Subsequent advancements based on RESCAL’s framework have led to the
development of models like ComplEx [15], Distmult [13], and HolE [14].

Neural network models consist of neural tensor networks (NTNs) [19] and convolu-
tional neural network-based models. Among these, NTN [19] maps entities onto an input
layer and integrates the embeddings of both head and tail entities by employing a distinct
relational tensor. This tensor is utilized as input to calculate the score of the nonlinear
layer. Convolutional neural networks offer efficient parameters and fast training, making
them widely used in KGE. Convolutional embedding (ConvE) [16] produced outstand-
ing outcomes via feature filters on reshaped feature matrices and relational embeddings.
Convolutional knowledge base embedding (ConvKB) [18] enhances contemporary models
by its ability to encapsulate global relationships and knowledge within its framework.
Meanwhile, InteractE [26] augments the efficacy of ConvE by employing feature alignment,
square reshaping, and the use of circular convolution to refine its performance. DBKGE [27]
works by dynamically tracking the semantic representation of entities over time in a joint
metric space and making predictions into the future.

2.2. Graph Neural Network Model

To overcome the constraints of traditional neural network structures (e.g., CCN) that
can exclusively handle Euclidean data, researchers have developed graph convolutional
neural networks (GCNs) [20]. These networks assign identical weight to each entity
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and carry out convolutional operations on its neighborhood. In contrast, R-GCNs [28]
employ specific relational transformations during neighborhood aggregation, thereby
demonstrating their efficacy in link prediction and entity classification. KBGAT [29] learns
GAT-based embedding and introduces relational features, enabling it to capture richer
multi-hop neighborhood feature information. In contrast, CompGCN [22] possesses a
generic framework and uses a composition-based GCN as an encoder and ConvE [16] as
a decoder, which allows for the simultaneous embedding of both entities and relations
in KG. However, the current models concentrate solely on the feature information of
entities and relations and fail to consider the elaborate hierarchical structure of the graph.
This, in turn, results in them being unable to efficiently adapt to the hierarchical semantics
between entities and relations during feature embedding. In this paper, we propose a GNN
framework that utilizes the hierarchical attention mechanism. Our proposed framework
and experimental outcomes are discussed in Sections 3 and 4, respectively.

3. The Proposed HPGAT

In this section, we present a comprehensive description of HPGAT. The overall ar-
chitecture is depicted in Figure 2. HPGAT comprises three components: (1) relation-level
attention; (2) entity-level attention; and (3) hierarchical-based information aggregation.
The first step in relation-level attention involves combining the features of entities and
relations. Entity-level attention involves the partial aggregation of semantic information
via entity paths that are connected to relations. Finally, hierarchical aggregation integrates
entity-level attention and relation-level attention for propagating features.
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Figure 2. The overall structure of HPGAT. The HPGAT model is structured around three core
modules: (1) relation-level attention, (2) entity-level attention, (3) hierarchical-based information
aggregation. Firstly, the corresponding attention scores are calculated by relation-level attention and
entity-level attention; then, the vector representation of the central entity is updated by information
aggregation, and finally it is fed into the decoder.

3.1. Relation-Level Attention

In a knowledge graph, a particular entity’s neighborhood structure can comprise
one or more relations, and the significance of various relations in representing that entity
varies considerably. Thus, the aggregation of each entity’s neighborhood relation features
directly is unsuitable. Consequently, we propose leveraging the attention mechanism for
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merging the semantic properties of assorted relations with the semantic data of the entity
to derive its attention coefficient. In our framework, a knowledge graph is represented as
G = (E ,R, T ), where E is the set of entities, R denotes relations, and T constitutes the set
of edges connecting these entities. Each edge, denoted as (h, r, t), signifies the existence of
a relation r ∈ R from entity h to t. Following previous works [22,28], we extend T and R
with homologous self-referential and inverse relations.

At this point, the edges and relations are extended as follows:

T ′ = T ∪
{(

t, r−1, h
)
|(h, r, t) ∈ {T }} ∪ {(h,⊥, h)|h ∈ E},R′ = T ∪Rinv ∪ {⊥}

where Rinv =
{

r−1
∣∣r ∈ R

}
and ⊥ denote the inverse and self-loop relations, respectively.

To aggregate feature information for entity–neighborhood relations and distinguish
between different weights for the same entity acting as head and tail, it is intuitive to learn
a separate weight matrix for each entity. Additionally, we propose using special weights
for relations to extract relation-specific features.

HPGAT obtains the embedding mhr of the entities and relations by splicing them and
subsequently feeds it as input to the attention layer.

mhr = W1[Wheh||W rr] (1)

where || denotes the concatenation operation, and eh and r are the embeddings of entities
and relations, respectively. Wh ∈ Rd0 and Wr ∈ Rd0 represent the trainable weight matrices
of entities and relations, respectively, and W1 ∈ Rd0×2d0 signifies the linear transformation
matrix which maps the embedding vectors of entities–relations into a vector space to
facilitate the learning of embedded features effectively.

At the attention layer, activation values of the embedding vectors are obtained through
a linear transformation matrix. The LeakyReLU nonlinear activation function is then
applied to acquire the attention value score.

shr = LeakyReLu(W2mhr) (2)

To ensure the comparability of attention values, we apply the SoftMax function to the
attention value, resulting in the attention coefficient.

αhr = so f tmaxr(shr) =
exp(shr)

∑r′∈Nh
exp(shr′)

(3)

where Nh denotes the neighborhood of entity h.

3.2. Entity-Level Attention

After aggregating the relations, we notice that when an entity connects different entities
through a specific relation, the importance of each entity to the central entity may be different,
which leads to the fact that the process of aggregating the information by considering all the
entities as having the same importance cannot effectively extract the hierarchical relations in
the semantic structure. Therefore, to obtain more complete hierarchical semantic information,
it is necessary to distinguish the importance characteristics of different entities. To solve these
problems, we propose an entity-level attention mechanism and apply the same weight matrix
to distinguish the semantic features of head and tail entities.

We partition the entities for the different entities under the action of a given relation
and splice the relation with the entities under the action of the relation to obtain the feature
embedding cr

ht.
cr

ht = W3[Wrr||Wtet] (4)

where W3 ∈ Rd0×2d0 is the linear transformation matrix and Wr and Wt ∈ Rd0 are the
trainable weight matrices for relations and entities, respectively. et is the embedding of
entities.
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At the entity-level attention layer, we similarly use a nonlinear activation function to
obtain an attention score.

βr
ht = so f tmax(cr

ht) =
exp
(

LeakyReLu
(
cr

ht
))

∑t′∈Nh,r
exp
(

LeakyReLu
(
cr

ht′
)) (5)

where Nh,r denotes the tail entity of entity h under relation r.
While hierarchical attention is effective in extracting hierarchical information from the

graph structure, it is crucial to avoid the model paying excessive attention to such features
and neglecting the data’s feature information during the training process. As a solution, we
introduce a message module that transmits all feature information, mitigating the issue of
weakened feature information due to the model’s over-attention to hierarchical structures.

gr
ht = W4[Wheh||Wrr||Wtet] (6)

where W4 ∈ Rd0×3d0 is the linear transformation matrix.

3.3. Hierarchical-Based Information Aggregation

Updated embedded representations are obtained through information aggregation,
which involves aggregating local information to central entities. In hierarchical structures,
for the purpose of obtaining updated entity embeddings, it is preferred to perform an
aggregation of entities and relations in a stepwise manner.

e′h = σ

 ∑
r∈Nh

∑
t∈Nh,r

αhrshrβr
htc

r
ht + gr

ht

 (7)

Multi-head attention is suggested in [30] to stabilize the learning process and enhance
performance. In our study, we utilize multi-head attention to facilitate the model in
capturing semantic features from various levels of the relational parameter space, resulting
in an improved model fit. We transition the tandem operation to an averaging operation
for reduced computational complexity. Consequently, the embedding of the final message
is calculated as follows:

e′h = σ

 1
K

K

∑
k=1

∑
r∈Nh

∑
t∈Nh,r

αk
hrmk

hrβrk
htc

rk
ht + grk

ht

 (8)

3.4. Decoder

In our work, we used TransE, DistMult and ConvE as decoders. Among these, ConvE
exhibited superior performance. ConvE captures complex interactions between entities and
relations by using convolutional neural networks. When processing a given knowledge
graph triple (h, r, t), ConvE first reshapes the embedding vectors of the head entities and
relations to form a two-dimensional tensor, and then performs a standard convolutional op-
eration on the reshaped tensor to compute the score of the knowledge triples. In ConvE [16],
the scores of knowledge triples are:

f (h, r, t) = ReLU(vec(ReLU([eh; r] ∗ ω))W)et (9)

where eh and r are 2D reshapings of h and r. ω denotes a set of filters and ∗ denotes the
convolution operator. vec(·) is a vectorization function, and W is the weight matrix.

To train the model, standard cross entropy loss with label smoothing is optimized.

L = − 1
N ∑

i
(ti·log(pi) + (1 − ti)·log(1 − pi)) (10)

where ti is the label of triple i and pi is the corresponding score.
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4. Experiments

To assess the efficacy of our proposed model, we carried out numerous experiments
and presented comprehensive analysis results. Following this, we assessed the model’s
ability to predict links, comparing it against the baseline model, and confirmed its validity.

4.1. Experimental Setup
4.1.1. Dataset

Our model is evaluated for validation on two open-source datasets: WN18RR [16]
and FB15K-237 [30], specifically. One disadvantage of WN18 [8] and FB15K [8] is test set
leakage, which the WN18RR and FB15K-237 datasets addressed by eliminating inverse
relations. The WN18RR dataset consists of 41K entities and 11 relations from WordNet.
On the other hand, FB15K-237 contains 15K entities and 237 relations from Freebase.
Detailed information about the two datasets can be found in Table 1.

Table 1. Dataset statistics of FB15k-237 and WN18RR.

Dataset #Entities #Relations #Training #Validation #Test

WN18RR 40,943 11 86,835 3034 3134
FB15k-237 14,541 237 272,115 17,535 20,466

4.1.2. Evaluation Metrics

We use several evaluation metrics to assess the model effectiveness, among which are
mean rank (MR), mean reciprocal rank (MRR), and Hits@n (for n = 1, 3, and 10), respec-
tively. In addition, we predicted the head entity by incorporating the inverse relation [31].

The formulas for MRR and MR are shown below, respectively.

MRR =
1
|S|

|s|

∑
i=1

1
ranki

=
1
|S|

(
1

rank1
+

1
rank2

+ · · ·+ 1
rank|s|

)
(11)

MR =
1
|S|

|s|

∑
i=1

ranki =
1
|S|

(
rank1 + rank2 + · · ·+ rank|s|

)
(12)

where S is the set of triples, |S| is the number of triple sets, and ranki is the link prediction
rank of the ith triple. For MRR, a larger value corresponds to a better modeling effect, and
the opposite is true for MR.

Hits@n is the average proportion of triples with rank less than n in the link prediction.
This is derived by

Hits@n =
1
|S|

|s|

∑
i=1

I(ranki ≤ n) (13)

where I(·) is the indicator function. The value of the function is 1 if the condition is true
and 0 if the condition is false. A larger value corresponds to a better modeling effect.

4.1.3. Comparison Models

We compared our proposed model with many existing models so as to derive the
validity and excellence of our model in a comparative test comprising translational distance
models (TransE [8], RotatE [32], MuRP [33] and PairRE [34]), semantic models (DistMult [13]
and ComplEx [15]), neural network models (ConvE [16], ConvKB [18], DeepER [35] and
InteactE [26]), and GCN-based models (R-GCN [28], MRGAT [36] and CompGCN [29]).

4.1.4. Parameter Settings

We implemented the entire model in Pytorch (https://pytorch.org/). For the optimizer
of the model, we used Adam to obtain the best results. For the hyperparameters of the
model, we obtained them through grid search, and the hyperparameters that gave us better

https://pytorch.org/
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results were as follows: learning rate was 0.001, label smoothing was 0.1, and input and
output dimensions were 100 and 200, respectively. On the FB15k-237 dataset, we used two
attention headers with a batch size of 2048, whereas on WN18RR we used one attention
header with a batch size of 256. We initialized the model parameters with Xavier.

4.2. Performance of HPGAT

This section provides a summary of how HPGAT compares to the baseline model,
and Table 2 presents the MRR and Hits@n results on the FB15k-237 and WN18RR datasets.
The baseline model scores were obtained from previous papers [22,26,32] and the respective
source papers of the models. The best results are in bold, and the second-best results are
underlined. HPGAT improves the MRR on FB15k-237 by about 3% over CompGCN and
by about 2% over Hit@10, showing the effect of leveraging the hierarchical structure of
the knowledge graph. Compared to the other baselines, HPGAT outperforms all other
methods in all five metrics on FB15k-237 and in four out of five metrics on WN18RR.
Our study shows that our proposed HPGAT model outperforms existing link prediction
models, demonstrating its effectiveness.

Table 2. Link prediction results of HPGAT on FB15k-237 and WN18RR. The best results are in bold
and the second-best results are underlined.

Models FB15k-237 WN18RR

MRR Hits MRR Hits

@1 @3 @10 @1 @3 @10

TransE 0.257 0.174 0.284 0.420 0.182 0.027 0.295 0.444
DistMult 0.241 0.155 0.263 0.419 0.430 0.390 0.440 0.490
ComplEx 0.247 0.158 0.275 0.428 0.440 0.410 0.460 0.510

RotatE 0.338 0.241 0.375 0.533 0.476 0.428 0.492 0.571
ConvE 0.325 0.237 0.356 0.501 0.430 0.400 0.440 0.520

ConvKB 0.243 0.155 0.371 0.421 0.249 0.057 0.417 0.524
R-GCN 0.249 0.151 0.264 0.417 0.123 0.080 0.137 0.207
MuRP 0.335 0.243 0.367 0.518 0.481 0.440 0.495 0.566
PairRE 0.351 0.256 0.387 0.544 - - - -

MRGAT 0.355 0.266 0.392 0.539 0.481 0.449 0.495 0.544
DeepER 0.345 0.255 0.379 0.525 0.476 0.446 0.490 0.535
InteractE 0.354 0.263 0.386 0.535 0.463 0.430 0.483 0.528
CompGCN 0.355 0.264 0.390 0.535 0.479 0.443 0.494 0.546
HPGAT
(ours) 0.365 0.276 0.398 0.545 0.485 0.445 0.497 0.567

4.3. Evaluation on Different Relation Categories

For intricate relations, our investigation centers on 1-N, N-1, and N-N relations (as
illustrated in Table 3). As FB15k-237 possesses a more abundant variety of relation types
and a denser graph structure, it was selected for comparison with InteractE [26], Ro-
tatE [32], and COMPGCN [22]. Our findings demonstrate that HPGAT surpasses the
baseline model in most relation types. We have observed that RotatE performs better in
simple 1-1 relations, presumably due to its capacity to capture diverse relational patterns
like symmetry/asymmetry, inversion, and combination. In contrast, our preference is to
capture the complex hierarchical relations within the graph and extract the rich underlying
associations in entities and relations. This accounts for the superiority of our modelling
results compared to others.
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Table 3. Results of link prediction by relation category on FB15k-237 dataset. Following [9], relations
were classified into four categories: one-to-one (1-1), one-to-many (1-N), many-to-one (N-1), and
many-to-many (N-N). The best results are in bold.

InteractE RotatE COMPGCN HPGAT

MRR H@10 MRR H@10 MRR H@10 MRR H@10

Head
Pred

1-1 0.386 0.547 0.498 0.593 0.457 0.604 0.461 0.598
1-N 0.106 0.192 0.092 0.174 0.112 0.190 0.110 0.213
N-1 0.466 0.647 0.471 0.674 0.471 0.656 0.472 0.659
N-N 0.276 0.476 0.261 0.476 0.275 0.474 0.278 0.483

Tail Pred

1-1 0.368 0.547 0.484 0.578 0.453 0.589 0.457 0.625
1-N 0.777 0.881 0.749 0.674 0.779 0.885 0.789 0.892
N-1 0.074 0.141 0.074 0.138 0.076 0.151 0.077 0.146
N-N 0.395 0.617 0.364 0.608 0.395 0.616 0.400 0.621

4.4. Evaluation on Different Decoders

Working with various decoders can enhance the robustness of a model. Therefore, we
implemented several decoders: TransE, DistMult, and ConvE. The statistical results are
given in Table 4. We evaluated the impact of different scoring functions on the model, and
among all the decoders, ConvE yielded the best outcomes. We conclude that when used
in conjunction with graph convolutional networks, ConvE can extract graphical structure
information, resulting in an improved model performance.

Table 4. Performance of link prediction task evaluated on FB15k-237 dataset. Similar to COMPGCN,
X + M (Y) denotes that method M is used for obtaining entity (and relation) embeddings with X as
the scoring function. Y denotes the composition operator used. The best results are in bold.

Scoring Function(X) TransE DistMult ConvE

Methods MRR MR Hit@10 MRR MR Hit@10 MRR MR Hit@10

X 0.294 357 0.465 0.241 354 0.419 0.325 244 0.501
X+D-GCN 0.299 351 0.469 0.321 255 0.497 0.344 200 0.524
X+W-GCN 0.264 1520 0.444 0.324 229 0.504 0.244 201 0.525

X+COMPGCN(sub) 0.335 194 0.514 0.336 231 0.513 0.352 199 0.530
X+COMPGCN(Mult) 0.337 233 0.515 0.338 200 0.518 0.353 216 0.532
X+COMPGCN(Corr) 0.336 214 0.518 0.335 227 0.514 0.355 197 0.535

X+HPGAT(ours) 0.341 185 0.522 0.339 230 0.516 0.365 216 0.545

4.5. Multi-Head Attention Mechanism

We used multi-head attention in our model to stabilize the learning process and
improve performance. To explore the effect of different numbers of attention heads on the
results, we used one, two and three attention heads for comparison experiments, and the
results are shown in Figure 3. The results show that two attention heads are recommended
for optimal performance with the FB15k-237 dataset. With the WN18RR dataset, the more
attention heads the worse the result is, and when there is one, the best result is achieved.
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Figure 3. The effect of different numbers of attention heads on experimental results when using
multiple heads of attention in a model.

4.6. Ablation Study

As our hierarchical structure outperforms various baseline models with various scor-
ing functions, we investigated the impact of the various modules in the model to provide a
comprehensive comparative analysis.

To reflect the different levels of contribution of neighboring relations and entities
to the central entity, we designed a relation-level attention mechanism versus an entity-
level attention mechanism and added a direct aggregation module for feature information.
Then, is it crucial to consider the importance information brought by different entities
and relations and use the propagation mechanism of such feature information to deliver
messages? To this end, we remove the relation-level attention mechanism, entity-level at-
tention mechanism, and feature information propagation mechanism, respectively, and con-
struct several variants of the model, which are called HPGATw/or−a, HPGATw/oe−a, and
HPGATw/of−i. For easy comparison, we put the results of the full model with each variant
into Table 5 to show them together. Compared with the full model, HPGATw/or−a obtains
the worst results, with a substantial decrease in model performance, while HPGATw/oe−a
and HPGATw/of−i also show different degrees of performance degradation. We analysed
the following reasons: (1) The semantic importance between different relations cannot
be transmitted and learned autonomously by the neural network due to the missing
relation-level attention mechanism. (2) The entity-level attention mechanism is based on
relation-level attention, which further divides the past semantic information so that finer-
grained neighborhood information can be aggregated. When entities are aggregated with
equal feature importance, it results in neighborhood features not being able to participate in
the aggregation process in a complete way. (3) The feature information transfer mechanism
is based on the assumption that the neural network learning process may pay too much
attention to the hierarchical information, and the lack of this process leads to the fact that
part of the feature information may be selectively ignored during the learning process,
which affects the performance of the model.

Table 5. Result of ablation study.

Model MRR Hits@1 Hits@3 Hits@10

w/o r-a 0.355 0.264 0.381 0.531
w/o e-a 0.360 0.271 0.392 0.539
w/o f-i 0.359 0.271 0.391 0.539
HPGAT 0.365 0.276 0.398 0.545

On average, when compared with COMPGCN, our model achieved a significant
performance upgrade with all three decoders. Furthermore, our hierarchical structure
grants the model access to structural information and potential hierarchical characteristics of
entities and relations. Furthermore, the weights assigned to entities and relations accurately
convey semantic information in different contexts during the aggregation process, resulting
in superior performance compared to the baseline model across various metrics.
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5. Conclusions

In this paper, we introduce the Hierarchical Perceptual Graph Attention Network
(HPGAT) for the link prediction task. HPGAT utilizes attention mechanisms to capture
hierarchical semantic information in complex graphs. Our proposed model utilizes entity-
level attention, relation-level attention, and hierarchical aggregation to selectively gather
structural information at each level, merge corresponding information features, and weigh
them accordingly. HPGAT consolidates entity and relation features, highlighting the
feature information of entities at different semantic levels to maximize the exploitation of
the graph’s structural information. The experiments show the efficacy of our suggested
model in predicting links. We plan to explore linkage information with the hierarchical
aggregation of entities and further optimized relations in the future.
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