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Abstract: Bus and register management is one of the crucial aspects of application-specific integrated
circuit-, system-on-chip-, or field-programmable gate array-based designs. The problems related to
it are well known, and multiple tools or approaches are already trying to solve or mitigate them.
However, all available solutions share the same register-centric paradigm. A user defines registers
and then manually lays out the data into the registers. Such an approach has its limitations. A
description does not contain information on data spanning multiple registers or data forming a
broader context, for example, procedure arguments. It also does not contain information on the
purpose of the data. As a result, the generated access code is low-level and usually needs an extra
wrapper, which leaves room for potential human mistakes. For instance, it is the user’s responsibility
to guarantee proper access order to registers or to provide an atomic change of data wider than a
single register width. This article proposes a new approach, the functionality-centric approach. In
the functionality-centric approach, the user defines the data with the type of their functionality. The
registers and bus hierarchy are later implicitly inferred. By defining the functionality of the data
placed in the registers, it is possible to generate more access code, increase code robustness, improve
system design readability, and shorten the implementation process.

Keywords: HW/SW codesign; field-programmable gate array; system-on-chip; bus interface; register
addressing; register synthesis; software generation; electronic design automation; code maintenance;
hardware description language

1. Introduction

Modern ASIC, FPGA, or SoC-based designs have some kind of internal bus. Such
a bus is often referred to as a “system bus”, “local bus”, “on-chip bus”, “interconnect
bus”, or “on-chip interconnect bus” (the last one is the most formal and probably the most
appropriate). The primary purpose of the bus is to provide an organized and structured
manner for connecting individual modules within the chip. The secondary purpose is to be
a gateway to access gateware/hardware design internals from the firmware/software stack.
Such access includes reading status signals, writing control signals, procedure triggering,
bidirectional data streaming, interrupt signaling, etc. Figure 1 presents an example of a
simplified architecture of a SoC. Bus fabric components are in blue, slave modules are in
yellow, and master modules are in red.

A bus usually consists of an address bus, a data bus, and a control bus. The most
popular on-chip buses used in FPGA-based designs are probably Wishbone [1] and AXI [2]
(which is part of the AMBA).

If a design contains an internal bus, then the bus needs to be managed. The bus
management consists of the following logical tasks:

1. Address space management. This includes:

(a) Assigning address ranges to the modules.
(b) Aligning address ranges according to the user’s policy.
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2. Bus fabric management. This includes:

(a) A description of the modules’ hierarchy.
(b) Generation of the bus fabric components (such as crossbars) according to the

user-provided description.

3. Registers’ management. This includes:

(a) Ordering registers within the modules.
(b) Splitting long signals between multiple registers.
(c) Grouping short signals into a single register.
(d) Attributing additional functions to the registers, such as associated strobe or

acknowledgment signals.

Figure 1. Example architecture of a SoC design with an internal bus.

All bus and register management tasks can be performed manually, semi-automated,
or fully automated. The greater the automation level, the less room for potential engineers’
mistakes and the greater the pace of the project development.

Managing the bus in a complex system is a nontrivial and well-known problem,
especially in hardware–software codesign projects [3–8]. Even though various approaches
and implementations have already been proposed, there is still no solution that would fully
automate the bus management process. All available standards and tools only support some
of the logical elements of bus management or require users to do the register management
manually. The register management is the most error-prone and time-consuming part of the
bus management. What is more, when the register logic is not fully automatically generated,
there is a need to verify the behavior of the registers. This is usually conducted in simulation
by directed or randomized test benches, although [9] presents the benefits of doing register
verification using formal methods, and [10] shows an example implementation of this idea.

The information about registers is utilized by software, hardware, and verification
engineers. Typically, a specification of the registers is designed by the hardware designer or
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system architect. It changes multiple times during the design and implementation phases
for different reasons, such as bugs, requirement changes, technical limitations, or user
feedback. A simple change in a single register may imply adjustments in both hardware
and software. These adjustments cost money and time.

Several formal and informal tools exist to address issues related to register manage-
ment. However, they all share the same concept of describing registers at a very low level.
That is, the user has to define the registers’ layout implicitly. For example, in the case of a
register containing multiple statuses, it is the user’s responsibility to specify the bit position
for every status. Such an approach is called by the author as the register-centric approach
because the user defines registers and then manually lays out the data into the registers.

This paper proposes a new functionality-centric approach. In the functionality-centric
approach, the user specifies the functionalities that must be provided by the data stored
in the registers. The register layout is automatically generated based on the functional
requirements. Such an approach increases the amount of automatically generated hard-
ware description and software code and decreases the amount of code requiring manual
implementation compared to the register-centric approach. Not only can the register masks,
addresses, and single read and write functions be generated but also complete custom
functions with optimized access methods. This, in turn, leads to shorter design iterations
and fewer bugs.

The author has implemented a domain-specific language as a proof of the concept.
The language is named Functional Bus Description Language (FBDL), and its specification
is publicly available [11]. The FBDL bus description, as well as the functionality-centric
approach concept is bus-type-agnostic. This implies that the actual bus type depends on
the compiler support or, more precisely, on the generators provided by the compiler’s
back-end. However, a single compiler might support multiple bus types (AMBA family,
Avalon, Wishbone, etc.). The specification defines what access code must be generated for
each functionality but does not enforce exactly how the generated API shall look. Such an
approach has been chosen because different projects might have different requirements.
For example, high-performance applications might require an asynchronous API, while
a synchronous API might be sufficient for applications without hard timing constraints.
The compiler front-end is available at [12], and the compiler back-end is available at [13].
The compiler back-end implemented as a proof of the concept currently supports only the
Wishbone bus. In FBDL, the functionality is denoted as the type of the data. However, the
description of the language and the compiler is not the goal of this paper. This article uses
the implemented language to present the new approach and show examples comparing the
register-centric and functionality-centric approaches. The language syntax is straightfor-
ward and intuitive, so the reader should be able to understand this article without having
to read the specification first.

This article has numerous listings used as examples to better illustrate problems or
explain solutions. The VHDL language has been chosen for the hardware description, and
C or Python languages have been chosen for the firmware and software. However, all
presented concepts are programming language-agnostic, so any language could be selected,
and the reasoning would remain valid.

The structure of the paper is as follows: Section 2 is the prior art analysis. It includes
only solutions following the register-centric paradigm. The author proposes a paradigm
shift in the functionality, and no solution following this approach has been found. Section 3
compares two descriptions of the same system. One of the descriptions follows the register-
centric approach, while the other follows the functionality-centric approach. The section
contains multiple listings and waveforms presenting how the functionality-centric approach
can decrease the probability of human mistakes and shorten the time required to implement
the system. Section 4 briefly describes the synthesis results. Section 5 summarizes the
advantages of using the functionality-centric approach compared to the register-centric
approach. Section 6 outlines challenges and directions for future work.
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2. State of Art

This section presents the current state of the art. The term “tool” is used for all
solutions, although not all are strictly tools. Moreover, some are standalone entities,
while others are a part of more extensive frameworks. Each tool has been implemented
and designed by different teams. Although their main goal is the same, they sometimes
accentuate diverse areas. As a result, relative comparison is not always straightforward.
This is why they are rather matched against a generic template. Nonetheless, none of the
available solutions offers a functional view of data placed in the registers. They are all
register-centric.

The author found the following 15 tools addressing the bus and register manage-
ment problem: airhdl [14], AGWB [15,16], AutoFPGA [17], Cheby [18,19], Corsair [20],
hdl_registers [21], II (Internal Interface) [22], CII (Component Internal Interface) [23,24],
IP-XACT [25], Opentitan [26,27], Register Wizard [28,29], RgGen [30], SystemRDL [31],
VhdMMIO [32], and Wbgen2 [33]. Some FPGA tool vendors also try to address the problem
(for example, Block Designer—AMD Xilinx, Platform Designer—Intel).

Register-centric approaches can be divided into two classes depending on the data
they produce. The first class, as the output data, produces information on register addresses,
bit shifts, and masks. The second class abstracts registers and bit fields as objects. The user
does not explicitly use addresses, masks, and bit shifts but calls methods for reading and
writing particular registers and bit fields. Instead of providing methods for reading and
writing, some solutions prefer overloading operators, for example [34]. The second class is
safer to use as it eliminates mistakes caused, for example, by applying a bit shift of bit field
A to bit field B.

It is important to mention that all available tools and solutions are in continuous
development, so some of their features might have changed, or new features might have
been added since they were analyzed. It is also worth mentioning that if tool T claims
support for a feature F or language L, then it might not be full support, as all such tools
are implemented incrementally. It does not indicate the weakness of the tools but rather
shows a pragmatic approach to the problem. There would be no technical progress in the
described field if the tools were usable only when they were 100% complete.

Table 1 presents the result of the review of existing solutions. The comparison table also
includes FBDL to satisfy the reader’s curiosity. Comparing bus and register management
tool features is a challenging task. First of all, none of the register-centric tools, except
SystemRDL, has a formal specification. The implementation is the specification. What is
more, most of the tools target only a limited set of hardware description or programming
languages, and they are usually tailored to these languages. Comparing features of FBDL
with register-centric tools is also not straightforward, as FBDL is functionality-centric and
has a different paradigm. For example, some of the tools allow data value range constraints.
However, it works only for data fitting a single register, whereas in FBDL, it works for data
of any width. Partial support means that a given feature is available only to some extent.
For example, tools utilizing the YAML [35] format support parametrization achieved using
the YAML syntax. However, they do not provide any extra parametrization mechanism,
and a full design parametrization is not possible solely with YAML inheritance.
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Table 1. Comparison of some of the features of the bus and register management tools (Y—yes, N—no, DoC—depends on compiler, P—partial, U—unclear).

airhdl AGWB AutoFPGA Cheby Corsair FPGA
Vendors

h dl_r
egisters

II and
CII IP-XACT Opentitan

Register Tool
Register
Wizard RgGen SystemRDL v

hdMMIO w bgen2 FBDL

Register requires fields Y N N N Y U Y N N Y N Y Y N Y N

Bit-fields Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Hierarchy description N Y Y Y N Y N Y Y N N N Y N N Y

Design parametrization P Y Y P P P N Y Y N N P Y P N Y

Interrupts Y N Y N U Y P N Y Y Y P Y Y Y Y

Memory Y Y Y Y N Y N Y Y Y N Y Y N Y Y

Constants N Y Y N Y N Y Y Y Y N N N N N Y

Expressions N Y Y N Y N Y Y Y Y N Y Y N N Y

Enumeration types N N Y Y Y N N Y Y Y N N Y N N N

Value range constraints Y N Y Y Y N N N U Y N Y Y N Y Y

Addressing modes N N N N N N N N N N N N Y N N DoC

Manual addressing Y N Y Y Y Y N N Y Y Y Y Y Y N N

Package system N N N N N N N N N N N N N N N Y

Formally specified N N N N N N N N N N N N Y N N Y

Free and open-source N Y Y Y Y N Y N DoC Y Y Y DoC Y Y Y

Actively maintained Y Y Y Y Y Y Y U Y Y N Y Y N N Y
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3. Advantages of Functionality-Centric Approach

This section presents two example descriptions of the same system. The first descrip-
tion uses the register-centric approach and utilizes the AGWB tool. The second description
uses the functionality-centric approach and utilizes FBDL. The AGWB tool was chosen for
the register-centric approach for two reasons. The first one is that AGWB belongs to the
class of register-centric tools abstracting registers and bit fields as objects, which makes it
safer than the register-centric class providing users with addresses, masks, and bit shifts.
The second reason is that AGWB and FBDL use the same VHDL library for the Wishbone
bus, making the analysis and comparison easier as bus-related signals share the same types.

Both descriptions have been functionally verified in cosimulations. The repository [36]
contains the hardware descriptions and software code used for the cosimulations. It also
contains all automatically generated files in the autogen directory so that readers do not
have to install any application to view all relevant files. From the reader’s point of view, the
most important files are tb_agwb.vhd, tb_fbdl.vhd, test_agwb.py, test_fbdl.py, and
all files placed in the autogen directory. All remaining files are dependency or script files
related to the build and run automation and are irrelevant to the analysis. All listings in
Section 3 come from the repository.

Before any comparisons, the author would like to introduce the “advantage classes”
term. The term is not formal but helps to classify the advantages of the functionality-centric
approach over a register-centric approach. The advantage class is a characteristic of the
quality of the work. There are four advantage classes listed below in alphabetical order:

1. Maintainability (M) indicates how easy it is to modify the system behavior;
2. Readability (R) denotes the ease of understanding the system;
3. Safety (S) represents the probability of human mistakes;
4. Time (T) represents the time required to implement, adjust, or correct the system.

Although the advantage classes are defined, the metrics for each class are not intro-
duced. This is because the classes are a bit fuzzy, and it is impossible to introduce objective
metrics that cannot be questioned. Users are assumed to evaluate solutions in terms of
advantage classes based on their expert knowledge, experience, and common sense.

Titles of Sections 3.1–3.5 are suffixed with letters indicating which advantages classes
are brought by the functionality-centric approach compared to the register-centric ap-
proach. Within subsections, the author justifies why the functionality-centric approach
is advantageous compared to the register-centric approach. Although the author thinks
most advantage classes should be assigned to all the presented advantages, only the most
significant ones have been chosen.

Listing 1 presents the example bus structure description in the register-centric AGWB
format, and Listing 2 presents the description of the same bus structure in the functionality-
centric FBDL format. The first noticeable difference is the verbosity of the register-centric
description (53 lines vs. 23 lines). This is because AGWB is based on the XML format, and
FBDL is a domain-specific language. However, a functionality-centric approach can also be
based on any popular format, such as YAML, JSON, or XML.
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Listing 1. Example bus structure description in the register-centric AGWB format.

<sysdef top="Main">
<block name="Subblock_t">

<!-- Add0, Add1 and Sum registers are part of the addition procedure. -->
<creg name="Add0">

<field name="A" width="20"/>
<field name="B" width="10"/>

</creg>
<creg name="Add1" stb="1">

<field name="C" width="8"/>
</creg>
<sreg name="Sum" width = "21"/>

</block>

<block name="Main">
<creg name="C1" width = "7"/>
<creg name="C2" width = "9"/>
<creg name="C3" width = "12"/>

<sreg name="S1" width = "7"/>
<sreg name="S2" width = "9"/>
<sreg name="S3" width = "12"/>

<creg name="CA4" reps="2">
<field name="Item0" width="8"/>
<field name="Item1" width="8"/>
<field name="Item2" width="8"/>
<field name="Item3" width="8"/>

</creg>
<creg name="CA2">

<field name="Item0" width="8"/>
<field name="Item1" width="8"/>

</creg>

<sreg name="SA4" reps="2">
<field name="Item0" width="8"/>
<field name="Item1" width="8"/>
<field name="Item2" width="8"/>
<field name="Item3" width="8"/>

</sreg>
<sreg name="SA2">

<field name="Item0" width="8"/>
<field name="Item1" width="8"/>

</sreg>

<sreg name="Counter0" width = "32"/>
<sreg name="Counter1" width = "1"/>

<subblock name="Subblock" type="Subblock_t"/>

<creg name="Mask" width = "16"/>
<sreg name="Version" width = "3*8"/>

</block>
</sysdef>
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Listing 2. Example bus structure description in the functionality-centric FBDL format.

Main bus
C1 config; width = 7
C2 config; width = 9
C3 config; width = 12

S1 status; width = 7
S2 status; width = 9
S3 status; width = 12

CA [10] config; width = 8
SA [10] status; width = 8

Counter status; width = 33

Subblock block
Add proc

A param; width = 20
B param; width = 10
C param; width = 8
Sum return; width = 21

Mask mask; width = 16
Version static; width = 3*8; init -value = 0x010102

Listing 3 presents the VHDL entity interface of the Main block generated by the
register-centric AGWB tool, and Listing 4 presents the VHDL entity interface of the Main
block generated by the functionality-centric FBDL. AGWB defines custom subtypes for the
ports. However, these subtypes are simple std_logic_vector types, which are irrelevant
to the analysis. The most noticeable difference is that in the case of the register-centric
approach, the user is provided with ports representing registers. However, in the case of
the functionality-centric approach, the user is provided with ports representing data. In
the example case, it is visible for CA and SA versus CA4, CA4, SA4, and SA2, as well as for
Counter, which is 33-bit-wide and in the case of the register-centric approach, it must be
divided into two registers manually, (Counter0 and Counter1).

Listing 3. Interface of the Main VHDL entity generated by the register-centric AGWB.

entity Main is
port (

rst_n_i : in std_logic;
clk_sys_i : in std_logic;

slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out;

Subblock_wb_m_o : out t_wishbone_master_out;
Subblock_wb_m_i : in t_wishbone_master_in;

C1_o : out t_C1;
C2_o : out t_C2;
C3_o : out t_C3;
S1_i : in t_S1;
S2_i : in t_S2;
S3_i : in t_S3;
CA4_o : out ut_CA4_array(g_CA4_size - 1 downto 0);
CA2_o : out t_CA2;
SA4_i : in ut_SA4_array(g_SA4_size - 1 downto 0);
SA2_i : in t_SA2;
Counter0_i : in t_Counter0;
Counter1_i : in t_Counter1;
Mask_o : out t_Mask;
Version_i : in t_Version

);
end Main;
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Listing 4. Interface of the Main VHDL entity generated by the functionality-centric FBDL.

entity Main is
port (

clk_i : in std_logic;
rst_i : in std_logic;

slave_i : in t_wishbone_slave_in_array (1 - 1 downto 0);
slave_o : out t_wishbone_slave_out_array(1 - 1 downto 0);

Subblock_master_o : out t_wishbone_master_out_array(0 downto 0);
Subblock_master_i : in t_wishbone_master_in_array(0 downto 0);

ID_o : out std_logic_vector(31 downto 0) := x"d2600e2f";

C1_o : buffer std_logic_vector(6 downto 0);
C2_o : buffer std_logic_vector(8 downto 0);
C3_o : buffer std_logic_vector(11 downto 0);
S1_i : in std_logic_vector(6 downto 0);
S2_i : in std_logic_vector(8 downto 0);
S3_i : in std_logic_vector(11 downto 0);
CA_o : buffer slv_vector(9 downto 0)(7 downto 0);
SA_i : in slv_vector(9 downto 0)(7 downto 0);
Counter_i : in std_logic_vector(32 downto 0);
Mask_o : buffer std_logic_vector(15 downto 0);
Version_o : out std_logic_vector(23 downto 0) := x"010102"

);
end entity;

3.1. Automatic Data Placement-MT

In Listings 1 and 2, C1, C2, and C3 represent control information, and S1, S2, and S3
represent status information. The first difference is that although they represent the same
information, they are different entities. In the case of the register-centric approach, the
information is represented as registers with proper types. In the case of the functionality-
centric approach, the information is represented as data with proper types. The difference
has significant implications. In the case of the register-centric approach, the user must
decide in advance the placement of the data within registers. For example, in Listing 1,
S1, S2, and S3 are placed in 3 separate registers. However, as S1, S2, and S3 are read-only,
and their total width is less than 32 bits, they could also be placed in one or two registers.
Moreover, they can be placed in the registers with C1, C2, and C3 or in a separate register.
Even with just 6 pieces of data, there are multiple possible placements. In the case of the
functionality-centric approach, the compiler is responsible for the data placement within
the registers, which reduces development time.

Table 2 presents data placement results generated by the FBDL compiler. As can be
seen, S2 has been placed in the same register as C2, and S3 has been placed in the same
register as C3. The compiler has performed this automatically to minimize the required
address space. S1 has been placed in the same register as the Version, which contains static
data (data that are never modified).C1 has been placed in a separate register with address 6,
and these are the only data placed in this register.

Table 2. Data placement results for single control and status data.

Data Address Bit Range

C1 6 6:0
C2 5 8:0
C3 4 11:0
S1 8 30:24
S2 5 17:9
S3 4 23:12

Mask 7 15:0
Version 8 23:0
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Now, let us consider what happens if the system requirements change and the user
needs to change the width of some data. For example, both C3 and S3 shall now be 2-
bit-wide. In the case of the register-centric approach, the user must manually adjust the
register layout. Depending on the scale of the change, it may be required to reshuffle
the bit fields between registers. In the case of a width decrease, the data will still fit the
registers. However, the generated address space size might not be optimal. In the case of a
width increase, the data might no longer fit the register width, and the user must manually
create additional registers. In the case of the functionality-centric approach, the data are
automatically placed within the registers by the compiler, so the only change the user must
introduce is the change in the value of the width property. Such an approach improves
systems maintainability.

Table 3 presents data placement results generated by the FBDL compiler after changing
the C3 and S3 width to 2. C2, S2, and S3 are now placed in the same register. Some addresses
are changed because the compiler has found a better register layout, resulting in a smaller
address space size. The whole recompilation process takes milliseconds as it is performed
automatically by the computer program. Doing the same manually by the user would take
seconds or even minutes for more complex adjustments.

Table 3. Data placement results for single control and status data after the C3 and S3 width change.

Data Address Bit Range

C1 5 6:0
C2 4 8:0
C3 6 1:0
S1 8 30:24
S2 4 17:9
S3 4 19:18

Mask 7 15:0
Version 8 23:0

Listing 5 presents the VHDL description generated for C1 access by the register-
centric AGWB, and Listing 6 presents the VHDL description generated for C1 access by
the functionality-centric FBDL. The difference is minor and irrelevant. The snippets are
syntactically different mainly because of the custom types used by AGWB. The access
address also differs because AGWB and FBDL assign addresses to registers in different
order. The description has the same semantics because the C1 width is less than the data
bus width. However, the access description generated for the gateware/hardware and
the access code generated for the firmware/software has significant differences between
register-centric and functionality-centric approaches when the data are arrays, when the
data are wider than the data bus, or when the data form a broader context, what is presented
in the corresponding Sections 3.2–3.4.

Listing 5. C1 VHDL access description generated by the register-centric AGWB tool.

if int_addr = std_logic_vector(to_unsigned(2, 5)) then
int_regs_wb_m_i.dat <= (others => '0');
int_regs_wb_m_i.dat(6 downto 0) <= std_logic_vector(int_C1_o);
if int_regs_wb_m_o.we = '1' then

int_C1_o <= std_logic_vector(int_regs_wb_m_o.dat(6 downto 0));
end if;
int_regs_wb_m_i.ack <= '1';
int_regs_wb_m_i.err <= '0';

end if;
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Listing 6. C1 VHDL access description generated by the functionality-centric FBDL.

if 6 <= addr and addr <= 6 then
if master_out.we = '1' then

C1_o <= master_out.dat(6 downto 0);
end if;
master_in.dat(6 downto 0) <= C1_o;
master_in.ack <= '1';
master_in.err <= '0';

end if;

Listing 7 presents Python code for accessing single data in the register-centric approach,
and Listing 8 presents Python code for accessing single data in the functionality-centric
approach. Within test benches, C1, C2, and C3 are connected directly to S1, S2, and S3 to
form a feedback loop in the hardware description. There is almost no difference in the
software access code, except classes generated by the FBDL have additional attributes
with the data width. However, the access code generated for the firmware/software has a
significant difference between register-centric and functionality-centric approaches when
the data are wider than the data bus, which is presented in Section 3.3.

Listing 7. Python code for testing access to single data in the register-centric approach.

def single_data_test(Main):
print("Performing Single Data Test")

r = randint(0, 2 ** 7 - 1)
Main.C1.write(r)
assert Main.C1.read() == r
assert Main.S1.read() == r

r = randint(0, 2 ** 9 - 1)
Main.C2.write(r)
assert Main.C2.read() == r
assert Main.S2.read() == r

r = randint(0, 2 ** 12 - 1)
Main.C3.write(r)
assert Main.C3.read() == r
assert Main.S3.read() == r

print("Single Data Test Passed")

Listing 8. Python code for testing access to single data in the functionality-centric approach.

def single_data_test(Main):
print("Performing Single Data Test")

r = randint(0, 2 ** Main.C1.width - 1)
Main.C1.write(r)
assert Main.C1.read() == r
assert Main.S1.read() == r

r = randint(0, 2 ** Main.C2.width - 1)
Main.C2.write(r)
assert Main.C2.read() == r
assert Main.S2.read() == r

r = randint(0, 2 ** Main.C3.width - 1)
Main.C3.write(r)
assert Main.C3.read() == r
assert Main.S3.read() == r

print("Single Data Test Passed")
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3.2. Automatic Array Handling—MRT

In Listing 2, CA denotes an array of control data, and SA denotes an array of status data.
Listing 1 represents the same data as CA4, CA2, SA4, and SA2 registers. Within test benches,
the CA array is connected directly to the SA array to form a feedback loop in the hardware
description.

The first difference is that in the case of the register-centric approach, the user must
manually lay out array data in the registers. In the case of the functionality-centric approach,
it is the compiler’s responsibility. The same difference was presented in Section 3.1 for
single data. However, the manual placement task is even more time-consuming in the case
of array data. Depending on the data width and item count, the array might be represented
as a replication of a single register or require an extra register containing a different number
of items. The latter is in the example description, where 10 items of width 8 are placed
within 3 registers with a 4, 4, and 2 distribution. Moreover, not all register-centric tools
allow bit-field replication within a register. The user must define each bit field separately
within the register. For example, in the case of a 32-element array with a 1-bit data width,
the user must explicitly define 32 bit fields.

The second significant difference between the register-centric and functionality-centric
approaches regarding array handling is the generated firmware/software access code.
Listing 9 presents Python code for accessing the array data in the register-centric approach,
and Listing 10 presents Python code for accessing the array data in the functionality-centric
approach. In the register-centric approach, the user must know the relationship between the
data index and register and the bit-field index. In other words, if the user wants to access
data with index D, they must explicitly code access to the register with index R and the bit
field with index F. In the case of the functionality-centric approach, the user operates on
the array data, and all the index mapping is handled automatically by the code generated
by the compiler.

Listing 9. Python code for testing access to array data in the register-centric approach.

def array_test(Main):
print("Performing Array Test")

data = []
for _ in range(10):

data.append(randint(0, 2 ** 8 - 1))

for i in range(len(Main.CA4)):
Main.CA4[i].Item0.write(data[0 + i * 4])
Main.CA4[i].Item1.write(data[1 + i * 4])
Main.CA4[i].Item2.write(data[2 + i * 4])
Main.CA4[i].Item3.write(data[3 + i * 4])

Main.CA2.Item0.write(data[8])
Main.CA2.Item1.write(data[9])

rdata = []
for i in range(len(Main.CA4)):

rdata.append(Main.CA4[i].Item0.read())
rdata.append(Main.CA4[i].Item1.read())
rdata.append(Main.CA4[i].Item2.read())
rdata.append(Main.CA4[i].Item3.read())

rdata.append(Main.CA2.Item0.read())
rdata.append(Main.CA2.Item1.read())
assert rdata == data, f"got {rdata}, want {data}"

rdata = []
for i in range(len(Main.SA4)):

rdata.append(Main.SA4[i].Item0.read())
rdata.append(Main.SA4[i].Item1.read())
rdata.append(Main.SA4[i].Item2.read())
rdata.append(Main.SA4[i].Item3.read())

rdata.append(Main.SA2.Item0.read())
rdata.append(Main.SA2.Item1.read())
assert rdata == data, f"got {rdata}, want {data}"

print("Array Test Passed")
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Listing 10. Python code for testing access to array data in the functionality-centric approach.

def array_test(Main):
print("Performing Array Test")

data = []
for _ in range(len(Main.CA)):

data.append(randint(0, 2 ** Main.CA.width - 1))
Main.CA.write(data)

rdata = Main.CA.read()
assert rdata == data, f"got {rdata}, want {data}"

rdata = Main.SA.read()
assert rdata == data, f"got {rdata}, want {data}"

print("Array Test Passed")

A functionality-centric compiler shall be able to handle arrays with a single element of
any width. Listing 11 presents the VHDL access description generated for the CA array by
the functionality-centric FBDL. As can be seen, 4 elements are placed in the register with
address 1, another 4 elements are placed in the register with address 2, and the remaining 2
are placed in the register with address 3.

Listing 11. CA (size = 10, width = 8) array VHDL access description generated by the functionality-
centric FBDL.

if 1 <= addr and addr <= 2 then
for i in 0 to 3 loop

if master_out.we = '1' then
CA_o((addr-1)*4+i) <= master_out.dat(8*(i+1) + 0-1 downto 8*i + 0);

end if;
master_in.dat(8*(i+1) + 0-1 downto 8*i + 0) <= CA_o((addr-1)*4+i);

end loop;

master_in.ack <= '1';
master_in.err <= '0';

end if;

if 3 <= addr and addr <= 3 then
for i in 0 to 1 loop

if master_out.we = '1' then
CA_o(8+i) <= master_out.dat(8*(i+1) + 0-1 downto 8*i+0);

end if;
master_in.dat(8*(i+1) + 0-1 downto 8*i+0) <= CA_o(8+i);

end loop;

master_in.ack <= '1';
master_in.err <= '0';

end if;

Let us suppose that system requirements have changed, and CA shall now be an array
of 30 elements with a width equal to 1 bit. Listing 12 presents the adjustment that has to
be applied to the bus description, and Listing 13 presents the VHDL access description
generated for the new CA declaration. As can be seen, all the elements are now placed
within a single register with address 1.

Let us suppose that system requirements have changed again, and CA shall now be
an array of 5 elements with a width equal to 17 bits. Listing 14 presents the adjustment
that has to be applied to the bus description, and Listing 15 presents the VHDL access
description generated for the new CA declaration. As can be seen, each item is now placed
in a separate register and spans bits from 0 to 16. The first array register has address 1, and
the last one has address 5.
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Listing 12. Functionality-centric description diff for CA size change to 30 and width change to 1.

diff --git a/fbd/bus.fbd b/fbd/bus.fbd
index 3cdd74e..0a13424 100644
--- a/fbd/bus.fbd
+++ b/fbd/bus.fbd
@@ -7,7 +7,7 @@ Main bus

S2 status; width = 9
S3 status; width = 12

- CA [10]config; width = 8
+ CA [30]config; width = 1

SA [10]status; width = 8

Listing 13. CA (size = 30, width = 1) array VHDL access description generated by the functionality-
centric FBDL.

if 1 <= addr and addr <= 1 then
for i in 0 to 29 loop

if master_out.we = '1' then
CA_o(i) <= master_out.dat(1*(i+1)+0-1 downto 1*i+0);

end if;
master_in.dat(1*(i+1)+0-1 downto 1*i+0) <= CA_o(i);

end loop;

master_in.ack <= '1';
master_in.err <= '0';

end if;

Listing 14. Functionality-centric description diff for CA size change to 5 and width change to 17.

diff --git a/fbd/bus.fbd b/fbd/bus.fbd
index 3cdd74e..0a13424 100644
--- a/fbd/bus.fbd
+++ b/fbd/bus.fbd
@@ -7,7 +7,7 @@ Main bus

S2 status; width = 9
S3 status; width = 12

- CA [30]config; width = 1
+ CA [5]config; width = 17

SA [10]status; width = 8

Listing 15. CA (size = 5, width = 17) array VHDL access description generated by the functionality-
centric FBDL.

if 1 <= addr and addr <= 5 then
if master_out.we = '1' then

CA_o(addr - 1) <= master_out.dat(16 downto 0);
end if;
master_in.dat(16 downto 0) <= CA_o(addr - 1);

master_in.ack <= '1';
master_in.err <= '0';

end if;

A functionality-centric compiler shall also handle access to arrays with elements wider
than the data bus. Such an example is not presented as access atomicity is described in
detail in Section 3.3.

3.3. Access Atomicity—MST

In Listings 1 and 2, Counter represents status data that are wider than the bus width.
In the functionality-centric approach, each instantiated functionality has a bit width inde-
pendent of the data bus width. In register-centric approaches (CII being the exception),
the designer explicitly puts data into the registers. Hence, it cannot be defined as wider
than the single register width. For data wider than the register width, the user must define
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multiple registers and partition the data into the registers. However, when the access to the
data must be atomic, two additional issues arise:

1. Atomic data value change must be manually implemented in the HDL.
2. Correct access order to the registers must be manually implemented in the firmware/

software. The data are updated on writing the last register in the case of data writes
and latched on reading the first register in the case of data reads. Incorrect access
order results in an invalid value if data change during the transaction.

In the functionality-centric approach, the compiler automatically handles the addi-
tional issues related to access atomicity, as data are treated as an indivisible whole, not as a
fragmented piece.

Figure 2 presents waveforms, and Listing 16 presents the generated VHDL descrip-
tion for Counter access in the register-centric approach. Counter registers’ sampling
times are marked with markers. During the first register read, the counter value equals
0x1FFFFFFFF,and the value on the data bus equals 0xFFFFFFFF. This is the expected value.
Before the second read, the counter overflows. During the second read, the counter value
equals 0x000000004,and the value on the data bus equals 0x00000000. The read value of
the bit with index 33 is incorrect because during the first read, it equaled “1”, but it equaled
“0” during the second read. The final Counter read value equals 0x0FFFFFFFF instead of
0x1FFFFFFFF. This is two times less than expected. The problem occurs not only when
values overflow but also when there is a change in the middle bits of a signal wider than the
data bus. For example, if Counter were 65-bit-wide, the same problem with bit 33 would
occur even though Counter did not overflow.

Figure 2. Counter nonatomic access issues in register-centric approach.

Listing 16. Counter VHDL access description generated by the register-centric AGWB.

if int_addr = std_logic_vector(to_unsigned(14 + i, 5)) then
int_regs_wb_m_i.dat <= (others => '0');
int_regs_wb_m_i.dat(31 downto 0) <= std_logic_vector(Counter0_i);
int_regs_wb_m_i.ack <= '1';
int_regs_wb_m_i.err <= '0';

end if;

if int_addr = std_logic_vector(to_unsigned(15 + i, 5)) then
int_regs_wb_m_i.dat <= (others => '0');
int_regs_wb_m_i.dat(0 downto 0) <= std_logic_vector(Counter1_i);
int_regs_wb_m_i.ack <= '1';
int_regs_wb_m_i.err <= '0';

end if;

Figure 3 presents waveforms, and Listing 17 presents the generated VHDL description
for the Counter access in the functionality-centric approach. Counter registers’ sampling
times are marked with markers. During the first register read, the counter value equals
0x1FFFFFFFF, and the value on the data bus equals 0xFFFFFFFF. This is the expected value.
Before the second read, the counter overflows. During the second read, the counter value
equals 0x000000005. However, the value on the data bus equals 0x00000001. The read
value of the bit with index 33 equals “1”, because this was the bit’s value when the first
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register read occurred. Compared to the register-centric approach, in the functionality-
centric approach, the user is provided with the data, not the registers, and it is the compiler’s
responsibility to guarantee atomic data access.

The generated VHDL access description has an additional Counter_atomic signal
latching the value of the remaining Counter bits when the read of the first register storing
the Counter value happens. Such a register is often called a snapshot or shadow register,
although to the author’s knowledge, there is no formal definition. When reading the upper
bit, the data bus is driven from the snapshot register, not the Counter register.

Figure 3. Counter atomic access in functionality-centric approach.

Listing 17. Counter VHDL access description generated by the functionality-centric FBDL.

-- Signal declaratin line taken from the architecture declarative part.
signal Counter_atomic : std_logic_vector(32 downto 32);

-- If statements taken from the process statement part.
if 12 <= addr and addr <= 12 then

Counter_atomic(32 downto 32) <= Counter_i(32 downto 32);
master_in.dat(31 downto 0) <= Counter_i(31 downto 0);
master_in.ack <= '1';
master_in.err <= '0';

end if;

if 13 <= addr and addr <= 13 then
master_in.dat(0 downto 0) <= Counter_atomic(32 downto 32);
master_in.ack <= '1';
master_in.err <= '0';

end if;

In the register-centric approach, the user can provide access atomicity the same way.
However, it must be done manually outside the automatically generated bus fabric descrip-
tion. This requires extra time and introduces room for potential mistakes, for example,
when the user accidentally connects the wrong bits to the snapshot register. It is also
required that the first read register has an associated read acknowledgment signal that
triggers the snapshot register data latch.

Providing access atomicity consumes extra resources, and not all data wider than the
data bus require atomic access. In such a case, the functionality-centric compiler can be
informed to discard access atomicity for particular data. For instance, in the case of FBDL,
the user can set the atomic property to false (atomic = false).

3.4. Procedure and Stream Contexts—MRS

In Listing 1, registers Add0, Add1, and Sum represent a procedure. The procedure is a
simple addition procedure with three summands: A, B, and C. The Sum register stores the
operation result.

Describing procedures in the register-centric approach has the following drawbacks:

1. The user must manually place the parameter and return data in the registers. In the
case of procedure data, atomic access is not required as all the argument data are
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latched using an additional strobe signal. Usually, the strobe pulse is generated when
the last register storing procedures’ argument is written. No atomicity requirement
means the argument data can be packed tightly into the registers to minimize the
required address space. The bits of single data can be split into two registers even if
the data width is less than the data bus width. In the case of Listing 1, 2 bits of C could
be placed in the register Add0, and only the remaining 6 bits could be placed in the
register Add1. This would not change the number of required registers in the example
addition procedure. However, such an approach can reduce the number of required
registers in the case of procedures with more parameters. Moreover, if there is enough
space in the parameters’ last register, the return data can be placed there. However,
not all register-centric tools allow placing control and status data in the same register.
In the case of a procedure data change, the register-centric approach might require
manual and time-consuming data reshuffling between registers.

2. Without any additional comment, a user can only guess based on the register names
that particular registers form a procedure context. Even with a comment, it may not
be up to date, as it must be manually synced.

3. The user must provide correct parameter registers’ write order and return registers’
read order in firmware/software .

Listing 18 presents the interface of the Subblock VHDL entity generated by the register-
centric AGWB tool. The user is provided with the addition procedure registers directly.
There is no encapsulation of the procedure context.

Listing 18. Interface of the Subblock VHDL entity generated by AGWB.

entity Subblock_t is
port (

rst_n_i : in std_logic;
clk_sys_i : in std_logic;

slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out;

Add0_o : out t_Add0;
Add1_o : out t_Add1;
Add1_o_stb : out std_logic;
Sum_i : in t_Sum

);
end Subblock_t;

Listing 19 presents Python code for testing the addition procedure in the cosimulation
test bench. The A and B bit fields are written separately, meaning the register Add0 is written
twice. This can be avoided. However, it is the user’s responsibility to create a valid value
for the Add0 register write. The single Add0 write approach line is commented out.

Listing 19. Python code for testing the addition procedure in the register-centric approach.

def add_test(Main):
print("Performing Add Test")

a = randint(0, 2 ** 20 - 1)
b = randint(0, 2 ** 10 - 1)
c = randint(0, 2 ** 8 - 1)

Main.Subblock.Add0.A.write(a)
Main.Subblock.Add0.B.write(b)
# Main.Subblock.Add0.write((b << 20) | a)
Main.Subblock.Add1.C.write(c)
assert Main.Subblock.Sum.read() == a + b + c

print("Add Test Passed")
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The same addition procedure is presented in Listing 2. The functionality-centric
procedure description is free of all the register-centric drawbacks. This is because the
procedure context is defined explicitly using the proc functionality. Parameters and returns
have their widths, but it is the compiler’s responsibility to place them in registers. The
compiler is also responsible for generating the firmware/software method for calling the
procedure, so there is no room for the incorrect access order mistake.

Listing 20 presents the interface of the Subblock VHDL entity generated by the
functionality-centric FBDL. The procedure-related signals are encapsulated as record types.
The call signal is driven high for one clock cycle every time the last parameter register
is written. The exitt (exit is a VHDL keyword) signal is driven high for one clock cycle
every time the last return register is read. In the example system, the exitt signal is
ignored, and the call signal is used to trigger the add procedure. The Sum is updated every
time the call signal equals “1”.

Listing 20. Interface of the Subblock VHDL entity generated by the FBDL.

-- Record type declarations taken from the Subblock_pkg.
type Add_out_t is record

A : std_logic_vector(19 downto 0);
B : std_logic_vector(9 downto 0);
C : std_logic_vector(7 downto 0);
call : std_logic;
exitt : std_logic;

end record;
type Add_in_t is record

Sum : std_logic_vector(20 downto 0);
end record;

entity Subblock is
port (

clk_i : in std_logic;
rst_i : in std_logic;

slave_i : in t_wishbone_slave_in_array (1 - 1 downto 0);
slave_o : out t_wishbone_slave_out_array(1 - 1 downto 0);

Add_o : out Add_out_t;
Add_i : in Add_in_t

);
end entity;

Listing 21 presents Python code for testing the addition procedure in the cosimulation
test bench. In the functionality-centric approach, a user is provided with a function that
can be explicitly called. There is no need to write parameter registers manually to call
the procedure.

Listing 21. Python code for testing the addition procedure in the functionality-centric approach.

def add_test(Main):
print("Performing Add Test")

a = randint(0, 2 ** 20 - 1)
b = randint(0, 2 ** 10 - 1)
c = randint(0, 2 ** 8 - 1)

assert Main.Subblock.Add(a, b, c)[0] == a + b + c

print("Add Test Passed")

Listing 22 presents the add procedure access description generated by the functionality-
centric FBDL. The address signal (addr) is a relative subblock address, hence low address
values such as 0 and 1. The compiler automatically put the lower 2 bits of the C parameter
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in the same register as the A and B parameters. The compiler also put the return Sum in the
same register as the upper 6 bits of the C parameter. Figure 4 presents waveforms for the
add procedure test. There are 3 bus transactions, 2 writes, and 1 read. The second write
access has the same address as the read access. Yellow waveforms have decimal formatting.
The result of the procedure is correct (1,045,694 + 484 + 117 = 1,046,295). It also may be
noticed that the value of the C parameter changes twice on both writes.

Listing 22. Add procedure access description generated by the functionality-centric FBDL.
if 0 <= addr and addr <= 0 then

if master_out.we = '1' then
Add_o.A <= master_out.dat(19 downto 0);

end if;
master_in.dat(19 downto 0) <= Add_o.A;
if master_out.we = '1' then

Add_o.B <= master_out.dat(29 downto 20);
end if;
master_in.dat(29 downto 20) <= Add_o.B;
if master_out.we = '1' then

Add_o.C(1 downto 0) <= master_out.dat(31 downto 30);
end if;
master_in.dat(31 downto 30) <= Add_o.C(1 downto 0);

master_in.ack <= '1';
master_in.err <= '0';

end if;

if 1 <= addr and addr <= 1 then
if master_out.we = '1' then

Add_o.C(7 downto 2) <= master_out.dat(5 downto 0);
end if;
master_in.dat(5 downto 0) <= Add_o.C(7 downto 2);
master_in.dat(26 downto 6) <= Add_i.Sum;

master_in.ack <= '1';
master_in.err <= '0';

end if;

Figure 4. Add procedure waveforms for a test bench utilizing the description generated by the FBDL.

In a practical design, registers often form not only procedure contexts but also stream
contexts. A stream is very similar to a procedure. The first difference is that a stream
is always unidirectional. It always has only parameters (downstream) or only returns
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(upstream). The second difference is in the way firmware/software calls a stream. An
access to a stream is multiple, and an access to a procedure is single. For example, Listing 23
presents a bus description containing a procedure and a stream. The code generated for the
firmware, implemented in the C language, might include function prototypes presented in
Listing 24. Distinguishing procedures and streams in the functionality-centric approach
allows for more code generation.

Listing 23. Example bus description containing a procedure and a stream.

Main bus
P proc

p param
S stream

p param

Listing 24. Difference between procedure and stream function prototypes.

int Main_P(const uint32_t p);
int Main_S(const uint32_t * p, size_t count);

The procedure example is contained within the subblock, both in the register-centric
and functionality-centric approach. The goal is to present that in both approaches; describ-
ing the hierarchy of the modules is possible and is very similar and straightforward. The
subblock functionality also allows a definition of the number of masters connected to the
subblock via the masters property, which allows connections among multiple buses or
physical interfaces. The additional interfaces can be connected directly or via a custom
bridge if a protocol translation is required.

3.5. Additional Types—R

In the register-centric approach, a user declares the register type. Most available tools
offer control registers and status registers. A control register can be read and written from
the firmware/software and read (sometimes also written) from the gateware/hardware.
A status register can be read from the firmware/software and read and written from the
gateware/hardware. vhdMMIO is slightly different in this regard, as it has the concept of
register behavior. The register behavior is an extension of the register type. However, this
is still the register type, not the data type.

In the functionality-centric approach, a user declares the type of the data, not the
register. This, in turn, allows the user to introduce additional types, increasing the amount
of code that can be automatically generated and improving the system’s readability.

In Listing 1, there is a control register named Mask and a status register named Version.
Mask is a bit mask, meaning the user will want to set, clear, and toggle particular bits of
the value. Version represents static information that never changes. However, in the
register-centric approach, the user can only guess based on the names that Mask is a bit
mask and Version is static. The description could have extra documentation comments
explaining the purpose of the registers, but it would have to be manually kept up to date.

In Listing 2, the same Mask and Static registers have distinct types. Based on the type,
it is not only clear what functionality is served by the data, but it is also possible to generate
access code functions for firmware/software with the desired programming interface. In
the case of the static Version register, it is also possible to assign a value where the static
data are declared, which improves readability. In most register-centric tools, the user has
to check the gateware/hardware description to realize that the status register value never
changes because some constant signal is assigned to the port. This is shown in Listing 25,
which presents an instantiation of the Main entity generated by AGWB.
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Listing 25. Instantiation of the Main VHDL entity generated by the register-centric AGWB tool.

agwb_main : entity agwb.Main
port map (

clk_sys_i => clk,
rst_n_i => '1',

slave_i => wb_ms,
slave_o => wb_sm,

Subblock_wb_m_o => subblock_wb_ms,
Subblock_wb_m_i => subblock_wb_sm,

C1_o => c1,
C2_o => c2,
C3_o => c3,

S1_i => c1,
S2_i => c2,
S3_i => c3,

CA4_o => ca4,
CA2_o => ca2,

SA4_i => sa4,
SA2_i => sa2,

Counter0_i => std_logic_vector(counter(31 downto 0)),
Counter1_i => std_logic_vector(counter(32 downto 32)),

Mask_o => mask,
Version_i => x"010102"

);

Listing 26 presents Python code for testing access to the Mask data in the register-
centric cosimulation test bench, and Listing 27 presents Python code for the same test in
the functionality-centric approach. In the case of the functionality-centric approach, it
is possible to generate access methods operating directly on bits, which saves time and
reduces the probability of human mistakes. In the case of the register-centric approach, it is
impossible, as the compiler does not know the type of data stored in the control register.

Listing 26. Python code for testing access to mask data in the register-centric approach.

def mask_test(Main):
print("Performing Mask Test")

# Setting particular bits
bits = [1, 3, 8, 15]
mask = 0
for b in bits:

mask |= 1 << b
Main.Mask.write(mask)
for idx in range(16):

val = mask & (1 << idx)
if idx in bits:

assert val == 1 << idx, f"bit {idx} not set"
else:

assert val == 0, f"bit {idx} set"

# Toggling bits
mask = Main.Mask.read()
mask ^= (1 << 1)
Main.Mask.write(mask)
assert Main.Mask.read() & (1 << 1) == 0, "mask toggle didn't work"

print("Mask Test Passed")
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Listing 27. Python code for testing access to mask data in the functionality-centric approach.

def mask_test(Main):
print("Performing Mask Test")

bits = [1, 3, 8, 15]
Main.Mask.set(bits)
mask = Main.Mask.read()
for idx in range(Main.Mask.width):

val = mask & (1 << idx)
if idx in bits:

assert val == 1 << idx, f"bit {idx} not set"
else:

assert val == 0, f"bit {idx} set"

Main.Mask.toggle(1)
assert Main.Mask.read() & (1 << 1) == 0, "mask toggle didn't work"

print("Mask Test Passed")

4. Synthesis

Hardware descriptions generated by the register-centric AGWB and the functionality-
centric FBDL approaches were synthesized to compare resource utilization and show that
the functionality-centric approach is not only a theoretical concept but also something that
works in practice. Vivado 2021.2 was used as the synthesis tool. The Synthesis Strategy was
set to Default, and the -flatten_hierarchy property was set to none. The target part was
xc7s25ftgb196-1Q (Spartan 7).

Figures 5 and 6 present postsynthesis resource utilization for the register-centric
AGWB and functionality-centric FBDL tools. Table 4 presents the same information but in
a more straightforward comparison format.

The number of utilized registers was the same for AGWB and FBDL. This was expected
as the number of required registers depends on the total number of data bits, and both
approaches describe the same data, but use different approaches. The number of utilized
registers was higher than the number of data bits because some registers were utilized for
the bus logic. However, as the same bus and VHDL library were used in both examples,
the number of registers utilized by the bus logic was the same.

The number of utilized LUTs was higher for the register-centric AGWB tool. In the
case of the functionality-centric FBDL, the compiler automatically optimized the required
address space size, resulting in simpler address decoding logic.

Figure 5. Post–synthesis resource utilization for the register-centric AGWB tool.

Figure 6. Post–synthesis resource utilization for the functionality-centric FBDL.
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Table 4. Postsynthesis resource utilization.

Main Subblock

LUTs
AGWB 201 65

FBDL 149 53

Registers AGWB 162 73

FBDL 162 73

5. Summary

Describing a system bus using the functionality-centric approach offers the following
advantages compared to the typical register-centric approach:

1. A shorter development time, as more hardware description and software code can be
automatically generated.

2. A more readable and maintainable project structure. As the functionality-centric
approach is more strongly typed than the typical register-centric approach, the de-
scription contains more information about the system. There is no need to read
hardware description or software code to know that a particular set of registers form
a broader context and are dependent (procedures and streams).

3. Less probability of nonatomic data access bugs. In the functionality-centric approach,
access to any piece of data is atomic by default. Nonatomicity is an opt-out feature
achieved with an explicit action required from the user.

4. No space for invalid access order bugs. Code for writing parameters or reading
returns of procedures and streams is automatically generated so the register with the
associated strobe or acknowledgment signal is always accessed last.

5. Uniform data access interface across different target languages. As the functionality-
centric approach is focused on the data functionality, it is easier to specify what kind
of accesses must be generated for particular functionalities. This eliminates scenarios
where the generated C code provides information on addresses, masks, and shifts,
but, for example, the generated Python or C++ code abstracts this information by
providing direct operations on registers and bit fields. The abstraction level of the
code generated by a functionality-centric compiler can be the same regardless of the
target language and is always at the functionality level.

The functionality-centric approach may also be used for on-chip connections utilizing
the network-on-chip (NoC) technology [37–40]. As each network node has to distribute data
within its borders, the traditional bus architectures are still used for this purpose. In such
a design, the functionality-centric approach may be used to describe the functionality of
particular buses of nodes. The routing algorithm and access interfaces are then implemented
independently and are only hooked to the code generated by the compiler.

6. Challenges

Although the proposed functionality-centric approach for bus and register manage-
ment has clear advantages compared to the traditional register-centric approach, some
challenges still have to be addressed.

6.1. Functionality Types

The first challenge is the identification of potentially useful functionality types. For
example, the FBDL compiler currently supports the following 13 functionalities: blackbox,
block, bus, config, irq, mask, memory, param, proc, return, static, status, and stream. Not
all functionalities bring something new compared to the register-centric approach. For
example, the block functionality is used solely to describe the bus module hierarchy. The
memory functionality is used for mapping external memories into the generated address
space. Both block and memory serve the same purpose in the register-centric approach. The
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functionality-centric approach idea is still fresh, and maybe more helpful functionalities
will be identified.

6.2. Data Grouping

In the register-centric approach, the user can manually group data so that multiple
data can be written or read using a single write or read transaction. This is usually achieved
by putting multiple data in a single register as separate bit fields. The FBDL compiler solves
the data-grouping issue by allowing the user to set the groups property. Listing 28 presents
an example of data grouping in the functionality-centric approach. Such a description forces
the compiler to put S0, S1, and S2 in the same register and to generate access code allowing
for the reading of the whole group, not just individual elements. Whether grouping data in
the functionality-centric approach using the additional groups property is the best way is
still being determined.

Listing 28. Example of data grouping in the functionality-centric FBDL format.

Main bus
S0 status; width = 10; groups = [" GroupName "]
S1 status; width = 7; groups = [" GroupName "]
S2 status; width = 5; groups = [" GroupName "]

Nevertheless, entirely relying on the functionality-centric compiler’s grouping algo-
rithm still may have disadvantages. Firstly, the compiler results might not always be
optimal, for example, due to algorithm shortcomings. Secondly, automatic data grouping is
not easy because of multiple constraints (described in Section 6.3), so the algorithm might
have bugs for some corner cases. There should be a way to bypass the automatic data
placement in the registers to mitigate potential downsides. For example, the FBDL com-
piler has the blackbox functionality dedicated to this purpose. The blackbox functionality
allows the incorporation of blocks implemented manually or generated by external tools,
for example, register-centric ones.

6.3. Registerification

The registerification is the process of placing data with functionality types into the
registers. The process includes assigning data bit masks, register addresses, and block
addresses. The term is new in the field and is coined in this article.

The optimal registerification algorithm takes work to achieve. Not only must the gen-
erated address space size be minimized but also the data access times. The registerification
result must be deterministic and repeatable. From the user perspective, it is unacceptable
that a system with the same description performs differently depending on the compiler
run. There are also multiple constraints. For example, not-grouped control data cannot be
put in the same register as this would imply a read–modify–write transaction. Data poten-
tially accessed by the DMA engine (for example, arrays or multiregister atomic data) must
be placed into registers with continuous addresses. Register storing procedure arguments
and triggering the procedure cannot have any control data not belonging to the procedure
as this data write would spuriously call the procedure.

In the current FBDL implementation, the registerification algorithm is based on the
author’s experience and empirical knowledge. However, in the next step, the author wants
to describe the problem formally and use state-of-the-art solvers.
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Abbreviations
The following abbreviations are used in this manuscript:

ASIC Application-specific integrated circuit
SoC System-on-chip
FPGA Field-programmable gate array
FBDL Functional Bus Description Language
LUT Lookup table
NoC Network-on-chip
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