
Citation: Šprem, Š.; Tomažin, N.;

Matečić, J.; Horvat, M. Building

Advanced Web Applications Using

Data Ingestion and Data Processing

Tools. Electronics 2024, 13, 709.

https://doi.org/10.3390/

electronics13040709

Academic Editors: Fabio Grandi

and Ping-Feng Pai

Received: 24 December 2023

Revised: 2 February 2024

Accepted: 6 February 2024

Published: 9 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Building Advanced Web Applications Using Data Ingestion and
Data Processing Tools
Šimun Šprem 1,*, Nikola Tomažin 1, Jelena Matečić 1 and Marko Horvat 2,*

1 Syntio, Trg Dražena Petrovića 3, HR-10000 Zagreb, Croatia; nikola.tomazin@syntio.net (N.T.);
jelena.matecic@syntio.net (J.M.)

2 Department of Applied Computing, Faculty of Electrical Engineering and Computing, University of Zagreb,
Unska 3, HR-10000 Zagreb, Croatia

* Correspondence: simun.sprem@syntio.net (Š.Š.); marko.horvat3@fer.hr (M.H.)

Abstract: Today, advanced websites serve as robust data repositories that constantly collect various
user-centered information and prepare it for subsequent processing. The data collected can include
a wide range of important information from email addresses, usernames, and passwords to demo-
graphic information such as age, gender, and geographic location. User behavior metrics are also
collected, including browsing history, click patterns, and time spent on pages, as well as different
preferences like product selection, language preferences, and individual settings. Interactions, device
information, transaction history, authentication data, communication logs, and various analytics and
metrics contribute to the comprehensive range of user-centric information collected by websites. A
method to systematically ingest and transfer such differently structured information to a central
message broker is thoroughly described. In this context, a novel tool—Dataphos Publisher—for
the creation of ready-to-digest data packages is presented. Data acquired from the message broker
are employed for data quality analysis, storage, conversion, and downstream processing. A brief
overview of the commonly used and freely available tools for data ingestion and processing is
also provided.

Keywords: data engineering; big data analytics; big data management; data acquisition;
data ingestion; change data capture (CDC); data analysis tools; real-time data stream processing

1. Introduction

In the rapidly evolving digital landscape of the modern digital age, websites are
increasingly effective at collecting a wide range of user information and online interactions.
This information provides a detailed picture of online behavior that includes personal
details, browsing patterns, demographics, and individual preferences. The information
collected from contemporary advanced web applications includes, for example, personal
identifiers such as names and email addresses, user behavior (including browsing history,
click patterns, and time spent on pages), demographic data (age, gender, and geographic
location), and preferences (such as product selection, language preferences, and customer
settings). As the size and diversity of these data continue to grow, the scientific commu-
nity is looking for new tools and methods to systematically analyze and utilize this rich
information corpus.

This paper deals with the latest tools and technologies utilized by advanced web ap-
plications for data management. It focuses on the process of data collection and publication
to the cloud using specialized data ingestion tools. These tools are designed to efficiently
collect, categorize, and transfer data while ensuring real-time updates and seamless inte-
gration with cloud infrastructures [1]. Following data collection, the focus shifts to data
processing tools. These are crucial for analyzing, refining, and deriving meaningful insights
from raw data. They employ algorithms and machine learning techniques to process data

Electronics 2024, 13, 709. https://doi.org/10.3390/electronics13040709 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13040709
https://doi.org/10.3390/electronics13040709
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3439-7216
https://doi.org/10.3390/electronics13040709
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13040709?type=check_update&version=1


Electronics 2024, 13, 709 2 of 23

and identify patterns, trends, and anomalies. The processed data are then either stored in
a database for later use or routed back to the web application. This cyclical flow of data
enables the web application to dynamically adapt and personalize the user experience
based on real-time data analytics.

The aim of this paper is to explain how advanced web applications work, especially in
the area of data engineering, focusing on the importance of data ingestion and processing in
today’s data-rich digital environment. First, we introduce the Dataphos Publisher platform,
describe its architecture, and experimentally validate its performance advantages over
traditional Change Data Capture (CDC) platforms. Also, this paper gives an overview
of different data processing tools. This includes a qualitative exploration of their func-
tionalities, strengths, and limitations, providing readers with a clear understanding of the
diverse options that are available in the field. Finally, this paper also provides a practical
framework for data engineers building advanced web applications and helps select the
right tools for data ingestion and processing. This is meant to make it easier for readers
to understand and use these technologies when developing web applications. Figure 1
illustrates an architecture proposed for this comprehensive solution, including a novel tool,
Dataphos Publisher, and shows the interrelated roles of data ingestion and processing tools
in modern web applications.

Electronics 2024, 13, x FOR PEER REVIEW 2 of 24 
 

 

process data and identify patterns, trends, and anomalies. The processed data are then 
either stored in a database for later use or routed back to the web application. This cyclical 
flow of data enables the web application to dynamically adapt and personalize the user 
experience based on real-time data analytics. 

The aim of this paper is to explain how advanced web applications work, especially 
in the area of data engineering, focusing on the importance of data ingestion and pro-
cessing in today’s data-rich digital environment. First, we introduce the Dataphos Pub-
lisher platform, describe its architecture, and experimentally validate its performance ad-
vantages over traditional Change Data Capture (CDC) platforms. Also, this paper gives 
an overview of different data processing tools. This includes a qualitative exploration of 
their functionalities, strengths, and limitations, providing readers with a clear under-
standing of the diverse options that are available in the field. Finally, this paper also pro-
vides a practical framework for data engineers building advanced web applications and 
helps select the right tools for data ingestion and processing. This is meant to make it 
easier for readers to understand and use these technologies when developing web appli-
cations. Figure 1 illustrates an architecture proposed for this comprehensive solution, in-
cluding a novel tool, Dataphos Publisher, and shows the interrelated roles of data inges-
tion and processing tools in modern web applications. 

 
Figure 1. Advanced web applications architecture that uses Dataphos Publisher combined with a 
set of commonly used web-based data processing tools. 

The remainder of this paper is organized as follows. Section 2 provides an in-depth 
analysis of data ingestion, focusing on specific technologies in web applications such as 
CDC and Dataphos Publisher, developed by Syntio. Section 3 explores data processing 
tools, comparing Apache Spark, Apache Flink, Kafka Streams, and Apache Beam. In Sec-
tion 4, practical use cases are provided with a discussion to illustrate the applications of 
these tools in real-world scenarios. Finally, Section 5 concludes the paper by summarizing 
key insights and their implications for advanced web application development. 

2. Data Ingestion 
Data ingestion is a big data process that involves loading data from one or multiple 

sources to various destinations that may or may not be in the cloud. As modern systems 
become increasingly data-oriented, the more data are collected. This is best shown by the 
fact that 90% of data were collected in the last two years alone, with 2.5 quintillion bytes 
collected every day [2], and these numbers will likely grow in the coming years. This re-
quires a robust infrastructure comprising data ingestion, data processing, data storage, 
etc., that can handle such amounts of data. 

Figure 1. Advanced web applications architecture that uses Dataphos Publisher combined with a set
of commonly used web-based data processing tools.

The remainder of this paper is organized as follows. Section 2 provides an in-depth
analysis of data ingestion, focusing on specific technologies in web applications such as
CDC and Dataphos Publisher, developed by Syntio. Section 3 explores data processing
tools, comparing Apache Spark, Apache Flink, Kafka Streams, and Apache Beam. In
Section 4, practical use cases are provided with a discussion to illustrate the applications of
these tools in real-world scenarios. Finally, Section 5 concludes the paper by summarizing
key insights and their implications for advanced web application development.

2. Data Ingestion

Data ingestion is a big data process that involves loading data from one or multiple
sources to various destinations that may or may not be in the cloud. As modern systems
become increasingly data-oriented, the more data are collected. This is best shown by the
fact that 90% of data were collected in the last two years alone, with 2.5 quintillion bytes
collected every day [2], and these numbers will likely grow in the coming years. This
requires a robust infrastructure comprising data ingestion, data processing, data storage,
etc., that can handle such amounts of data.



Electronics 2024, 13, 709 3 of 23

This section covers the data ingestion part of the infrastructure, the process of moving
different types of data (structured, unstructured, and semi-structured) from one place
to another for processing. These data might come from different sources, either internal
(e.g., data collected by a company) or external (e.g., publicly available data from social
networks such as Twitter/X and Facebook) [3].

The first subsection covers the state of the art of data ingestion, and we cover some
popular data ingestion tools along with Change Data Capture (CDC), a data ingestion
concept which is more thoroughly described in the second subsection. The third subsection
covers a completely new player in the data ingestion process, Dataphos Publisher. Finaly,
the last part of this section contains a comparison between CDC and Dataphos Publisher.

2.1. State of the Art in Data Ingestion Tools

The transition from on-premises to cloud-based environments has emphasized the
importance of data ingestion in the world of big data. This transition is particularly
challenging for organizations with extensive historical datasets that require efficient and
reliable transfer to cloud platforms. To address these challenges, in this section, we examine
the main capabilities and commonplace applications of state-of-the-art data ingestion tools,
focusing specifically on Apache Kafka Connect (a key component of the Apache Kafka
ecosystem), Apache NiFi, and Apache Flume [4], as well as Airbyte and Meltano [5]. Finally,
we describe Change Data Capture (CDC) in the context of data ingestion. Each of these tools
has a number of different features and functions that make the migration and management
of large amounts of data in cloud environments more efficient, making them important
components of the architecture of modern web applications.

Apache tools are compared in [4]. In this study, the researchers report that of all the
tools compared, none is optimal for all use cases [4]. A summary of this report can be found
in Table 1. It shows which tools implement a specific functionality (reliability, guaranteed
delivery, data type versatility, system requirements complexity, stream ingestion, and
processing support) and recommends a tool for this functionality [4]. The functionality
level for each tool was qualitatively evaluated using a three-point scale: fully implemented
functionality, partially implemented functionality, and non-implemented functionality.
From the table data, Apache NiFi is shown to be the best tool compared to Apache Flume
and Apache Kafka Connect due to its more comprehensive coverage of functionality.

Table 1. Qualitative comparison between the main functionalities of the Apache Flume, Apache NiFi,
and Apache Kafka Connect data ingestion tools with a recommendation for the optimal tool for each
functionality [4].

Functionality Flume NiFi Kafka Optimal Tool

Reliability Partially
implemented

Partially
implemented

Fully
implemented Kafka

Guaranteed
delivery

Fully
implemented

Fully
implemented

Partially
implemented Flume and NiFi

Data type Partially
implemented

Partially
implemented

Partially
implemented

Flume, NiFi,
and Kafka

System
requirements

Partially
implemented

Fully
implemented

Partially
implemented NiFi

Stream ingestion
and processing

Partially
implemented

Fully
implemented

Partially
implemented

Flume, NiFi,
and Kafka

Additionally, Table 2 presents a comparison between commonplace performance
indicators of the Apache Flume, Apache NiFi, and Apache Kafka Connect data ingestion
tools, with recommendations for optimal tools based on their respective capabilities related
to specific performance indicators [4].



Electronics 2024, 13, 709 4 of 23

Table 2. Comparison between the Apache Flume, Apache NiFi, and Apache Kafka Connect data
ingestion tools’ performance indicators along with a recommendation for optimal tools based on
their respective capabilities related to specific indicators [4].

Performance
Indicator

Flume
(Low, Medium,

High)

NiFi
(Low, Medium,

High)

Kafka
(Low, Medium,

High)
Optimal Tool

Speed Medium Medium Medium Flume, NiFi,
and Kafka

Number of files
processed per second High Medium High Flume and Kafka

Scalability High Medium High Kafka

Message
durability High Low High Flume and Kafka

As can be seen in Table 2, in terms of speed, all three tools (Apache Flume, Apache
NiFi, and Apache Kafka Connect) are rated equally with a “Medium” performance level,
indicating no significant difference between them in this regard. When it comes to the
number of files processed per second, Apache Flume and Kafka Connect both gain a “High”
rating, outperforming Apache NiFi, which is rated “Medium”. In terms of scalability,
Kafka Connect stands out with a “High” rating, indicating its superior ability to handle
larger loads and more complex data processing needs. Flume follows closely behind
with a “High” rating, while NiFi follows with a “Medium” rating. Finally, in terms of
message durability, Apache Flume and Kafka Connect continue to lead with “High” ratings,
demonstrating their robustness in ensuring message persistence and reliability compared
to NiFi’s “Low” rating.

These results recommend Flume and Kafka as the best choices for scenarios priori-
tizing high throughput and message durability, with Kafka being particularly suited for
scalability needs.

The other two open-source tools, Airbyte and Meltano, were compared in [5], where it
was found, after an evaluation of data ingestion tools, that Airbyte is more suitable for the
problem of data pipeline design for audit analytics. Furthermore, CDC is a process that
identifies and captures only changes to data in a database, thereby increasing its efficiency
and then delivering those changes in real time to a downstream process or system [6]. The
following section provides more detail about CDC.

2.2. Change Data Capture

Change Data Capture (CDC) is a process that continuously identifies and captures
incremental changes in data and data structures from a source such as a production database.
The CDC pattern arose two decades ago to help replication software deliver real-time
transactions to data warehouses. In these warehouses, data are transformed and then used
in analytics applications. CDC enables efficient, low-latency data transfer to operational
and analytics users with a low production impact [7].

An important advantage of CDC is that it can pass data quickly and efficiently to
both operational and analytical users without too much disruption to the production
environment. It captures changes as they occur and ensures that the data in the target
system are up to date and consistent with the source system.

CDC is great for modern cloud architectures because it is a highly efficient way to
move data across a wide-area network. It is a method of ETL (Extract, Transform, and
Load) in which data are periodically extracted from a source system, transformed to meet
the requirements of a target system, and loaded into the target system [1,6]. CDC is not
only ideal for real-time data movement and an excellent fit to achieve low-latency, reliable,
and scalable data replication but also for zero-downtime migrations to the cloud.

There are many use cases for CDC in the overall data integration strategy. They may
be moving data into a data warehouse or data lake or creating an operational data store or
a replica of source data in real time. CDC helps modernize data environments by enabling



Electronics 2024, 13, 709 5 of 23

faster and more accurate decisions, minimizing disruptions to production, and reducing
cloud migration costs, which, all combined, make CDC the preferred method for data
ingestion and movement [6].

CDC is very useful in today’s data systems, especially for big data and real-time
analytics. It helps companies quickly understand market trends and customer behavior
and determine how well operations are running by continuously providing new data. This
is very important for applications that require up-to-date data, such as fraud detection and
improving customer service and monitoring operations.

2.3. Dataphos Publisher

When moving data from on-premises systems to the cloud, you are restricted to one
of two outcomes: either investing in a very expensive CDC solution for fast, real-time
processing or replicating your whole database several times a day, which does not give
you the most up-to-date information while also placing a lot of stress on the database itself.
Most of the time, these solutions will present the data consumers on your platform with
raw data from several sources, and they will first have to process it before it can be used.
This process is costly, time-consuming, and can be unsafe. Implementing Publisher with
business logic at the source provides a more controlled real-time approach to managing
data changes. It helps ensure data quality and consistency before the data are propagated
to downstream systems, making it particularly valuable in scenarios in which data integrity
and business rule enforcement are critical [8].

Figure 2 shows Dataphos Publisher’s process, which begins with reading data from an
on-premises database. The data are queried and formatted, creating a business object before
transferring the data to the cloud. Once the business object is created, the data are serialized,
encrypted for security, and sent to a message broker (a mediator between two services
able to handle large volumes of data [9]), where they can be pulled by cloud services. The
procedure described allows for a constant flow of ready-to-digest data packages to the
cloud, and all at a fraction of the cost. This process (i.e., data ingestion) is integral to the
whole system because it sets the foundation for downstream data processing, analysis, and
reporting, which are essential for decision making in a timely and accurate manner.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 24 
 

 

only ideal for real-time data movement and an excellent fit to achieve low-latency, reliable, 
and scalable data replication but also for zero-downtime migrations to the cloud. 

There are many use cases for CDC in the overall data integration strategy. They may 
be moving data into a data warehouse or data lake or creating an operational data store 
or a replica of source data in real time. CDC helps modernize data environments by ena-
bling faster and more accurate decisions, minimizing disruptions to production, and re-
ducing cloud migration costs, which, all combined, make CDC the preferred method for 
data ingestion and movement [6]. 

CDC is very useful in today’s data systems, especially for big data and real-time an-
alytics. It helps companies quickly understand market trends and customer behavior and 
determine how well operations are running by continuously providing new data. This is 
very important for applications that require up-to-date data, such as fraud detection and 
improving customer service and monitoring operations. 

2.3. Dataphos Publisher 
When moving data from on-premises systems to the cloud, you are restricted to one 

of two outcomes: either investing in a very expensive CDC solution for fast, real-time pro-
cessing or replicating your whole database several times a day, which does not give you 
the most up-to-date information while also placing a lot of stress on the database itself. 
Most of the time, these solutions will present the data consumers on your platform with 
raw data from several sources, and they will first have to process it before it can be used. 
This process is costly, time-consuming, and can be unsafe. Implementing Publisher with 
business logic at the source provides a more controlled real-time approach to managing 
data changes. It helps ensure data quality and consistency before the data are propagated 
to downstream systems, making it particularly valuable in scenarios in which data integ-
rity and business rule enforcement are critical [8]. 

Figure 2 shows Dataphos Publisher’s process, which begins with reading data from 
an on-premises database. The data are queried and formatted, creating a business object 
before transferring the data to the cloud. Once the business object is created, the data are 
serialized, encrypted for security, and sent to a message broker (a mediator between two 
services able to handle large volumes of data [9]), where they can be pulled by cloud ser-
vices. The procedure described allows for a constant flow of ready-to-digest data packages 
to the cloud, and all at a fraction of the cost. This process (i.e., data ingestion) is integral 
to the whole system because it sets the foundation for downstream data processing, anal-
ysis, and reporting, which are essential for decision making in a timely and accurate man-
ner. 

 
Figure 2. The Dataphos Publisher workflow begins by reading data from an on-premises database 
[10]. The data are queried, formatted, serialized, encrypted for security, and sent to a message broker 
where they can be pulled on-demand by appropriate cloud services [8]. 

Figure 2. The Dataphos Publisher workflow begins by reading data from an on-premises database [10].
The data are queried, formatted, serialized, encrypted for security, and sent to a message broker
where they can be pulled on-demand by appropriate cloud services [8].

2.4. CDC vs. Dataphos Publisher

Both CDC and Dataphos Publisher in the context of advanced web applications play
the same role, which is data ingestion. However, they have different approaches when it
comes to the task. Figure 3 shows the data flow in CDC. There are seven different actors



Electronics 2024, 13, 709 6 of 23

in the diagram. Looking at Dataphos Publisher’s data flow in Figure 4, it contains only
three actors, making the figure not only simpler but also faster. But the main difference
between the two is how they carry out the ETL process. While CDC organizes the data right
before entering the data warehouse, Publisher does so while the data are still on prem. That
means that the data flowing through CDC pipeline are unstructured, while Publisher’s
data are presented as a business object ready to use. This also means that there is no need
to save the data we derived from the business object in the database because they are never
transported to the cloud (in case data are being transferred from an on-prem database).

Electronics 2024, 13, x FOR PEER REVIEW 6 of 24 
 

 

2.4. CDC vs. Dataphos Publisher 
Both CDC and Dataphos Publisher in the context of advanced web applications play 

the same role, which is data ingestion. However, they have different approaches when it 
comes to the task. Figure 3 shows the data flow in CDC. There are seven different actors 
in the diagram. Looking at Dataphos Publisher’s data flow in Figure 4, it contains only 
three actors, making the figure not only simpler but also faster. But the main difference 
between the two is how they carry out the ETL process. While CDC organizes the data 
right before entering the data warehouse, Publisher does so while the data are still on 
prem. That means that the data flowing through CDC pipeline are unstructured, while 
Publisher’s data are presented as a business object ready to use. This also means that there 
is no need to save the data we derived from the business object in the database because 
they are never transported to the cloud (in case data are being transferred from an on-
prem database). 

 
Figure 3. A flow diagram illustrating the Change Data Capture (CDC) data architecture pattern. The 
pattern begins with a Relational Database Management System (RDBMS) in which CDC is applied 
to capture changes. These changes are collected by a LOG Collector and passed to a Message Broker. 
The Message Broker then routes the set of messages to a Log Consumer, which processes the data 
and applies it to a target RDBMS. Finally, the processed data are used to update business objects 
which can be utilized by data warehouse (DWH) services for analytics and reporting. 

 
Figure 4. The Create–Transform–Publish (CTP) pattern is a data processing workflow that focuses 
on the streamlined process of data transformation from creation to utilization in data warehousing. 
The pattern starts with an RDBMS where the data are created. These data are then forwarded to a 
message broker, which is responsible for transforming the data as required. After processing, the 
data are published to a data warehouse (DWH) service for storage, analysis, and future retrieval. 

To show that Dataphos Publisher is faster than CDC, as stated earlier, we performed 
an experiment in which we compared the performance of Dataphos Publisher and a CDC 
tool, Debezium [10], using standardized datasets of different sizes. This experiment com-
pared performance between the Debezium tool and Dataphos Publisher in the context of 
real-time row detection and message propagation. We focused on measuring the time 
elapsed from the detection of added rows in the source system to the point at which the 
corresponding messages arrived at the message broker. The analysis was conducted with 
four datasets consisting of 1,000, 10,000, 50,000, and 150,000 rows, respectively. The exper-
iment was conducted five times for each dataset. The time required to process all rows 
was recorded for each run and then averaged. The data in the source database were always 
generated at around 200 rows per second. In the experiment, we utilized the Microsoft 
Wide World Importers (WWI) database as the dataset (publicly available at [11]). The 
WWI database is a sample database developed for use with the SQL Server and Azure 
SQL Database. It represents a fictional wholesale novelty goods importer and distributor 

Figure 3. A flow diagram illustrating the Change Data Capture (CDC) data architecture pattern. The
pattern begins with a Relational Database Management System (RDBMS) in which CDC is applied to
capture changes. These changes are collected by a LOG Collector and passed to a Message Broker.
The Message Broker then routes the set of messages to a Log Consumer, which processes the data and
applies it to a target RDBMS. Finally, the processed data are used to update business objects which
can be utilized by data warehouse (DWH) services for analytics and reporting.

Electronics 2024, 13, x FOR PEER REVIEW 6 of 24 
 

 

2.4. CDC vs. Dataphos Publisher 
Both CDC and Dataphos Publisher in the context of advanced web applications play 

the same role, which is data ingestion. However, they have different approaches when it 
comes to the task. Figure 3 shows the data flow in CDC. There are seven different actors 
in the diagram. Looking at Dataphos Publisher’s data flow in Figure 4, it contains only 
three actors, making the figure not only simpler but also faster. But the main difference 
between the two is how they carry out the ETL process. While CDC organizes the data 
right before entering the data warehouse, Publisher does so while the data are still on 
prem. That means that the data flowing through CDC pipeline are unstructured, while 
Publisher’s data are presented as a business object ready to use. This also means that there 
is no need to save the data we derived from the business object in the database because 
they are never transported to the cloud (in case data are being transferred from an on-
prem database). 

 
Figure 3. A flow diagram illustrating the Change Data Capture (CDC) data architecture pattern. The 
pattern begins with a Relational Database Management System (RDBMS) in which CDC is applied 
to capture changes. These changes are collected by a LOG Collector and passed to a Message Broker. 
The Message Broker then routes the set of messages to a Log Consumer, which processes the data 
and applies it to a target RDBMS. Finally, the processed data are used to update business objects 
which can be utilized by data warehouse (DWH) services for analytics and reporting. 

 
Figure 4. The Create–Transform–Publish (CTP) pattern is a data processing workflow that focuses 
on the streamlined process of data transformation from creation to utilization in data warehousing. 
The pattern starts with an RDBMS where the data are created. These data are then forwarded to a 
message broker, which is responsible for transforming the data as required. After processing, the 
data are published to a data warehouse (DWH) service for storage, analysis, and future retrieval. 

To show that Dataphos Publisher is faster than CDC, as stated earlier, we performed 
an experiment in which we compared the performance of Dataphos Publisher and a CDC 
tool, Debezium [10], using standardized datasets of different sizes. This experiment com-
pared performance between the Debezium tool and Dataphos Publisher in the context of 
real-time row detection and message propagation. We focused on measuring the time 
elapsed from the detection of added rows in the source system to the point at which the 
corresponding messages arrived at the message broker. The analysis was conducted with 
four datasets consisting of 1,000, 10,000, 50,000, and 150,000 rows, respectively. The exper-
iment was conducted five times for each dataset. The time required to process all rows 
was recorded for each run and then averaged. The data in the source database were always 
generated at around 200 rows per second. In the experiment, we utilized the Microsoft 
Wide World Importers (WWI) database as the dataset (publicly available at [11]). The 
WWI database is a sample database developed for use with the SQL Server and Azure 
SQL Database. It represents a fictional wholesale novelty goods importer and distributor 

Figure 4. The Create–Transform–Publish (CTP) pattern is a data processing workflow that focuses
on the streamlined process of data transformation from creation to utilization in data warehousing.
The pattern starts with an RDBMS where the data are created. These data are then forwarded to a
message broker, which is responsible for transforming the data as required. After processing, the
data are published to a data warehouse (DWH) service for storage, analysis, and future retrieval.

To show that Dataphos Publisher is faster than CDC, as stated earlier, we performed an
experiment in which we compared the performance of Dataphos Publisher and a CDC tool,
Debezium [10], using standardized datasets of different sizes. This experiment compared
performance between the Debezium tool and Dataphos Publisher in the context of real-time
row detection and message propagation. We focused on measuring the time elapsed from
the detection of added rows in the source system to the point at which the corresponding
messages arrived at the message broker. The analysis was conducted with four datasets
consisting of 1000, 10,000, 50,000, and 150,000 rows, respectively. The experiment was
conducted five times for each dataset. The time required to process all rows was recorded
for each run and then averaged. The data in the source database were always generated
at around 200 rows per second. In the experiment, we utilized the Microsoft Wide World
Importers (WWI) database as the dataset (publicly available at [11]). The WWI database
is a sample database developed for use with the SQL Server and Azure SQL Database. It
represents a fictional wholesale novelty goods importer and distributor based in the San
Francisco Bay Area and serves as a comprehensive platform for learning and demonstrating
SQL functionalities in a real-world business context. In the experiment, we used ksqlDB as
the processing tool to measure the average time difference from when the message arrived
at Apache Kafka to when the row was created in the source. The results of the experiment
are provided in Table 3.

In Table 3, the first row indicates the throughput in terms of the number of data rows
per second. The subsequent rows detail the performance of two different tools: Debezium
and Publisher. Specifically, the first row after the throughput row shows the time taken



Electronics 2024, 13, 709 7 of 23

by Debezium to complete the data transfer, while the second row shows the time taken
by Publisher.

Table 3. The table represents the average time (in seconds) it took for the number of rows per second
to reach a Kafka topic from the source. The first row represents the average time for Debezium, and
the second row represents the average time achieved by Dataphos Publisher.

Tool
Number of Data Rows

1000 10,000 50,000 150,000

Debezium 4.36 3.46 3.50 3.44
Dataphos Publisher 0.73 1.35 1.29 1.45

The analysis revealed distinct performance characteristics between the CDC tool
Debezium and Publisher. Specifically, Publisher exhibited at least 2.3 times better results
(depending on the number of rows per second) compared to Debezium. These findings
may have implications for scenarios in which rapid data propagation and minimal latency
are critical factors.

3. Data Processing Tools

In the dynamic landscape of computing and data processing, the efficiency and scala-
bility of tools play critical roles in driving insight and innovation. As scientific institutions,
business organizations, and governments grapple with increasingly large and diverse
datasets, the choice of data processing tools becomes a critical decision that directly impacts
performance, flexibility, and the ability to gain actionable insights.

This chapter explains three sophisticated data processing tools, Apache Spark [12],
Apache Flink [13], and Kafka Streams [14], as well as Apache Beam [15], a tool for creating
data pipelines that leverages data processing tools. Each of these tools possesses distinct
capabilities that serve specific components of the data processing pipeline. Understanding
the functionalities of Apache Spark’s fast and widespread processing abilities, Apache
Flink’s exceptional event stream processing, Kafka Streams’ integration into the Apache
Kafka ecosystem, and Apache Beam’s unified model for both batch and stream processing
is crucial for making well-informed decisions in the current data-driven environment. It
is important to note that this chapter is just an overview of some data processing tools
available, and any comparisons between them are based on other articles as the authors of
this article did not measure the performances of the tools.

Although these four tools specialize in different areas, the problems they solve are
similar. Spark, Flink, and Kafka Streams are all tools that process data; however, Spark
is more oriented toward batch processing, while Flink and Kafka Streams are stream-
oriented [16,17]. The difference between Flink and Kafka Streams is that Flink is a more
diverse tool and applicable in almost any stream-processing scenario (including scenarios
that use the Kafka ecosystem), whereas Kafka Streams is tightly coupled with the Kafka
ecosystem [18]. This makes Kafka Streams perfect for projects that already use Kafka but
hardly usable in other cases. Finally, Beam is a different tool compared to the other three.
It is not a data processing engine but a unified model that allows users to build pipelines
in many popular programming languages and execute those pipelines by specifying the
execution engine [19]. Despite Apache Beam being a unified programming language and
not a data processing engine, it is still reviewed with the rest of the tools.

3.1. Apache Spark

Apache Spark [12,20] is a multi-language, open-source distributed-data-processing
framework that has improved the world of big data analytics by speeding up data process-
ing and being very accessible, allowing developers to seamlessly incorporate it into their
pipelines [21]. Its strengths are its speed, versatility, and ease of use. Each of these strengths
helped Spark become an important component in the big data ecosystem. It offers a fast



Electronics 2024, 13, 709 8 of 23

in-memory data processing engine that can handle a wide variety of workloads from batch
processing to real-time streaming, machine learning, and graph processing [16,20,22]. Spark
is based on a resilient distributed dataset (RDD) abstraction model which is an immutable
collection of records partitioned across several nodes [19,23,24].

Figure 5 shows the architecture of the Spark cluster. The middle of the diagram is
occupied by the Cluster Manager, which is responsible for allocating resources across
applications. Spark acquires executors on nodes in the cluster once they are connected
which are processes that compute and store data for the application. The application code
(JAR or Python files passed to SparkContext on the left) is then sent to the executors. Finally,
SparkContext sends tasks to executors to run [21].

Electronics 2024, 13, x FOR PEER REVIEW 8 of 24 
 

 

execution engine [19]. Despite Apache Beam being a unified programming language and 
not a data processing engine, it is still reviewed with the rest of the tools. 

3.1. Apache Spark 
Apache Spark [12,20] is a multi-language, open-source distributed-data-processing 

framework that has improved the world of big data analytics by speeding up data pro-
cessing and being very accessible, allowing developers to seamlessly incorporate it into 
their pipelines [21]. Its strengths are its speed, versatility, and ease of use. Each of these 
strengths helped Spark become an important component in the big data ecosystem. It of-
fers a fast in-memory data processing engine that can handle a wide variety of workloads 
from batch processing to real-time streaming, machine learning, and graph processing 
[16,20,22]. Spark is based on a resilient distributed dataset (RDD) abstraction model which 
is an immutable collection of records partitioned across several nodes [19,23,24]. 

Figure 5 shows the architecture of the Spark cluster. The middle of the diagram is 
occupied by the Cluster Manager, which is responsible for allocating resources across ap-
plications. Spark acquires executors on nodes in the cluster once they are connected which 
are processes that compute and store data for the application. The application code (JAR 
or Python files passed to SparkContext on the left) is then sent to the executors. Finally, 
SparkContext sends tasks to executors to run [21]. 

 
Figure 5. A diagram illustrating the Apache Spark architecture [20]. The Driver Program executes 
the main() function of the application and is the core of the Spark job. It creates a SparkContext to 
establish a connection to the Cluster Manager, which allocates resources across the cluster. Worker 
nodes are assigned tasks by the Cluster Manager. Each Worker Node has Executors that run the 
tasks and cache data. This architecture allows Spark to distribute data and carry out processing 
across multiple nodes, enabling efficient parallel processing. Spark provides three cluster modes, 
each named after one of the popular cluster managers, Mesos [25], YARN [26], and Spark’s inde-
pendent cluster manager (standalone), enabling users to run their Spark applications by allowing 
the driver process to connect to one of them [27]. 

Figure 5. A diagram illustrating the Apache Spark architecture [20]. The Driver Program executes
the main() function of the application and is the core of the Spark job. It creates a SparkContext to
establish a connection to the Cluster Manager, which allocates resources across the cluster. Worker
nodes are assigned tasks by the Cluster Manager. Each Worker Node has Executors that run the tasks
and cache data. This architecture allows Spark to distribute data and carry out processing across
multiple nodes, enabling efficient parallel processing. Spark provides three cluster modes, each
named after one of the popular cluster managers, Mesos [25], YARN [26], and Spark’s independent
cluster manager (standalone), enabling users to run their Spark applications by allowing the driver
process to connect to one of them [27].

3.1.1. Benefits of Apache Spark

Apache Spark is one of the most popular data processing tools on the market [16], and
that is for a good reason. For example, Spark took Hadoop’s MapReduce and took it to the
next level with less expensive shuffles during data processing. What allows it to be so fast
is the fact that instead of interacting with a disk (it can interact with a disk as well, but in
that case, it is slower), it keeps all its data in memory, or at least it keeps as much of the
data in the disk. Spark also supports the lazy evaluation of big data queries, meaning that
the values are calculated only before they are used, which optimizes performance.



Electronics 2024, 13, 709 9 of 23

Given today’s need to process a substantial amount of data in real time, Spark supports
streaming data processing in addition to batch processing. It is important to emphasize
that streaming data in Spark is not really streaming but processing mini-batches, which is
an acceptable solution for many use cases. This allows Spark to be used in a wide variety
of use cases ranging from streaming ones, such as finances, telecommunications, and IoT,
to batch data ones like ML model training, data analysis, etc. [27–29].

Aside from being very fast and versatile, another big factor that influences Spark’s
popularity is its support for some of the most popular programming languages in the
world, Python, Java, and Scala, by offering corresponding APIs [24,30,31]. Additionally, it
offers SQL and DataFrame APIs. The accessibility of Spark does not stop there as there is a
very rich ecosystem of libraries, packages, and frameworks surrounding Spark, extending
its capabilities and covering even more use cases [27,29]. These libraries are written by
a very large active and open-source community surrounding Spark, which consequently
increases and improves documentation built around Spark, clarifying its processes.

Spark seamlessly integrates with other data processing tools, such as Hadoop, Hive,
and HBase, causing effortless merges into existing data infrastructures. With the increasing
need to quickly process large amounts of data (not only in big data but also in popular
fields such as ML [30,32]), Spark turned out to be one of leading data processing tools
available. A summary of Spark’s benefits and advantages can be found in Table 4.

Table 4. A list of Apache Spark’s key features with their corresponding descriptions.

Strengths Explanation

Speed and
Performance

In-memory data processing and lazy evaluation together put Spark on a higher
level compared to traditional MapReduce programs.

Versatility Spark supports a wide range of data processing workloads, including batch
processing, real-time streaming, and machine learning.

Ease of Use Provides high-level APIs in multiple programming languages, making it
accessible to a broad range of data professionals.

In-Memory
Processing

Spark stores data in-memory, reducing the need to read from and write to disk,
which significantly improves processing speed.

Rich Ecosystem
Spark has a rich ecosystem of libraries and packages, such as Spark Streaming,
MLlib, GraphX, and Spark SQL, which extend its capabilities and simplify
complex data processing tasks.

Community
and Support

Spark boasts a large and active open-source community. This means a wealth
of resources, documentation, and support are available, making it easier to
troubleshoot issues and learn how to use Spark effectively.

Integration
Spark can seamlessly integrate with various big data tools and platforms,
including Hadoop, Hive, HBase, and cloud-based services, enabling users to
leverage existing data infrastructure.

3.1.2. Disadvantages of Apache Spark

In the previous section, we discussed Spark’s assets. However, there are some short-
comings that also must be taken into consideration when choosing the optimal data pro-
cessing tool. One of the main benefits of Spark is its speed, which is the result of Spark
operating in-memory. This high memory consumption causes higher operational costs,
scalability limits, and challenges for data-intensive applications. Also, this means that the
minimal requirements of a machine running Spark are much higher compared to disk-based
applications like Hadoop MapReduce. If there is not enough memory to store a whole
dataset, part of it is stored on disk, and that can degrade performance.

Another advantage mentioned in the strengths section was streaming data processing.
As previously stated, Spark’s “streaming” supports many use cases but not all, as some
applications require near-real-time results. In this regard, Spark is inferior to some of
the other solutions currently available on the market. The third issue arises from Spark’s



Electronics 2024, 13, 709 10 of 23

advantage: its steep learning curve. As stated in the previous section, Spark’s ecosystem is
wide and varied, which is another double-edged sword. Spark is a “Swiss army knife” of
data processing thanks to its wide range of libraries and frameworks, but using it effectively
requires a thorough understanding of it, which may be difficult to achieve for some users.
A summary of Spark’s disadvantages can be found in Table 5.

Table 5. A list of Apache Spark’s disadvantages or challenges with their corresponding descriptions.

Challenges Explanation

Memory
Intensive

While Spark’s in-memory processing is one of its strengths, it can also be a
weakness when handling very large datasets.

Complexity
Spark’s ecosystem is extensive, which can be overwhelming for beginners. The
learning curve can be steep, especially when exploring advanced components
like Spark Streaming and MLlib.

Cost
The in-memory processing and distributed nature of Spark can result in high
memory and processor costs, especially when used in cloud environments.
Users need to be mindful of cost management.

Real-Time
Streaming

Spark Streaming, while powerful, may not be as low-latency as some forms of
specialized stream processing. It is suitable for micro-batch processing but may
not be ideal for ultra-low-latency applications.

Resource
Management

Spark does not manage resources as efficiently as some other data-processing
frameworks. Users need to configure and monitor resource allocation to
prevent inefficient resource utilization.

3.1.3. Spark Integration and Managed Services

Apache Spark provides APIs for users to deploy and run on the cloud, making it
widely used in various cloud computing platforms and services to power big data and
analytics solutions. Several cloud providers offer Spark as a managed service or integrate it
into their ecosystems. Table 6 shows four cloud tools and platforms that use Apache Spark
in the background:

Table 6. A list of cloud-based services that are used for analytics and data processing that use Apache
Spark in the background.

Cloud Service Explanation

Amazon EMR

Amazon’s EMR service allows users to easily deploy Spark clusters for big
data processing. It is integrated with other AWS services, making it an ideal
choice for data analysis and processing in the Amazon Web Services (AWS)
ecosystem [33,34].

Azure
HDInsight

HDInsight, Microsoft’s cloud-based big data service, incorporates Spark as one
of the open-source frameworks offered. Users can launch Spark clusters in
Azure for data processing, analytics, and machine learning [35].

Google Cloud
Dataproc

Dataproc is a managed and highly scalable service that allows users to operate
Apache Hadoop, Apache Spark, Apache Flink, and other applications. It
enables the usage of open-source data tools for batch processing, querying,
streaming, and machine learning [34,36].

Databricks

While not a cloud platform itself, Databricks is a unified analytics platform
built by the creators of Spark. It is frequently hosted on cloud providers such
as AWS, Azure, and Google Cloud, providing a managed environment for
Spark-based data processing and machine learning [37].

These cloud tools and services provide a seamless environment for organizations to
leverage the power of Apache Spark without the complexities of managing Spark clusters
themselves. Users can scale their Spark workloads up or down, depending on their data
processing needs, and take advantage of the cloud provider’s resources and infrastructure.



Electronics 2024, 13, 709 11 of 23

3.2. Apache Flink

Apache Flink is an open-source, unified stream-processing and batch-processing frame-
work developed by the Apache Software Foundation [38] for the standardized processing
of data streams and batch processes [30] and a high-level robust and reliable framework for
big data analytics on heterogeneous datasets [19]. It is a distributed streaming data-flow
engine written in Java and Scala that executes arbitrary dataflow programs in parallel and
in pipelines. Flink provides a high-throughput, low-latency streaming engine with support
for event processing and state management. It is fault-tolerant in the event of machine
failure and supports exactly-once semantics [13,21,39,40].

The core of Flink is the distributed dataflow engine which executes dataflow programs.
Flink’s runtime program is a DAG of stateful operators connected with data streams. The
two core APIs of Flink are the DataSet API, used in batch processing, and the DataStream
API, used in stream processing [32]. The core runtime engine (the green square in Figure 6)
serves as an abstraction layer for the two APIs. On top of the core level, Flink combines
both domain-specific libraries and APIs [13,41].

Electronics 2024, 13, x FOR PEER REVIEW 11 of 24 
 

 

Databricks 

While not a cloud platform itself, Databricks is a unified analytics 
platform built by the creators of Spark. It is frequently hosted on 
cloud providers such as AWS, Azure, and Google Cloud, providing a 
managed environment for Spark-based data processing and machine 
learning [37]. 

These cloud tools and services provide a seamless environment for organizations to 
leverage the power of Apache Spark without the complexities of managing Spark clusters 
themselves. Users can scale their Spark workloads up or down, depending on their data 
processing needs, and take advantage of the cloud provider’s resources and infrastruc-
ture. 

3.2. Apache Flink 
Apache Flink is an open-source, unified stream-processing and batch-processing 

framework developed by the Apache Software Foundation [38] for the standardized pro-
cessing of data streams and batch processes [30] and a high-level robust and reliable 
framework for big data analytics on heterogeneous datasets [19]. It is a distributed stream-
ing data-flow engine written in Java and Scala that executes arbitrary dataflow programs 
in parallel and in pipelines. Flink provides a high-throughput, low-latency streaming en-
gine with support for event processing and state management. It is fault-tolerant in the 
event of machine failure and supports exactly-once semantics [13,21,39,40]. 

The core of Flink is the distributed dataflow engine which executes dataflow pro-
grams. Flink’s runtime program is a DAG of stateful operators connected with data 
streams. The two core APIs of Flink are the DataSet API, used in batch processing, and the 
DataStream API, used in stream processing [32]. The core runtime engine (the green 
square in Figure 6) serves as an abstraction layer for the two APIs. On top of the core level, 
Flink combines both domain-specific libraries and APIs [13,41]. 

 
Figure 6. A diagram describing the Apache Flink software stack [38]. The top tier consists of several 
APIs: Flink ML for machine learning, Gelly for graph processing, and different APIs for batch and 
stream processing with table and complex event processing (CEP) capabilities [19]. The middle tier 
contains core APIs for dataset and data stream processing, as well as support for a distributed 

Figure 6. A diagram describing the Apache Flink software stack [38]. The top tier consists of several
APIs: Flink ML for machine learning, Gelly for graph processing, and different APIs for batch and
stream processing with table and complex event processing (CEP) capabilities [19]. The middle
tier contains core APIs for dataset and data stream processing, as well as support for a distributed
streaming dataflow. The deploy tier indicates that Apache Flink can be run locally, on clusters, or in
the cloud, supporting various environments like YARN and EC2 [13].

Figure 7 shows Flink’s Cluster architecture. The runtime consists of a TaskManager
and a JobManager, while the Client is not part of the runtime but is used to send a dataflow
to the JobManager and can either be detached or attached later.

The JobManager’s responsibilities are deciding when to schedule the next task (or a
set of them), reacting to finished tasks or execution failures, and coordinating checkpoints
and recovery following failures, etc. There must always be a JobManager running, and
by adding more, the system gains availability. When there are more JobManagers, there
is always one that is declared the leader while the others are on standby. A JobManager
consists of three components: a ResourceManager, a Dispatcher, and a JobMaster, which
will not be discussed in this paper.



Electronics 2024, 13, 709 12 of 23

Electronics 2024, 13, x FOR PEER REVIEW 12 of 24 
 

 

streaming dataflow. The deploy tier indicates that Apache Flink can be run locally, on clusters, or 
in the cloud, supporting various environments like YARN and EC2 [13]. 

Figure 7 shows Flink’s Cluster architecture. The runtime consists of a TaskManager 
and a JobManager, while the Client is not part of the runtime but is used to send a data-
flow to the JobManager and can either be detached or attached later. 

 
Figure 7. Apache Flink cluster architecture [38]. The three main components are the Flink Client, 
JobManager, and TaskManagers. The Flink Client submits the Flink Program and initiates the com-
putation, including a graph builder and optimizer. The JobManager, which contains the data flow 
graph, the scheduler and the checkpoint coordinator, orchestrates the job’s execution. TaskManag-
ers are responsible for the execution of tasks in task slots and managing memory and network re-
sources. This architecture enables distributed data processing and fault-tolerant streaming compu-
tation. 

The JobManager’s responsibilities are deciding when to schedule the next task (or a 
set of them), reacting to finished tasks or execution failures, and coordinating checkpoints 
and recovery following failures, etc. There must always be a JobManager running, and by 
adding more, the system gains availability. When there are more JobManagers, there is 
always one that is declared the leader while the others are on standby. A JobManager 
consists of three components: a ResourceManager, a Dispatcher, and a JobMaster, which 
will not be discussed in this paper. 

The TaskManagers (also called workers) are responsible for dataflow and buffering 
and exchanging data streams. There must always be at least one TaskManager. Each Task-
Manager consists of at least one Task Slot, and by adding more, concurrency is increased 
[13]. 

3.2.1. Benefits of Apache Flink 
Flink is a powerful tool specified for stream processing. It has high throughput and 

very low data-processing latency (in nanoseconds). Aside from stream processing, Flink 
as a secondary mode also supports batch processing, making it versatile and applicable in 
a wide range of use cases. Flink provides a guarantee for data consistency through exactly-

Figure 7. Apache Flink cluster architecture [38]. The three main components are the Flink Client,
JobManager, and TaskManagers. The Flink Client submits the Flink Program and initiates the
computation, including a graph builder and optimizer. The JobManager, which contains the data flow
graph, the scheduler and the checkpoint coordinator, orchestrates the job’s execution. TaskManagers
are responsible for the execution of tasks in task slots and managing memory and network resources.
This architecture enables distributed data processing and fault-tolerant streaming computation.

The TaskManagers (also called workers) are responsible for dataflow and buffering and
exchanging data streams. There must always be at least one TaskManager. Each TaskManager
consists of at least one Task Slot, and by adding more, concurrency is increased [13].

3.2.1. Benefits of Apache Flink

Flink is a powerful tool specified for stream processing. It has high throughput and
very low data-processing latency (in nanoseconds). Aside from stream processing, Flink as
a secondary mode also supports batch processing, making it versatile and applicable in a
wide range of use cases. Flink provides a guarantee for data consistency through exactly-
once processing semantics, meaning that the data will be received only once, ensuring
it arrives and preventing duplicates. Event time processing allows Flink to be suitable
for event-driven applications that process data based on event occurrences as well as
event reception.

In its architecture, Flink allows for the duplication of components, increasing the
application’s durability and ability to tolerate machine failures. Also, a wide range of
libraries and connectors expand Flink’s usages, allowing it to solve machine learning
problems (with FlinkML) and complex event problems (with FlinkCEP) and, with the help
of many connectors, allows Flink to communicate with various data sources, databases,
and messaging systems [32,42].

Finally, Flink has a large, growing, and active open-source community built around
it, and it is used in many organizations across different industries, which simplifies the
process of learning and flattens the learning curve. A summary of Flink’s strengths and
benefits can be found in Table 7.



Electronics 2024, 13, 709 13 of 23

Table 7. A summary list of Apache Flink’s key features with their corresponding descriptions.

Strengths Explanation

Real-Time Stream
Processing

Flink can handle high-throughput streaming data, making it suitable for
applications that require instant insights and rapid decision-making.

Exactly-Once
Semantics

It provides strong guarantees for data consistency through exactly-once
processing semantics.

Versatile
Processing

It is capable of both batch processing and stream processing within the
same framework.

Stateful
Processing

Flink supports stateful processing, allowing it to maintain and manage
states across time and data.

Event Time
Processing

The ability of Flink to handle event time makes it well-suited for
event-driven applications that process data based on when events occur,
not when they are received.

Fault Tolerance Provides built-in fault tolerance mechanisms, ensuring that processing jobs
continue running even in the presence of node failures or other issues.

Rich Ecosystem Flink has a rich ecosystem of libraries and connectors such as ones to
various data sources, databases, and messaging systems.

Community and
Industry Adoption

There is a growing and active open-source community built around Flink,
which is used by many organizations across different industries

3.2.2. Disadvantages of Apache Flink

Just like with Spark, Flink also has some downsides, making it inferior to some tools in
certain areas. A big issue Flink presents to new users is the complexity of its setup, especially
in on-prem or on self-hosted environments. Hardships during deployment might cause
developers to step away from Flink before deploying it successfully. Additionally, there is
a steep learning curve for new users because of its extensive ecosystem, and mastering it
takes a lot of time. Another issue that Flink has compared to some other frameworks is its
immature community, which can lead to a smaller selection of third-party tools.

When it comes to processing, Flink blooms with stream processing but lacks other
types. Even though support for batch processing exists, it is not nearly as efficient as stream
processing, especially with large-scale jobs. Flink also manages resources suboptimally
compared to other frameworks, and to optimize it, users need to manually tune the settings
for resource allocation [42]. A summary of Flink’s disadvantages and challenges can be
found in Table 8.

Table 8. A summary list of Apache Flink’s disadvantages with their corresponding descriptions.

Challenges Explanation

Complexity Setting up and configuring Flink clusters can be complex, especially in
on-premises or self-hosted environments.

Learning Curve Flink’s large feature set may require a steeper learning curve for new users.
The ecosystem is extensive, and mastering all aspects of Flink may take time.

Resource
Management

While Flink offers strong fault tolerance, it may not manage resources as
efficiently as some other frameworks. Users often need to fine-tune
resource allocation.

Community and
Ecosystem Maturity

Though Flink has a growing community, it may not be as mature as some
other stream-processing frameworks, which can lead to a smaller selection
of third-party integrations and tools.

Limited Support
for Batch Use Cases

Since Flink supports batch processing, it may not be as optimized for
large-scale batch jobs as some other batch-processing frameworks.



Electronics 2024, 13, 709 14 of 23

3.3. Kafka Streams

Kafka Streams is an important member of the Kafka ecosystem which allows developers
to build applications and microservices using Kafka clusters as inputs and outputs. It is
a stream-processing framework used for building streaming microservices in the Kafka
ecosystem. Each instance of a stream-processing application is a Java application that
uses a lightweight yet powerful Kafka Streams library, which allows it to communicate and
coordinate the execution and partitioning of the processing using the Kafka broker [18,43,44].
Though it is not the central point of the ecosystem, it is a valuable addition to it. Before Kafka
Streams, developers had two options. The first one was to use producer and consumer
APIs and write your own code that would process the data. This solution would become
unnecessarily complex once non-trivial operations were included in the stream. This was
due to the producer and consumer APIs not having any abstractions to help with such
use cases, so the developer would be left to their own devices as soon as they added some
more advanced operations to the event stream. The second solution was to incorporate
a streaming platform, which added unnecessary complexity to the solution and added
unnecessary power [43]. The Kafka community recognized these problems and added
Streams to the Kafka ecosystem which could be seamlessly incorporated into the solution
and solve the same problems as the other streaming platforms but use less power [17].

Figure 8 shows the Kafka Streams architecture. Input comes from stream partitions
which map to Kafka topic partitions, and data records in the stream map to a message.
Each consumer creates a number of tasks that are assigned to a list of partitions to achieve
greater parallelism of the application. Every task creates its processor topology according
to the assigned partitions. In Kafka Streams, a task is the smallest parallel unit of work.
Parallelism is bounded by the number of partitions because the highest possible parallelism
occurs when the number of tasks is equal to number of partitions [14,17].
Electronics 2024, 13, x FOR PEER REVIEW 15 of 24 
 

 

 
Figure 8. The Kafka Streams architecture is optimized for building real-time data processing appli-
cations. Source processors (input) ingest data from Kafka topics and sink processors (output) pub-
lish processed data back to Kafka. State stores maintain a local state, while internal processors are 
utilized for different tasks such as filtering, aggregating, and joining data streams [43]. 

3.3.1. Benefits of Kafka Streams 
Kafka Streams stands out as a powerful tool for handling real-time data with many 

advantages, the first one being scalability. Since Kafka Streams is part of the Kafka eco-
system, there are a lot of similarities. Streams work with partitions, and by adding more 
partitions and consumer groups, Kafka Streams can handle a greater load, thus becoming 
more scalable. The reliability of Kafka is also transferred to Streams, where one can deploy 
a Kafka Streams cluster in which all instances are aware of each other. In case one instance 
fails, the others recognize the fault and automatically start another instance [17]. 

Deploying Kafka Streams is also relatively easy. While some other data processing 
tools require you to build a whole cluster that connects to an existing application, Streams 

Figure 8. The Kafka Streams architecture is optimized for building real-time data processing applica-
tions. Source processors (input) ingest data from Kafka topics and sink processors (output) publish
processed data back to Kafka. State stores maintain a local state, while internal processors are utilized
for different tasks such as filtering, aggregating, and joining data streams [43].



Electronics 2024, 13, 709 15 of 23

3.3.1. Benefits of Kafka Streams

Kafka Streams stands out as a powerful tool for handling real-time data with many
advantages, the first one being scalability. Since Kafka Streams is part of the Kafka ecosys-
tem, there are a lot of similarities. Streams work with partitions, and by adding more
partitions and consumer groups, Kafka Streams can handle a greater load, thus becoming
more scalable. The reliability of Kafka is also transferred to Streams, where one can deploy
a Kafka Streams cluster in which all instances are aware of each other. In case one instance
fails, the others recognize the fault and automatically start another instance [17].

Deploying Kafka Streams is also relatively easy. While some other data processing
tools require you to build a whole cluster that connects to an existing application, Streams
uses the Kafka infrastructure, which requires no extra work if the application already has
Kafka [17]. To add Streams to a system, the user simply adds it to the dependency of their
Java project [43].

Kafka Streams processes stream data as opposed to some other data processing tools
that use micro-batching. You can see the difference in Figure 9. This makes Streams better
for cases in which it is extremely important to have data in real time. The tradeoff here is
that with micro-batching, systems achieve close to real time and high throughput, while
with streaming, latency is extremely low but throughput is negatively affected. However,
thanks to the Kafka architecture, Streams can increase throughput simply by adding another
partition, mitigating this issue [17,43,45]. A summary of Kafka Streams’ benefits can be
found in Table 9.

Electronics 2024, 13, x FOR PEER REVIEW 16 of 24 
 

 

uses the Kafka infrastructure, which requires no extra work if the application already has 
Kafka [17]. To add Streams to a system, the user simply adds it to the dependency of their 
Java project [43]. 

Kafka Streams processes stream data as opposed to some other data processing tools 
that use micro-batching. You can see the difference in Figure 9. This makes Streams better 
for cases in which it is extremely important to have data in real time. The tradeoff here is 
that with micro-batching, systems achieve close to real time and high throughput, while 
with streaming, latency is extremely low but throughput is negatively affected. However, 
thanks to the Kafka architecture, Streams can increase throughput simply by adding an-
other partition, mitigating this issue [17,43,45]. A summary of Kafka Streams’ benefits can 
be found in Table 9. 

 
Figure 9. The difference between micro-batching and streaming. Two paradigms of data processing 
in Kafka Streams are micro-batching and event-at-a-time processing (streaming). The upper part of 
the diagram shows micro-batching, in which events are collected in small batches before processing. 
The lower part illustrates event-at-a-time processing, where each event is processed individually as 
it arrives [43]. 

Table 9. A summary list of Kafka Streams’ key features with their corresponding descriptions. 

Strengths Explanation 

Scalability 
Streams can scale horizontally to handle increasing data volumes and 
processing requirements. You can add more processing nodes as 
needed to accommodate growing workloads. 

Reliability Adding more than one instance (and making a cluster) allows nodes 
to rebuild an instance in case of a failure. 

Ease of Use 
Since Kafka Streams leverages the familiar Kafka ecosystem, it is easier 
for organizations already using Kafka to incorporate stream pro-
cessing without introducing new technologies. 

Real-Time 
Data 

Processing 

Kafka Streams is designed for real-time data processing. It can handle 
high-throughput and low-latency data streams, allowing instant in-
sights and quick decision making. 

No External 
Dependencies 

Kafka Streams’ functioning is independent of external libraries or ad-
ditional components. This simplicity leads to easier deployment and 
maintenance. 

Rich Ecosys-
tem 

There is a rich ecosystem of connectors, libraries, and tools built 
around Kafka as well as Streams, making it well-suited for integration 
into various data processing workflows and applications. 

Figure 9. The difference between micro-batching and streaming. Two paradigms of data processing
in Kafka Streams are micro-batching and event-at-a-time processing (streaming). The upper part of the
diagram shows micro-batching, in which events are collected in small batches before processing. The lower
part illustrates event-at-a-time processing, where each event is processed individually as it arrives [43].

Table 9. A summary list of Kafka Streams’ key features with their corresponding descriptions.

Strengths Explanation

Scalability
Streams can scale horizontally to handle increasing data volumes and processing
requirements. You can add more processing nodes as needed to accommodate
growing workloads.

Reliability Adding more than one instance (and making a cluster) allows nodes to rebuild an
instance in case of a failure.

Ease of Use
Since Kafka Streams leverages the familiar Kafka ecosystem, it is easier for
organizations already using Kafka to incorporate stream processing without
introducing new technologies.

Real-Time Data
Processing

Kafka Streams is designed for real-time data processing. It can handle
high-throughput and low-latency data streams, allowing instant insights and quick
decision making.

No External
Dependencies

Kafka Streams’ functioning is independent of external libraries or additional
components. This simplicity leads to easier deployment and maintenance.

Rich Ecosystem
There is a rich ecosystem of connectors, libraries, and tools built around Kafka as well
as Streams, making it well-suited for integration into various data processing
workflows and applications.



Electronics 2024, 13, 709 16 of 23

3.3.2. Disadvantages of Kafka Stream

Although Kafka Streams might prove to be a great streaming data processing tool,
especially when it comes to systems using Kafka, there are some areas in which Streams
does not work as well as its competitors. Mastering Kafka Streams is a long and difficult
process. Even though it is easy to start with Kafka Streams, the journey becomes harder later.

When it comes to processing batches, Kafka Streams is not as good as Flink or even
Spark because the other two (especially Spark) are more focused on batch streaming [45,46].
Also, resource management can be challenging, and users need to adjust the settings to
achieve optimal results. A summary of Kafka Streams’ disadvantages can be found in
Table 10.

Table 10. A summary list of Kafka Streams’ disadvantages with their corresponding descriptions.

Challenges Explanation

Learning Curve While Kafka Streams is relatively easy to start using for simple tasks,
mastering it may take time and expertise.

Limited Batch
Processing

While Kafka Streams can perform batch processing, it is primarily
designed for stream processing.

Resource
Management

Efficiently managing resources, such as CPU and memory, can be
challenging when dealing with complex stream-processing topologies.

Limited
Third-Party
Integration

While Kafka Streams has a rich ecosystem, it may not offer as many
third-party integrations as some other stream-processing frameworks.

Monitoring and
Debugging

Advanced monitoring and debugging capabilities may not be as mature as
those of other stream-processing frameworks.

The final issue is that there are not many third-party tools, reducing flexibility. This
is due to the Streams’ immaturity compared to other data processing tools. This also
causes a lack of advanced monitoring and debugging capabilities which unnecessarily
over-complicate troubleshooting complex topologies.

3.4. Apache Beam

Apache Beam is a unified model for both batch and parallel stream processing. It
is not a data processing tool in the traditional sense. Instead, Apache Beam offers a
programming model that allows data engineers to develop data processing pipelines in
diverse programming languages [47] that can be executed on various data processing
engines, such as Apache Flink, Apache Spark, and Google Cloud Dataflow [15,29,48].
Apache Beam does not process data by itself but rather defines the pipeline, along with the
actual data processing engine. The purpose of Apache Beam is to simplify the usage of data
processing engines by allowing the user to write pipelines in the programming language of
their choice and to switch between these engines in an instant. The main goal of Apache
Beam is to streamline the use of data processing engines. This is accomplished by allowing
users to write pipelines in their preferred programming language with the flexibility to
seamlessly switch between different processing engines as needed.

Apache Beam introduces a few abstractions, the first one being a pipeline. It is a
complete description of the ETL job that will be executed, containing a description of the
sources, operators, and sinks and the way they are connected. This pipeline is then executed
by a Beam Runner. Another abstraction is a PCollection, which is a distributed, potentially
unbounded, immutable, homogeneous dataset. Finally, PTransform is a data processing
operation in the pipeline. Each PTransform takes data from one or more PCollections and
produces zero or more PCollections as output [15,29,41]

The program describing the pipeline is called a Driver program. It first creates a
pipeline objective and then creates the initial PCollection from some external source. Then
it creates one or more PTransforms which perform operations on this initial PCollection,



Electronics 2024, 13, 709 17 of 23

creating altered PCollections which are potentially used again to derive new PCollections.
Finally, using an IO operation, the final PCollection is written to an external source. This
whole pipeline is executed using one of Beam’s runners [29,41].

Figure 10 shows the model of Beam. The code for data pipelines can be written in
Java, Python, Go, or any other language that supports Beam SDK. The pipeline is specified
using the programming language which is passed to the Runner API that converts it into
a generic standard language that can be used by the execution languages (Apache Flink,
Cloud Dataflow, Apache Spark, etc.). The Fn API then provides language-specific SDK
workers that act as a Remote Procedure Call (RPC) interface of User-Defined Functions
(UDFs) embedded in the pipeline as a specification of the function. The selected runner
finally executes the pipeline [15,22,49].

Electronics 2024, 13, x FOR PEER REVIEW 18 of 24 
 

 

The program describing the pipeline is called a Driver program. It first creates a pipe-
line objective and then creates the initial PCollection from some external source. Then it 
creates one or more PTransforms which perform operations on this initial PCollection, 
creating altered PCollections which are potentially used again to derive new PCollections. 
Finally, using an IO operation, the final PCollection is written to an external source. This 
whole pipeline is executed using one of Beam’s runners [29,41]. 

Figure 10 shows the model of Beam. The code for data pipelines can be written in 
Java, Python, Go, or any other language that supports Beam SDK. The pipeline is specified 
using the programming language which is passed to the Runner API that converts it into 
a generic standard language that can be used by the execution languages (Apache Flink, 
Cloud Dataflow, Apache Spark, etc.). The Fn API then provides language-specific SDK 
workers that act as a Remote Procedure Call (RPC) interface of User-Defined Functions 
(UDFs) embedded in the pipeline as a specification of the function. The selected runner 
finally executes the pipeline [15,22,49]. 

 
Figure 10. Apache Beam’s model has a language-agnostic framework. Data pipelines are written in 
various SDKs like Java, Python, or Go and use the Runner API for pipeline construction. The pipe-
lines can be executed on multiple processing engines (e.g., Apache Flink, Cloud Dataflow, Apache 
Spark) because of the Fn API, which facilitates communication between the SDKs and the runners 
[22,50]. Each category (incoming data model, execution runners, languages, and sources and sinks) 
is represented with separate color. 

3.4.1. Benefits of Apache Beam 
The main benefit of Apache Beam is in allowing the user to define data processing 

pipelines in different programming languages (e.g., Python, Java, Go, etc.) as well as their 
preferred data processing engine. Beam then translates the code into a language the data 
processing engine understands. This allows the user to quickly switch data processing 
engines, simplifying testing, which helps the user pick the correct data processing engine. 
This also means that no matter if the data come in a stream or in batches, Beam supports 
both because it is not the one performing the processing but rather the tool used to select 

Figure 10. Apache Beam’s model has a language-agnostic framework. Data pipelines are written
in various SDKs like Java, Python, or Go and use the Runner API for pipeline construction. The
pipelines can be executed on multiple processing engines (e.g., Apache Flink, Cloud Dataflow,
Apache Spark) because of the Fn API, which facilitates communication between the SDKs and the
runners [22,50]. Each category (incoming data model, execution runners, languages, and sources and
sinks) is represented with separate color.

3.4.1. Benefits of Apache Beam

The main benefit of Apache Beam is in allowing the user to define data processing
pipelines in different programming languages (e.g., Python, Java, Go, etc.) as well as their
preferred data processing engine. Beam then translates the code into a language the data
processing engine understands. This allows the user to quickly switch data processing
engines, simplifying testing, which helps the user pick the correct data processing engine.
This also means that no matter if the data come in a stream or in batches, Beam supports
both because it is not the one performing the processing but rather the tool used to select



Electronics 2024, 13, 709 18 of 23

the processing engine. This is also true for resiliency; Beam inherits the fault tolerance of
the processing engine it uses. If the user does not want to use a data processing engine,
Beam comes with a built-in engine called Direct Runner, which should be used mainly for
testing purposes.

Aside from picking any data processing engine, Beam can also be integrated with
many different systems, such as data storage systems and messaging platforms. This further
allows users to integrate Beam into almost any ecosystem. Furthermore, Apache Beam
requires users to only consider four essential aspects: the nature of the calculated results,
specifications for event time, specifications for processing time, and the relationships
between result refinements. This streamlined approach enables users to concentrate on the
logical composition of their data-processing jobs without studying the details of various
runners and implementations. Apache Beam prioritizes ease of learning, emphasizing the
logical aspects of data processing over the complexities of physical parallel processing
orchestration [29]. Apache Beam is an open-source project with an active community
of contributors, making Beam a well-maintained framework with great support [51]. A
summary of Beam’s strengths and benefits can be found in Table 11.

Table 11. A summary list of Apache Beam’s key features with their corresponding descriptions.

Strengths Explanation

Unified Model
Provides a unified programming model for both batch and stream
processing, making it versatile and eliminating the need to learn and manage
two separate frameworks.

Flexibility Provides the flexibility to implement custom data processing logic and offers
control over how data are processed and transformed.

Portability
Beam can run on various data processing engines, including Apache Spark,
Apache Flink, and Google Cloud Dataflow, giving users flexibility and
vendor lock-in avoidance.

Language
Agnostic

It supports multiple programming languages, including Java, Python, and
Go, making it accessible to a wide range of developers.

Data Ingestion Supports a wide range of data sources and formats for data ingestion,
enabling users to process diverse data types.

Ecosystem and
Community

Has a growing ecosystem of connectors, libraries, and extensions, and an
active open-source community, providing resources, support, and an
expanding set of capabilities.

3.4.2. Disadvantages of Apache Beam

While Beam is a great tool, it still has some challenges to overcome. The first part
is complexity; even though Beam simplifies some things mentioned in Section 3.4.1., it
also complicates the structure when pipelines have both batch and stream processing
requirements. Also, mastering Beam’s model takes time and steepens the learning curve.

On one hand, Beam’s flexibility is a great selling point, but on the other hand, some
processing engine optimizations might not be fully accessible through Beam. This makes
them suboptimal compared to the use of these engines alone. An additional factor that
impedes Beam’s application is suboptimal resource management because low-level resource
management is abstracted away. Also, the additional layer of abstraction introduced by
Beam creates at least some level of overhead, downgrading the system’s performance.

Finally, Beam might not be compatible with the newest version of a processing engine,
which prevents Beam users from using the specific version of a processing engine until a
new version of Beam that supports that version of the engine is released [51]. A summary
of Beam’s challenges can be found in Table 12.



Electronics 2024, 13, 709 19 of 23

Table 12. A summary list of Apache Beam’s challenges with their corresponding descriptions.

Challenges Explanation

Complexity Increased complexity when designing and managing pipelines that have both
batch and stream processing requirements.

Learning Curve Understanding and mastering the complexities of Beam’s model can imply a
steep learning curve.

Performance
Overhead

The portability layer can introduce performance overhead, comparable to
using a framework specific to the processing engine, as it must adapt to
different underlying engines.

Limited
Features

Some specific features and optimizations available in the underlying
processing engines may not be exposed by default, which may require
additional work for utilization in Apache Beam.

Resource
Management

Efficiently managing and allocating resources, such as CPU and memory, can
be challenging as Beam’s model abstracts away some low-level resource
management.

4. Discussion

This section discusses different scenarios and provides the preferred solution for de-
veloping an advanced web-based application for data processing tasks. When it comes to
choosing the best data ingestion tool, Dataphos Publisher outperforms CDC, as demon-
strated in Section 2.3, which is why we believe Publisher is a better overall solution. Also,
Apache Beam can be used if the user requires flexibility, such as developing pipelines in their
preferred programming language and easily transitioning between data processing engines.

When it comes to selecting the best data processing tool, matters become more compli-
cated because none of the tools we reviewed are best suited to every use case [32,41]. In
the following two subsections, different use cases will be discussed. The solutions to the
problems in the use cases were chosen based on the research conducted in this paper and
are, in general, optimal solutions; however, in some use cases, they may be suboptimal in
comparison to other solutions.

Figure 11 presents a flowchart with general guidelines for selecting the appropriate data
processing tool. The following sections provide real-world examples in which a solution to a
data processing tool selection dilemma is proposed based on the algorithm shown in Figure 11.

Electronics 2024, 13, x FOR PEER REVIEW 20 of 24 
 

 

Table 12. A summary list of Apache Beam’s challenges with their corresponding descriptions. 

Challenges Explanation 

Complexity Increased complexity when designing and managing pipelines that 
have both batch and stream processing requirements. 

Learning Curve Understanding and mastering the complexities of Beam’s model 
can imply a steep learning curve. 

Performance 
Overhead 

The portability layer can introduce performance overhead, compa-
rable to using a framework specific to the processing engine, as it 
must adapt to different underlying engines. 

Limited Features 
Some specific features and optimizations available in the underly-
ing processing engines may not be exposed by default, which may 
require additional work for utilization in Apache Beam. 

Resource Man-
agement 

Efficiently managing and allocating resources, such as CPU and 
memory, can be challenging as Beam’s model abstracts away some 
low-level resource management. 

4. Discussion 
This section discusses different scenarios and provides the preferred solution for de-

veloping an advanced web-based application for data processing tasks. When it comes to 
choosing the best data ingestion tool, Dataphos Publisher outperforms CDC, as demon-
strated in Section 2.3, which is why we believe Publisher is a better overall solution. Also, 
Apache Beam can be used if the user requires flexibility, such as developing pipelines in 
their preferred programming language and easily transitioning between data processing 
engines. 

When it comes to selecting the best data processing tool, matters become more com-
plicated because none of the tools we reviewed are best suited to every use case [32,41]. In 
the following two subsections, different use cases will be discussed. The solutions to the 
problems in the use cases were chosen based on the research conducted in this paper and 
are, in general, optimal solutions; however, in some use cases, they may be suboptimal in 
comparison to other solutions. 

Figure 11 presents a flowchart with general guidelines for selecting the appropriate 
data processing tool. The following sections provide real-world examples in which a so-
lution to a data processing tool selection dilemma is proposed based on the algorithm 
shown in Figure 11. 

 

Figure 11. A flowchart for the selection of the optimal data processing tool. The selection process
starts with a big data problem. If the data are being ingested in batches, then Apache Spark would
be the most suitable solution out of the three data processing tools covered in this paper. However,
if the data are streaming, then the data processing tool would be chosen based on which message
exchange system is used; if it is Kafka ecosystem, then we would suggest the Apache Kafka Streams
tool, and if there is no Kafka in the system, we recommend Apache Flink.



Electronics 2024, 13, 709 20 of 23

4.1. Use Case 1

Use case 1 involves a sophisticated fitness application designed to help users set and
track their fitness goals. This app synchronizes with a smartwatch and collects important
data such as heart rate, exercise duration, and the type of physical activity. As the user
exercises, the smartwatch continuously transmits these data to the backend system via a
message broker, distinct from Apache Kafka. The backend system processes this informa-
tion and forwards it back to the user’s smartwatch or smartphone. Using these data, the
app performs a customized data analysis and provides a comprehensive set of statistics,
including calories burned, remaining sets for goal achievement, and more. Crucially, this
entire process occurs in real time, which requires fast data processing.

In this scenario, Apache Flink proves to be the most suitable choice among the data
processing tools discussed in our paper. Flink excels in managing streaming data, which
aligns perfectly with the application’s need for immediate data processing. While Apache
Spark is also a viable option, Flink offers a more direct solution as it processes continuous
data streams as opposed to the Spark’s approach, which simulates streams through micro-
batching. Kafka Streams is not the ideal solution here due to the absence of Apache Kafka
in the application’s message-brokering system. However, if Kafka had been used as a
message broker, Kafka Streams would have been the preferred choice for data processing.

4.2. Use Case 2

Use case 2 involves a retail analytics platform that analyzes sales data and dynamically
updates product recommendations. This application continuously collects sales data
throughout the day. At the end of the day, it processes this information to identify trending
products and items that are frequently viewed by the current user. The processed data are
then sent back to the app, which can recommend products that the user is likely to like and
provide information about product availability in stores or delivery options.

For this scenario, Apache Spark proves to be the optimal choice due to its ability
to process large amounts of data. Apache Flink, while also capable, is more tailored to
processing streaming data and may not be as efficient in this context. Kafka Streams is not
the preferred option here, similar to Flink and additionally due to the lack of integration of
the Kafka ecosystem into the application framework. Therefore, Apache Spark, with its
robust data processing capabilities, is the most suitable tool to improve the user experience
on this retail analytics platform.

5. Conclusions

The objective of this paper is to explain how advanced web applications for data
processing work, emphasizing the significance of data ingestion and processing in the
contemporary digital environment. Firstly, we have detailed the architecture of Dataphos
Publisher and conducted an experimental analysis to compare its performance with tradi-
tional CDC platforms. In the experiment, Dataphos Publisher demonstrated superiority
over CDC. Secondly, this paper provides a comprehensive overview of various data pro-
cessing tools. This includes a qualitative exploration of their functionalities, strengths,
and limitations, providing the reader with a clear overview of the wide range of available
options. Finally, the paper provides practical guidance for data engineers on how to build
advanced web applications, including a framework for selecting the most appropriate tools
for data ingestion and processing based on the application scenario. The motivation for
this was to improve the understanding and use of these technologies and thus facilitate the
development of sophisticated and efficient web applications.

Dataphos Publisher follows a “Create–Transform–Publish at source” pattern, utilizing
a Relational Database Management System to transform data into structured business
objects right there at the source. Data undergo formatting, serialization, compression, and
encryption, resulting in a substantial reduction in network traffic. This approach also
ensures robust security, making it suitable for use on both public Internet and private
networks. In the context of advanced web applications, it serves as a data ingestion tool as



Electronics 2024, 13, 709 21 of 23

it handles huge amounts of data very quickly. When a user interacts with the app, data are
collected, and the publisher uploads it to a message broker in the cloud.

Data processing is the second major big data process addressed in this paper after
data ingestion. The primary objective of data processing is to handle vast quantities of
data, either in real time or in large segments or batches. Each of the data processing tools
described in this paper provides distinct advantages and disadvantages, and none of the
tools are dominant in all scenarios. This paper provides a comprehensive qualitative
examination of three tools: Apache Spark, Apache Flink, and Kafka Streams. Additionally,
it explores Apache Beam, a tool specifically designed for constructing data pipelines.

Apache Spark shows its distinct advantages in in-memory processing and closes the
gap between batch and real-time data analyses. Its extensive ecosystem of libraries and
packages tailored to machine learning, graph processing, and more showed its multi-
faceted capabilities. Apache Flink proved to be a great tool for real-time data processing
characterized by low latency and exactly-once semantics. Its capabilities in processing
high-throughput data streams, coupled with stateful processing, made it a formidable
force, especially in industries that demand immediate insights and event-driven workflows.
Kafka Streams, like Flink, has proven itself as a real-time data processing tool because it is
a library that is tightly interwoven with the Kafka ecosystem. It offers seamless event-time
processing and exactly-once semantics, making it a must-have player in industries in which
data streaming and event-driven applications dominate. Apache Beam introduces a unified
model, promising versatility, and portability. With support for multiple languages and
compatibility with various processing engines, it has proven to be a great tool that provides
a single customizable framework that can orchestrate both batch and streaming data.

The future of web development depends on advanced applications. A robust and
scalable backend infrastructure is essential for this development. The use of Dataphos
Publisher together with advanced data processing tools is an example of this approach and
sets standards for the efficient and dynamic development of advanced web applications.
Future work in this area is likely to focus on further improving the efficiency and scalability
of data ingestion and processing tools and addressing new challenges related to data
security, privacy, and compliance on increasingly interconnected digital platforms.

The integration of artificial intelligence (AI), machine learning (ML), and deep learning
(DL) technologies into data processing tools is another area that should be intensively
researched. This could lead to more intelligent, predictive, and adaptive web applications
that not only respond to users’ needs but also anticipate them. In addition, the development
of more sophisticated data processing algorithms and the exploration of new data storage
technologies will facilitate the processing of larger amounts of data with greater speed
and accuracy.

In terms of practical applications, future research could look at developing more user-
friendly interfaces for these complex tools to make advanced data processing accessible
for a wider range of users, including those with non-technical backgrounds. In addition,
there is a growing need for research in optimizing data processing for different types of
networks from high-speed fiber optic networks to 5G telecommunication networks and
slower, intermittent connections in remote areas.

Author Contributions: Conceptualization, Š.Š.; methodology, Š.Š.; validation, N.T. and M.H.; investi-
gation, J.M. and N.T.; resources, Š.Š.; writing—original draft preparation, Š.Š., N.T., J.M. and M.H.;
writing—review and editing, Š.Š., N.T., J.M. and M.H.; supervision, Š.Š. and N.T. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: Authors Šimun Šprem, Nikola Tomažin and Jelena Matečić are employed by
the company Syntio. The remaining authors declare that the research was conducted in the absence
of any commercial or financial relationships that could be construed as a potential conflict of interest.



Electronics 2024, 13, 709 22 of 23

References
1. Meehan, J.; Aslantas, C.; Zdonik, S.; Tatbul, N.; Du, J. Data Ingestion for the Connected World. In Proceedings of the CIDR,

Chaminade, CA, USA, 8–11 January 2017; Volume 17, pp. 8–11.
2. Wu, X.; Zhu, X.; Wu, G.Q.; Ding, W. Data Mining with Big Data. IEEE Trans. Knowl. Data Eng. 2013, 26, 97–107.
3. Alwidian, J.; Rahman, S.A.; Gnaim, M.; Al-Taharwah, F. Big Data Ingestion and Preparation Tools. Mod. Appl. Sci. 2020, 14, 12–27.

[CrossRef]
4. Mătăcuţă, A.; Popa, C. Big Data Analytics: Analysis of Features and Performance of Big Data Ingestion Tools. Inform. Econ. 2018,

22, 25–34.
5. Bylund, A. Data Pipeline Design for Audit Analytics: Data Ingestion Tools Evaluation & Proof of Concept. Master’s Thesis, Umeå

University, Faculty of Science and Technology, Department of Applied Physics and Electronics, Umeå, Sweden, 2023.
6. Tank, D.M.; Ganatra, A.; Kosta, Y.P.; Bhensdadia, C.K. Speeding ETL Processing in Data Warehouses Using High-Performance

Joins for Changed Data Capture (CDC). In Proceedings of the 2010 International Conference on Advances in Recent Technologies
in Communication and Computing, Kottayam, India, 16–17 October 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 365–368.

7. Petrie, K.; Potter, D.; Ankorion, I. Streaming Change Data Capture; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2018;
ISBN 9781492032519.

8. Dataphos Publisher: The Accelerator to Your Decision Making Process. Available online: https://www.syntio.net/en/labs-
musings/publisher-the-accelerator-to-your-decision-making-process (accessed on 23 January 2024).

9. Hegde, R.G.; Nagaraja, G.S. Low latency message brokers. Int. Res. J. Eng. Technol. 2020, 7, 5.
10. Debezium Reference Documentation. Available online: https://debezium.io/documentation/ (accessed on 23 January 2024).
11. WideWorldImporters—Data Dictionary. Available online: https://dataedo.com/samples/html/WideWorldImporters/doc/

WideWorldImporters_5/home.html (accessed on 23 January 2024).
12. Introduction to Apache Spark with Examples and Use Cases. Available online: https://www.toptal.com/spark/introduction-to-

apache-spark (accessed on 23 January 2024).
13. Carbone, P.; Ewen, S.; Haridi, S.; Katsifodimos, A.; Markl, V.; Tzoumas, K. Apache Flink™: Stream and Batch Processing in a

Single Engine. Bull. Tech. Comm. Data Eng. 2015, 38, 12.
14. Isah, H.; Abughofa, T.; Mahfuz, S.; Ajerla, D.; Zulkernine, F.; Khan, S. A Survey of Distributed Data Stream Processing Frameworks.

IEEE Access 2019, 7, 154300–154316. [CrossRef]
15. Spæren, T. Performance Analysis and Improvements for Apache Beam. Master’s Thesis, University of Oslo, Oslo, Norway, 2021;

p. 108.
16. Ibtisum, S.; Bazgir, E.; Rahman, S.M.A.; Hossain, S.M.S. A Comparative Analysis of Big Data Processing Paradigms: MapReduce

vs. Apache Spark. World J. Adv. Res. Rev. 2023, 20, 1089–1098. [CrossRef]
17. Wang, G.; Chen, L.; Dikshit, A.; Gustafson, J.; Chen, B.; Sax, M.J.; Roesler, J.; Blee-Goldman, S.; Cadonna, B.; Mehta, A.; et al.

Consistency and Completeness: Rethinking Distributed Stream Processing in Apache Kafka. In Proceedings of the SIGMOD ‘21:
Proceedings of the 2021 International Conference on Management of Data, Xi’an, China, 20–25 June 2021; pp. 2602–2613.

18. Biernat, N.A. Scalability Benchmarking of Apache Flink. Bachelor’s Thesis, Kiel University, Department of Computer Science,
Software Engineering Group, Kiel, Germany, 29 September 2020.

19. Salem, F. Comparative Analysis of Big Data Stream Processing Systems. Master’s Thesis, Aalto University, School of Science,
Espoo, Finland, 2016; 89p.

20. Cluster Mode Overview. Available online: https://spark.apache.org/docs/latest/cluster-overview.html (accessed on 23 January 2024).
21. Nasr, K. Comparison of Popular Data Processing Systems. Master’s Thesis, KTH Royal Institute of Technology, Stockholm,

Sweden, 2021; p. 76.
22. BEAM (Batch + strEAM) Your Data Pipelines on Google Dataflow. Available online: https://towardsdatascience.com/beam-

batch-stream-your-data-pipelines-on-google-dataflow-2e3230bcdc21 (accessed on 23 January 2024).
23. Bonner, S.; Kureshi, I.; Brennan, J.; Theodoropoulos, G. Exploring the evolution of big data technologies. In Software Architecture

for Big Data and the Cloud; Morgan Kaufmann: Burlington, MA, USA, 2017; pp. 253–283.
24. Ahmad, U.S.; Miyim, A.M.; Ali, M.S. Evaluation of Open-Source Tools for Big Data Processing. Dutse J. Pure Appl. Sci. 2022, 8, 10.

[CrossRef]
25. Running on Mesos. Available online: https://spark.apache.org/docs/latest/running-on-mesos.html (accessed on 23 January 2024).
26. Apache Hadoop YARN. Available online: https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html

(accessed on 23 January 2024).
27. Tang, S.; He, B.; Yu, C.; Li, Y.; Li, K. A Survey on Spark Ecosystem: Big Data Processing Infrastructure, Machine Learning, and

Applications. IEEE Trans. Knowl. Data Eng. 2022, 34, 71–91. [CrossRef]
28. Fernández-Gómez, A.M.; Gutiérrez-Avilés, D.; Troncoso, A.; Martínez-Álvarez, F. A New Apache Spark-based Framework for

Big Data Streaming Forecasting in IoT Networks. J. Supercomput. 2023, 79, 11078–11100. [CrossRef] [PubMed]
29. Liu, J.; Zhu, T.; Zhang, Y.; Liu, Z. Parallel Particle Swarm Optimization Using Apache Beam. Information 2022, 13, 119. [CrossRef]
30. Tran, Q.; Nguyen, B.; Nguyen, L.; Nguyen, O. Big Data Processing with Apache Spark; Tra Vinh University Journal of Science: Tra

Vinh, Vietnam, 2023; Volume 13.
31. Nazari, E.; Shahriari, M.H.; Tabesh, H. Big Data Analysis in Healthcare: Apache Hadoop, Apache Spark, and Apache Flink. Front.

Health Inform. 2019, 8, 14. [CrossRef]

https://doi.org/10.5539/mas.v14n9p12
https://www.syntio.net/en/labs-musings/publisher-the-accelerator-to-your-decision-making-process
https://www.syntio.net/en/labs-musings/publisher-the-accelerator-to-your-decision-making-process
https://debezium.io/documentation/
https://dataedo.com/samples/html/WideWorldImporters/doc/WideWorldImporters_5/home.html
https://dataedo.com/samples/html/WideWorldImporters/doc/WideWorldImporters_5/home.html
https://www.toptal.com/spark/introduction-to-apache-spark
https://www.toptal.com/spark/introduction-to-apache-spark
https://doi.org/10.1109/ACCESS.2019.2946884
https://doi.org/10.30574/wjarr.2023.20.1.2174
https://spark.apache.org/docs/latest/cluster-overview.html
https://towardsdatascience.com/beam-batch-stream-your-data-pipelines-on-google-dataflow-2e3230bcdc21
https://towardsdatascience.com/beam-batch-stream-your-data-pipelines-on-google-dataflow-2e3230bcdc21
https://doi.org/10.4314/dujopas.v8i3b.10
https://spark.apache.org/docs/latest/running-on-mesos.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html
https://doi.org/10.1109/TKDE.2020.2975652
https://doi.org/10.1007/s11227-023-05100-x
https://www.ncbi.nlm.nih.gov/pubmed/36845222
https://doi.org/10.3390/info13030119
https://doi.org/10.30699/fhi.v8i1.180


Electronics 2024, 13, 709 23 of 23

32. García-Gil, D.; Ramírez-Gallego, S.; García, S.; Herrera, F. A Comparison on Scalability for Batch Big Data Processing on Apache
Spark and Apache Flink. Big Data Anal. 2017, 2, 1. [CrossRef]

33. Amazon EMR (Elastic MapReduce). Available online: https://www.techtarget.com/searchaws/definition/Amazon-Elastic-
MapReduce-Amazon-EMR (accessed on 23 January 2024).

34. Gupta, U.; Sharma, R. A Study of Cloud-Based Solution for Data Analytics. In Data Analytics for Internet of Things Infrastructure;
Sharma, R., Jeon, G., Zhang, Y., Eds.; Springer: Cham, Switzerland, 2023.

35. Azure HDInsight Documentation. Available online: https://learn.microsoft.com/en-us/azure/hdinsight/ (accessed on 23
January 2024).

36. Dataproc. Available online: https://cloud.google.com/dataproc?hl=en (accessed on 23 January 2024).
37. The Databricks Data Intelligence Platform. Available online: https://www.databricks.com/product/data-intelligence-platform

(accessed on 23 January 2024).
38. General Architecture and Process Model. Available online: https://nightlies.apache.org/flink/flink-docs-release-1.1/internals/

general_arch.html (accessed on 5 February 2024).
39. Hlupić, T.; Puniš, J. An Overview of Current Trends in Data Ingestion and Integration. Poslovna inteligencija d.o.o., Zagreb,

Croatia. In Proceedings of the MIPRO 2021, Opatija, Croatia, 27 September–1 October 2021.
40. Espinosa, C.V.; Martin-Martin, E.; Riesco, A.; Rodríguez-Hortalá, J. FlinkCheck: Property-Based Testing for Apache Flink. IEEE

Access 2019, 7, 150369–150382. [CrossRef]
41. Saxena, S.; Gupta, S. Practical Real-time Data Processing and Analytics; Packt Publishing: Birmingham, UK, 2017; pp. 89–106.
42. Rahman, T.; Jagannarayan, N.; Kannan, A. Advances in Management, Social Sciences and Technology by Dr. Tazyn Rahman 2; Empyreal

Publishing House: Vasundhara Ghaziabad, India, 2021.
43. Apache Kafka Architecture. Available online: https://kafka.apache.org/35/documentation/streams/architecture (accessed on

23 January 2024).
44. Seymour, M. Mastering Kafka Streams and KsqlDB, 1st ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2021; p. 410.
45. Tallberg, S. A Comparison of Data Ingestion Platforms in Real-Time Stream Processing Pipelines. Master’s Thesis, Mälardalen

University, School of Innovation Design and Engineering, Västerås, Sweden, 2020.
46. Van Dongen, G.; Van den Poel, D. Evaluation of Stream Processing Frameworks. IEEE Trans. Parallel Distrib. Syst. 2020, 31,

1845–1858. [CrossRef]
47. Li, S.; Gerver, P.; MacMillan, J.; Debrunner, D.; Marshall, W.; Wu, K.-L. Challenges and Experiences in Building an Efficient

Apache Beam Runner for IBM Streams. Proc. VLDB Endow. 2018, 11, 1742–1754. [CrossRef]
48. Žaja, M.; Čavrak, I.; Lipić, T. Benchmarking Apache Beam for IoT Applications. In Proceedings of the 44th International

Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 27 September–1 October 2021;
pp. 272–277.

49. Lukavsky, J. Building Big Data Pipelines with Apache Beam: Use a Single Programming Model for Both Batch and Stream Data Processing;
Packt Publishing Ltd.: Birmingham, UK, 2022.

50. Apache Beam Overview. Available online: https://beam.apache.org/get-started/beam-overview/ (accessed on 5 February 2024).
51. Hesse, G. A Benchmark for Enterprise Stream Processing Architectures. Ph.D. Thesis, Universität Potsdam, Potsdam, Germany, 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/s41044-016-0020-2
https://www.techtarget.com/searchaws/definition/Amazon-Elastic-MapReduce-Amazon-EMR
https://www.techtarget.com/searchaws/definition/Amazon-Elastic-MapReduce-Amazon-EMR
https://learn.microsoft.com/en-us/azure/hdinsight/
https://cloud.google.com/dataproc?hl=en
https://www.databricks.com/product/data-intelligence-platform
https://nightlies.apache.org/flink/flink-docs-release-1.1/internals/general_arch.html
https://nightlies.apache.org/flink/flink-docs-release-1.1/internals/general_arch.html
https://doi.org/10.1109/ACCESS.2019.2947361
https://kafka.apache.org/35/documentation/streams/architecture
https://doi.org/10.1109/TPDS.2020.2978480
https://doi.org/10.14778/3229863.3229864
https://beam.apache.org/get-started/beam-overview/

	Introduction 
	Data Ingestion 
	State of the Art in Data Ingestion Tools 
	Change Data Capture 
	Dataphos Publisher 
	CDC vs. Dataphos Publisher 

	Data Processing Tools 
	Apache Spark 
	Benefits of Apache Spark 
	Disadvantages of Apache Spark 
	Spark Integration and Managed Services 

	Apache Flink 
	Benefits of Apache Flink 
	Disadvantages of Apache Flink 

	Kafka Streams 
	Benefits of Kafka Streams 
	Disadvantages of Kafka Stream 

	Apache Beam 
	Benefits of Apache Beam 
	Disadvantages of Apache Beam 


	Discussion 
	Use Case 1 
	Use Case 2 

	Conclusions 
	References

