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Abstract: This paper presents ReproRun, a flexible and extensible run-time framework for the
reconfiguration of functions in field programmable gate array (FPGA) devices used in popular
software-defined radio (SDR) platforms. The FPGA devices embed a hardwired or soft processing
system (PS) which communicates with the programmable logic (PL) using a standard embedded bus
interface. In order to apply a seamless run-time partial reconfiguration, we made use of all the related
building blocks, design guidelines, and tools offered by AMD-Xilinx. In ReproRun, each partial
bitstream targeting a reconfigurable region (RR) of the PL area comes with its respective firmware
(i.e., software functions) that runs on the PS side. Our work guarantees run-time updates of the
firmware without interrupting the functionality of other software processes running in the PS or PL,
by employing a specialized controller, denoted as Run-timE firmWare reconfIguration contRollEr
(REWIRE). The latter leverages the open asymmetric multiprocessing framework (OpenAMP). The
partial bitstreams and respective firmware are fetched from a remote location using the trivial
file transfer protocol (TFTP). ReproRun can be applied in different FPGA accelerators residing in
disaggregated open radio access network (RAN) equipment, adaptive radio access technologies, and
Edge servers hosting virtualized functions.

Keywords: FPGA; 5G; B5G; SDR; RAN; reconfigurable computing; adaptive computing; function
accelerators

1. Introduction

The field programmable gate array (FPGA) devices are widely used as function
accelerators in numerous end applications. Their inherent computing parallelism and re-
programmability provide a tradeoff between the processing flexibility of general-purpose
processors (GPP) and the optimized performance of application-specific integrated cir-
cuits (ASIC). On top of that, their low power consumption when compared to graphical
processing units (GPU) makes them appealing for numerous scenarios where the optimal
computation capacity per watt is a hard system constraint. The increasing need for flexible
accelerator devices has brought a new family of system-on-chip (SoC) devices that may
combine in the same silicon fabric FPGA programmable logic (PL), a processing system
(PS), a real-time processing unit, a small-size GPU, ASIC cores, vector-processing engines
dedicated to artificial intelligence (AI) and machine learning (ML) workloads, hardwired
communication cores and different built-in high-speed input/output (I/O) interfaces [1].

The native system prototyping flow for such complex FPGA-based SoC devices re-
quires a rigorous hardware–software co-design approach. Moreover, coherent runtime
programmability is required to fully exploit the capacity of the underlying processing
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elements in adaptive computing use cases with dynamic workloads. To achieve this, the set
of functions for each application needs to be profiled, partitioned, and distributed across
the different processing elements of the FPGA-based SoC, guaranteeing their seamless
on-chip interlinking and the efficient management of shared resources (e.g., preventing
performance loss and deadlocks). Moreover, in systems with field upgradability require-
ments, uninterrupted system operation needs to be guaranteed during and after a runtime
reconfiguration of intercorrelated functions targeting the different processing elements of
an FPGA-based SoC. To tackle the mentioned challenges, the research community and
FPGA vendors have made considerable efforts over the past years to produce different
design tools, reconfigurable computing solutions, and multi-core processor management
frameworks. Towards this end, mature techniques are available to enable the dynamic
reconfiguration of a function hosted in a given processing element of the FPGA-based SoCs.
However, this is not the case for interlinked functions which are partitioned and placed in
different types of on-chip processing elements.

This work focuses on how FPGA-based SoCs can be adequately utilized in mobile
network infrastructure equipment, and in concrete in open and programmable radio access
networks (RAN). Programmability at the RAN level first received attention in the fourth
generation (4G) of cellular networks (e.g., in the context of self-organized networks and
cognitive radio use cases [2]). Things have moved a long way since then and in the
fifth generation (5G) of broadband cellular networks, agile programmable technologies
have been introduced across the entire network stratum, contemplating among others
software-defined networking, network slicing, network function virtualization (NFV) [3],
functional splits [4], and adaptive software defined radio (SDR) [5]. Given the stringent
performance requirements of 5G applications in terms of latency, computing complexity,
and energy consumption, the run-time reconfigurable function accelerators like the FPGA-
based SoCs, are considered key processing elements for the previously mentioned 5G
technology innovations. Ultra high-performance FPGA-based SoCs hosting agile function
accelerators are also critical for AI-ML operations in beyond 5G distributed Edge computing
architectures [6].

In this paper, we present ReproRun framework (Reprogramming accelerated and soft-
ware functions at Runtime in FPGA-based SoC devices) that was designed, implemented,
and validated using popular SDR systems. ReproRun is able to apply a seamless joint recon-
figuration of functions targeting both the PL and the PS parts of Xilinx FPGA-based SoCs.

The run-time reconfiguration of accelerated FPGA-based functions is a key feature
that aims to truly exploit the processing flexibility of FPGA devices in the context of
reconfigurable computing [7]. The partial reconfiguration features have been following the
architectural evolution of FPGA devices [8]. However, despite the undeniable benefits of
PR, its adoption on behalf of different technology stakeholders and vertical application
sectors has been rather modest. The run-time spatial–temporal exploitation of FPGA
compute resources requires certain applications to fulfill some strict latency requirements
in order not to suffer service downtimes. Different works tried to improve the PR latency
and reconfiguration control overheads [9–11]. Another major setback for more widespread
use of the PR methods is concerns related to data privacy and security when FPGA devices
are used as shared computing resources in multi-tenant edge or cloud applications. Data or
application security and privacy concerns have been historically addressed either through
key upgrades of the native PR frameworks offered by the main FPGA vendors by including
new security features, or by contributions coming from the academic community [12–14].
However, cloud and edge computing are the domains driving the FPGA reconfigurable
computing innovations, by introducing virtualized frameworks that orchestrate FPGA
accelerators in 5G Cloud Environments [15]. These efforts are valuable to increase the
availability of FPGAs to virtual machines or containers and to enhance the flexibility
of cloud FPGA deployments [16,17]. The value of FPGA computing with PR is also
manifested by its adoption in different vertical sector use cases [18–21]. One of the latest
research interests is to use FPGA computing and PR in those use cases where ML models



Electronics 2024, 13, 701 3 of 29

need to be deployed and reconfigured on the fly [22,23]. Finally, run-time PR in FPGA
devices is used in programmable and virtualized networking deployments [23–26] and
SDR [27,28] infrastructures.

All the previously cited works focusing on FPGA-based reconfigurable computing
use cases, share conceptual communalities with the framework presented in this paper.
However, the key differentiating factor is that the reconfigurable framework presented in
this paper jointly manages the run-time reconfiguration of functions featuring an inter-
linked software and accelerated portion in a seamless way; the former is implemented in
a processor embedded in the FPGA device, whereas the latter is implemented in a given
partially reconfigurable PL area. Hence, the idea of reconfiguring on the fly either the
software or PL-accelerated portion of the function without affecting the availability of
the other part is a notable contribution compared to the state of the art. The novelty of
ReproRun is important when considering that every time more processing elements are
packed in the same FPGA fabric to yield complex SoC devices with heterogeneous process-
ing resources. As a consequence, the mindset of applying a hardware-software co-design
flow in an inherently monolithic or static way is challenged when the compute capacity
and elasticity of this type of device are leveraged in dynamic and adaptive computing
environments. ReproRun advocates that software–hardware co-design has to be rethought
to contemplate run-time procedures; its contribution can be further extended and exploited
in different types of use cases not necessarily limited to SDR and 5G networking.

The remainder of the paper is organized as follows: Section 2 states the motivation
and contribution of the work; Section 3 provides an overview of some assumptions and
also the specifications that were taken into account during the development of the system;
Section 4 presents the design of ReproRun with its main components; Section 5 provides
the FPGA implementation details for the two SDR platforms; Section 6 presents the results
of the experimental validation that was conducted using the two frameworks supporting
the two SDR platforms (in the first based on Analog Devices FPGA firmware and graphical
tools and in the second based on the GNU radio companion and the RFNoC framework of
Ettus Research); Section 7 provides the conclusions; and finally, the Appendix A includes
detailed information of a limitation encountered in one of the two experimental platforms.

2. Motivation and Contributions

Parts of the PL area in FPGA devices could be defined as reconfigurable regions (RR)
at design time. One RR can host suitably pre-compiled functions, which could be replaced
or interchanged at run-time, without interrupting the operation of other functions running
in the static part of the FPGA (i.e., the rest of the PL area that is not defined as an RR)
or in other RRs. This procedure is called dynamic FPGA partial reconfiguration (PR),
which since the 2019.2 version of the Vivado FPGA design toolchain has been enriched and
rebranded as dynamic function exchange (DFX). The PL functions targeting the RR are
denoted as partial bitstreams. However, the run-time update, upgrade, or replacement of
interdepended functions that are split and placed in the PL and PS parts of the FPGA (or
other on-chip processing elements) is hiding numerous challenges in terms of performance,
availability, and security. This is exactly the key contribution of ReproRun that allows to
upgrade or replace interdepended PL or PS functions at run-time without compromising
the availability of other services and applications running on the chip. This is a novel
top-up feature to the existing PR framework offered by AMD-Xilinx.

In our case, each partial bitstream targeting an RR of the PL area comes with its
respective firmware (i.e., software functions) that runs on the PS side. In order to apply
a run-time partial reconfiguration, we made use of all the related building blocks, de-
sign guidelines, and tools offered by Xilinx, and also extended, modified, and combined
available reference designs.
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On the PS side, we leveraged asymmetric multiprocessing (AMP) principles to manage
the inter-processor communication, signaling, and resource sharing. Our work guaran-
tees the seamless run-time update of applications running at one core of the PS without
interrupting the functionality of other software processes running in the same core (i.e.,
the rest of the PS firmware) or the interdepended functions in its PL counterpart. This
was made feasible by designing a novel computing kernel denoted as a run-time firmware
reconfiguration controller (REWIRE). Hence, applications comprising a PL and a PS part can
update/replace any of these components without service interruption.

Adding a run-time reconfiguration framework in FPGA-powered SDR platforms
serving both the PL accelerated functions and the PS firmware, opens up many research
opportunities in the field of reprogrammable 5G communication systems. For instance,
ReproRun can be used as the basis of an abstraction layer that could extend NFV towards
those RAN infrastructure equipment residing at the edge of 5G networks, where FPGA
acceleration is paramount for serving the needs of highly demanding Edge applications.
Similarly, SDR systems built to host adaptive multi-radio access technologies could use Re-
proRun to add, replace, or scale PS/PL functions. Adaptive RAN FS can also be supported
by the ReproRun framework, adding dynamicity in the run-time placement of functions,
especially when considering run-time migration scenarios from split option 7.2 to split
option 7.3 [4].

ReproRun was applied in two SDR platforms featuring different 7 series AMD-Xilinx
FPGA devices, and a number of different specifications in terms of on-board components
and connectivity options. This alone is an important contribution of ReproRun because it
implied a different design architecture for updating or replacing the PS firmware in the
two SDR platforms and for applying the PR in PL-accelerated functions. Moreover, it has
proved the flexibility and versatility of ReproRun to simultaneously foster accelerated
computing and agile multicore reconfiguration, tailored to FPGA device specifications,
SDR hardware limitations, and specific design requirements. In this respect, ReproRun
could be seen as an enabler for those Open RAN and Edge computing use cases that
require field adaptive function acceleration, efficient resource orchestration, and agile split
computing support.

3. Base Assumptions and Specifications

ReproRun provides a flexible and extensible run-time framework for the partial recon-
figuration of FPGA devices used in popular SDR platforms. The FPGA devices embed a
hardwired or soft PS which communicates with the PL using a standard embedded bus
interface. Our work is based on the PR design flow of AMD-Xilinx, which makes use of
the partial reconfiguration controller (PRC) intellectual property (IP) core and the internal
configuration access port (ICAP) port.

It is important to highlight that we have not used the newest AMD–Xilinx dynamic
function exchange (DFX) framework, the successor of the Xilinx Partial Reconfiguration
flow, in order to maintain compatibility with specific firmware versions of the SDR boards
of interest. Notwithstanding, the PR flow is still valid across numerous platforms featuring
different FPGA devices. AMD–Xilinx provides three core documents [29–31], on how to
use the PR on its FPGA devices. On top of this, AMD–Xilinx also disposes of some key
Application Notes, which help to understand the proposed reconfiguration framework.
The radio frequency network on-chip (RFNoC) programming framework natively used
in numerous Ettus Research SDR platforms was also used in this work; the “Getting
Started with RFNoC Development” (https://kb.ettus.com/Getting_Started_with_RFNoC_
Development, accessed on 1 February 2024) Application Note underpins the dependency
with the AMD–Xilinx Vivado 2017.4 toolchain version. The concrete version of RFNoC
that was used in this work is the UHD_4.0.0.rfnoc-devel-161-. The designed run-time PR
framework has been tested and validated in the following SDR platforms:

SDR1: Combines the Xilinx ZC706 development kit featuring the Xilinx Zynq XC7Z045
SoC device with the AD-FMCOMMS-2/3 evaluation board from Analog Devices. The

https://kb.ettus.com/Getting_Started_with_RFNoC_Development
https://kb.ettus.com/Getting_Started_with_RFNoC_Development
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latter features the AD9361 2 × 2 RF transceiver IC (TX band: 47 MHz to 6.0 GHz, RX band:
70 MHz to 6.0 GHz, tunable bandwidth: 200 kHz to 56 MHz).

SDR2: The Ettus Research USRP X310 SDR board, features a Xilinx Kintex 7 FPGA
device. The X310 includes an agile RF transceiver module able to be programmed for a
large range of RF frequencies (from 1.2 GHz to 6 GHZ, channel bandwidth of 40 MHz).
The fundamental difference of this device when compared to SDR1 is the absence of a
hardwired PS.

The run-time reconfiguration in ReproRun comprises the following two parts:

i. The partial bitstream that is meant to reconfigure a reconfigurable module (RM). The
latter is a PL reconfigurable area defined at design time. The partial bitstreams could
be digital signal processing (DSP) functions typically encountered in SDR systems (e.g.,
a finite impulse response (FIR) filter), or any other type of PL-accelerated functions.

ii. Firmware functions residing at the PS (hardwired or soft-embedded microprocessor)
are essentially the piece of software that communicates, controls, and extends the
operation of the partial bitstream configured in a PL reconfigurable area (e.g., a
software function that programs, registers, and manages different coefficient sets of
the FIR filter based on performance indicators). Each firmware function is linked with
an equivalent partial bitstream, forming a bonded hardware–software application.

ReproRun provides a seamless run-time reconfiguration of both the PL and PS-based
functions. The starting assumption in both SDR platforms was that the FPGA device
includes functions running at the static part of the design and also a corresponding firmware
running at the PS, whose operation must remain uninterrupted during and after the PR
process. The FPGA devices in the two SDR platforms include one RM.

4. System Design

System design aspects included in two AMD-Xilinx Application Notes were reutilized
in ReproRun. The first one [32] shows how to use the lightweight internet protocol (lwIP)
open-source TCP/IP networking stack to add networking capability to an embedded
system. The lwIP was utilized to develop an echo server, a web server, a trivial file transfer
protocol (TFTP) server, and receive/transmit throughput tests. The Vivado SDK provides
lwIP software customized to run on the AMD MicroBlaze processor. An AMD-Xilinx
Kintex-7 FPGA KC705 Evaluation Kit was used to test the system, which had to be adapted
and modified for the specific design needs of ReproRun. The second Xilinx Application
Note [33] provides a software library written in C that can be used to fetch partial bitstreams
over Ethernet with the help of a TFTP server. A partial bitstream discovery mechanism
is provided for applications that expect their available partial bitstreams to change over
time. Both applications run on a MicroBlaze Processor and help to fetch partial bitstreams
that reconfigure the FPGA RM. Similarly, the Kintex-7 FPGA KC705 Evaluation Kit was
used to validate the PR features. Useful features of both AMD-Xilinx Application Notes
were combined, extended, and modified to serve the needs of ReproRun. For instance, the
partial bitstreams and corresponding firmware objects are fetched from a remote location
using the TFTP service and stored in a defined range in the external synchronous dynamic
random-access memory (SDRAM) of the SDR platforms accessible by both the PL and the
PS side.

ReproRun was designed to handle the seamless reconfiguration of interdepended par-
tial bitstreams and firmware object files. This means that a partial bitstream reconfiguration
in the PL does not lead to a deadlock in the firmware function associated with that partial
bitstream and vice versa. In this respect, ReproRun provides consistency between RMs
making sure that when a PR bitstream is swapped for another, the connections between the
static design and the RM are identical, both logically and physically. This was made feasible
by defining at an early design stage the interfaces between the RM and the static design.
Choosing the DSP functions to be implemented inside each RM posed requirements on the
type of resources an RR must comprise and, on the FPGA floor planning.
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The PRC IP core guarantees a high throughput while fetching the bitstream [34] and,
accordingly, a low reconfiguration time. It also provides flexibility when managing RMs
without adding any overhead to the PS (i.e., it does not compromise the execution of other
tasks). Finally, the PRC IP core provides the necessary functionality to avoid deadlocks
during the reconfiguration process (i.e., preserve the static part of the design) [31] by
employing isolation logic and error detection features.

The PRC IP fetches bitstreams from a double data rate (DDR) SDRAM memory, which
is specially thought to be used by the PL, and thus we call it SDRAM-PL. One of the ideas
behind REWIRE and especially its part running under Linux, is that it should be able to
fetch a partial bitstream and place it in a predefined memory region of the SDRAM-PL
memory. Thus, SDRAM-PL must be accessible from PS as well. Then, on receiving a
software trigger command the PRC core can access that bitstream and use it for partial
reconfiguration. It is important to note that memory transactions between the PRC and
PL-DDR are not going through the microprocessor, a fact that guarantees minimal latency
during partial reconfiguration. The AXI4 interconnect was added to the design in order to
arbitrate transactions from the PRC and microprocessor to the memory interface generator
(MIG) controller.

REWIRE

An AMP approach [35] was adopted for the SDR1 exploiting the dual-core ARM A9
CPU hardwired in the Xilinx Zynq XC7Z045 device. The first core, denoted thereafter
as Processor 0, needs to operate in real-time, having direct access to the hardware and
deterministic processing latencies. This is mainly due to the fact that wireless transceivers
typically handle high-load data processing, control several IP cores inside the PL, and
need to interface with high-speed I/O protocols. The reconfigurability requirements can
be considered as a control plane issue of the entire embedded design. The OpenAMP
(https://github.com/OpenAMP, accessed on 1 February 2024) solution was applied in
unsupervised mode, using a bare-metal application and other firmware functions for
the real-time communication functionalities in Processor 0 (slave), along with a flexible
reconfigurable Linux kernel responsible for realizing administration and control functions
in the second core of the ARM A9 processor denoted as Processor 1 (master).

The communication channel was built on top of the OpenAMP framework and the
libmetal library [36]. The latter provides user application programming interfaces (API)
that allow to access devices, handle device interrupts, and request memory across dif-
ferent operating environments (libmetal is available for Linux, FreeRTOS, and bare-metal
environments). On the other hand, OpenAMP provides life cycle management and inter-
processor communication capabilities to control remote compute resources, a standalone
library usable with bare-metal software environments and compatible interfacing with
upstream Linux remoteproc, rpmsg, and VirtIO components. The detailed flow diagrams
of OpenAMP are provided in figures 1-1 and C-1 in [35]. REWIRE integrates OpenAMP
and disposes of a set of message queues deployed over a shared memory region. The
software-generated interrupts, denoted as inter-processor interrupts (IPI), were adopted
for the notifications among the two cores of the ARM A9, taking care of new pending
messages. This design serves to lower the response latency when compared to polling
shared memory, a fact that is particularly important for time-critical routines. Proper
synchronization methods were applied to avoid contention on shared resources. Xilinx
reference examples [37–39] and example applications of the OpenAMP framework were
leveraged towards this end.

In the case of SDR2, the communication channel was built on top of the TCP/IP stack.
As Processor 1 is represented in that case by a personal computer (PC) microprocessor,
we have used a standard portable operating system interface (POSIX) compliant TCP/IP
stack implementation provided by Linux. For Processor 0, we have used a Microblaze
core [40] with a bare-metal environment and the Lightweight IP (lwIP) TCP/IP stack [32]
for enabling basic networking operations. For the firmware, we used the executable and

https://github.com/OpenAMP
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linking format (ELF) for the object and executable files since Xilinx provides a distribution
of the GNU compiler and linker collection.

In order to provide further insights into the REWIRE functionality, we take as a
reference FPGA architecture the one included in SDR1, because the Zynq device offers a
more versatile embedded environment due to its embedded dual-core CPU. In a nutshell,
the REWIRE controller manages the AMP framework and the reconfiguration procedure of
the firmware functions running at the PS by performing the following tasks (Figure 1):

• establishes the communication channel between Processor 1 and Processor 0;
• parses user-input commands;
• reads the specified partial bitstream and object files from the filesystem;
• relocates the latter into dedicated memory regions;
• sends control commands to Processor 0 specifying the reconfiguration flow procedure.
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We logically separated these functionalities of REWIRE into two parts. The first one is
responsible for the communication between the processors, while the second one manages
the firmware objects, as detailed in the following:

Part I: The inter-processor communication stack running on Processor 1 utilizes in-
terfaces exposed to Linux user space by the OpenAMP framework. From a user-space
perspective, it looks like any Linux character device, and accordingly, it provides the stan-
dard system calls-based API to interact with a device of this type. In fact, it represents an
RPMsg device, which is managed by means of a series of kernel drivers implementing
APIs defined in VirtIO, Remoteproc, and RPMsg frameworks of Linux. In Processor 0,
the communication must be supported by the bare-metal counterpart of the mentioned
frameworks. Both parts of the REWIRE, running at Processor 0 and Processor 1, interact
with each other through an RPMsg communication channel. This is made possible by
utilizing an external SDRAM memory for the data exchanges and IPIs for the notifications
about new data transactions.

Part II: The second main part of REWIRE processes the firmware objects. As already
mentioned, the ELF format is used for the object and executable files. Another part of the
firmware responsible for the RR is a function or, in terms of C language a set of functions
and associated structures, with a “self-contained” state. This function is mainly responsible
for the initial configuration of the IP blocks inside the PL (i.e., executed once at the time
when the Linux side of REWIRE notifies the bare-metal side that a new partial firmware
is available). Essentially this part of the firmware must represent a single C translation
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unit, which after compilation will result in a single object file. In turn, the main static
executable stores a pointer to the function managing the associated RR and indirectly calls
this function when a new object file is delivered and processed by REWIRE. Accordingly, a
predefined address of a memory region is assigned to this function pointer. This approach
is applied for all sections of the object file (i.e., code, data, read-only data, and so on); in
other words, a predefined amount of memory in the main executable is reserved in order to
account for different firmware object deliverables. Laying out memory regions of firmware
is achieved by the means of low-level GCC attributes and a linker script.

The static executable ELF file for Processor 0 is created among other files from a
function main.c and the firmware dummy function dummy_prm_func.c, which simply
displays a “Hello world” message. The linking of object files is done using a linker script
file, which includes the following specifications:

(1) The size of the sections that make up the firmware function code is defined; before
proceeding with reprogramming a newly produced and fetched firmware, the size
compliance of the sections must be verified, because the new code will be downloaded
into the memory where the bare-metal program of Processor 0 is executed. Any
potential failure could block the execution of the code on Processor_0:

_PR_MODULE_FUNC_CODE_SIZE = 0x10,000;
_PR_MODULE_FUNC_DATA_SIZE = 0x1000;
_PR_MODULE_FUNC_RODATA_SIZE = 0x1000;

(2) The memory direction for loading the static ELF executable file is defined as follows:

MEMORY
{

ps7_ddr_0_S_AXI_BASEADDR: ORIGIN = 0x3e000000, LENGTH = 0x00400000
ps7_ram_0_S_AXI_BASEADDR: ORIGIN = 0x00000000, LENGTH = 0x00030000
ps7_ram_1_S_AXI_BASEADDR: ORIGIN = 0xFFFF0000, LENGTH = 0x0000FE00

}

(3) The sections of the firmware dummy_prm_func.o object code are defined and the
pr_func_start, pr_data_start, and pr_rodata_start symbols are created:

pr_mod_func : {
. = ALIGN(0x10,000);
__pr_func_start = .;
*dummy_prm_func.o(.text)
*dummy_prm_func.o(.text.*)

. = __pr_func_start +_PR_MODULE_FUNC_CODE_SIZE;
__pr_func_end = .;

} > ps7_ddr_0_S_AXI_BASEADDR

.pr_mod_data : ALIGN(0x1000) {
__pr_data_start = .;
*dummy_prm_func.o(.data)
*dummy_prm_func.o(.data.*)

. = __pr_data_start + _PR_MODULE_FUNC_DATA_SIZE;
__pr_data_end = .;

} > ps7_ddr_0_S_AXI_BASEADDR

.pr_mod_rodata : ALIGN(0x1000) {
__pr_rodata_start = .;
*dummy_prm_func.o(.rodata)
*dummy_prm_func.o(.rodata.*)

. = __pr_rodata_start + _PR_MODULE_FUNC_RODATA_SIZE;
__pr_rodata_end = .;

} > ps7_ddr_0_S_AXI_BASEADDR
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On the host side, the dummy firmware object was compiled and linked with the
mentioned main executable in order to reference its defined symbols. REWIRE creates
at run-time a look-up table filled with the symbol values of a static executable and uses
this table to resolve global symbol references in newly delivered firmware objects. When
all necessary symbol resolutions, address fixups and the relocation and copy of code and
data into the dedicated memory region are done (Figure 2), REWIRE in Processor 1 (under
Linux) notifies its bare-metal counterpart on Processor 0 that it can reprogram the RR with
a new bitstream and execute new firmware code.

1 
 

 
Figure 2. Copying the different sections of an object file to the dedicated memory space of the
PS SDRAM.

A complete flow diagram of ReproRun’s reconfiguration of partial bitstream and
firmware objects is shown in Figure 3.
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5. Implementation

Given that the two SDR boards feature several differences apart from the different
FPGA devices, they also concern other I/O and hardware specifications, a slightly different
design and implementation approach was adopted for the PR solution in the two SDR
boards. In fact, for the case of the SDR2 board, an important hardware limitation was
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encountered after applying a multi-layer debugging of the PRC core and ICAP port, taking
into account guidelines [29] such as the Pblocks recommended configuration, the global
clocking rules for PR, the reset monitoring and CRC checking after reconfiguration, and
other PR debugging tips. This hardware limitation deters the SDR2 board from being used
in an automated run-time PR mode. For more information regarding this issue, please refer
to the Appendix A.

5.1. SDR1

In order to enable the partial reconfiguration on SDR1 we have extended the reference
design provided by Analog Devices for the Xilinx ZC706 board and the AD-FMCOMMS-
2/3 RF-frontend (https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms2
-ebz/reference_hdl, accessed on 1 February 2024) (Figure 4). In the static part of the
reference design, we added the PRC IP core, a wrapper around the ICAP port, a MIG IP core,
a block controlling the onboard LEDs, and a DSP block, which represents the reconfigurable
part of the design. The block controlling the LEDs aims to show an uninterrupted operation
of the static part of the design. We also applied changes to the original blocks of the
reference design to enable multiplexing of data on the digital-to-analog converter (DAC)
path, to be able to switch between two sources of data (i.e., generated by the PS or the PL).
The resumed version of the Vivado block design responsible for the partial reconfiguration
of the PL is shown in Figure 5.
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Regarding the RR, two functions have been successfully implemented that can be
replaced at run-time through the PRC controller: a direct digital synthesizer (DDS) and
a 5G new radio (NR)-like signal that is cyclically play-backed. The first block reuses the
Xilinx DDS IP core [41] and allows for generating a tone signal. The second block comprises
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a memory array built with memory elements embedded in the FPGA fabric (i.e., block-
RAMs-BRAM-) that allows for storing a 5G NR-like signal, along with a state-machine
controlling the playback process of the signal. Each processing block incorporates an AXI4
slave interface; this allows the PS to write into memory-mapped registers that define the
behavior of each processing block. For example, in the case of the DDS, the register sets
a parameter allowing to change the synthesized frequency at run-time. Changing the
processing block behavior is done in a part of the firmware responsible for the RR, which
could be reconfigured by REWIRE. The reconfiguration flow of the PRC core is controlled
by the static part of the REWIRE firmware running at Processor 0.
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A view of the implementation results after placement and routing featuring a single
RR are shown in Figure 6 and a breakdown of the resources’ usage in Table 1. It reveals
that the FPGA implementation is low-dense and occupies a relatively small amount of the
total resources, leaving the possibility of having more than one RR.
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Table 1. Implementation results of the SDR1 FPGA design where the maximum values of the FPGA
resources per category are quoted in parentheses.

Slice LUTs
(218,600)

Slice Regs
(437,200)

F7/F8 Muxes
(109,300/54,650)

Slice
(54,650)

LUT as Logic/Memory/FFs
(218,600/70,400/218,600)

BRAMs
(545)

DSPs
(900)

Bonded IOB/IOPADs
(362/130)

29,296 37,628 591/24 13,174 25,961/3335/13,390 18 71 223/130

5.2. SDR2

The implementation of the system in the case of SDR2 required an elevated effort
due to the inherent design complexity of the RFNoC framework. RFNoC’s main mission
is to facilitate the use of hardware-accelerated DSP functions running in Ettus Research
USRP devices, abstracting away their implementation complexity. The RFNoC offers
likewise a hardware-in-the-loop system between a host PC and the SDR platform of
interest, along with an automated software-hardware development framework tailored
for SDR researchers and software engineers familiar with the GNU Radio design flow
targeting USRP SDR devices. It is important to highlight that the RFNoC is not meant to
be integrated with other third-party code, but solely used for its default operating scope.
Extensions of the RFNoC Verilog code indeed take place within the RFNoC project but
always have as an objective to abstract the low-level hardware description language (HDL)
design details from the users. In the case of the PR framework proposed in this paper,
several modifications and extensions of the RFNoC Verilog source code were required, with
the goal of keeping its native operation intact.

When building an FPGA image for SDR2, the RFNoC framework allows configuring
the two gigabit Ethernet (GigE) interfaces either as 1 GigE or as 10 GigE. The HDL firmware
uses the 1 G/2.5 G Ethernet PCS/PMA and the 10 G Ethernet PCS/PMA Xilinx IP cores for
the 1 GigE and 10 GigE, respectively. As far as the Ethernet medium access layer (MAC)
layer is concerned (both for the 1 GigE and 10 GigE interfaces), RFNoC provides a custom
Verilog implementation instead of using the relevant IP cores of Xilinx. In this context, a
central element of RFNoC’s Verilog firmware is the ZPU embedded soft microprocessor
(https://github.com/pdsmart/ZPU, accessed on 1 February 2024), which interfaces with
peripherals and custom Verilog glue logic via the Wishbone Bus [42] (i.e., an open-source
embedded bus standard). The Ethernet port 0 is configured to be 1 GigE serving exclusively
the needs of ReproRun, whereas the Ethernet port 1 is configured to be 10 GigE serving
exclusively the needs of the RFNoC firmware. While the HDL implementation of the
10 GigE link was maintained as in the original version of RFNoC, the implementation of
the 1 GigE link was implemented based on the AXI 1G/2.5G Ethernet Subsystem IP core of
Xilinx, which helped us to establish a bidirectional AXI4 connection between the Ethernet
MAC-layer and an instance of a MicroBlaze processor (i.e., acting as Processor 0). Some
necessary modifications were applied to the RFNoC Verilog code towards this end.

The use of a MicroBlaze soft processor core instead of the ZPU processor that already
exists in the RFNoC HDL firmware was decided due to several design and implemen-
tation reasons. First, the MicroBlaze processor is a well-documented Xilinx IP core with
detailed design guidelines and examples. The Xilinx software development kit (SDK)
offers standard development tools, design automation options, and application examples
for the MicroBlaze processor. In this respect, reusing the ZPU-embedded soft processor
would have probably required additional effort (e.g., due to limited related documenta-
tion). Moreover, the coexistence of software functions in the ZPU processor serving both
the RFNoC and ReproRun could imply the use of a real-time operating system (RTOS),
increasing again the overall design effort. Hence, the MicroBlaze microprocessor core was
added to accelerate and simplify the development and also to decouple the processing load
of the software functions running for the RFNoC-ZPU- and ReproRun-MicroBlaze-. The
MicroBlaze processor is hosting a TCP/IP stack solution, the bare-metal firmware, and a
subset of the SDR1 REWIRE functionality. An optimal system design would have required
a redesign of the RFNoC framework to use a single Ethernet interface for the RFNoC and

https://github.com/pdsmart/ZPU
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ReproRun and a single embedded microprocessor running RTOS. However, such redesign
falls beyond the scope of this paper.

The access to the DDR3 memory of the SDR1 had to be shared among the RFNoC and
ReproRun without generating any read or write conflicts. This was made feasible by using
an AXI Interconnect IP core of Xilinx and adjusting the memory-mapped address ranges
for each of the two SDRAM accesses. Hence, the existing MIG [43] configuration of the
RFNoC Verilog firmware was reutilized and suitably modified.

As already mentioned before, the PRC IP provides management functions for the PR
designs. Upon a trigger event initiated in the PL or PS, the PRC fetches partial bitstreams
from an external memory and delivers them to the ICAP. The PRC also assists with logical
decoupling and startup events, customizable per reconfigurable partition. By default, the
PRC operates with RM known a priori to the controller. An AXI4-Lite register interface
allows the core to be reconfigured at run-time, which means that the PRC can also be used
in systems where the RMs could change at run-time. The core can be customized for a
number of RMs per Virtual Socket and interface. The PRC in SDR2 was configured in the
same way we did so in the case of SDR1.

The Vivado block design of the SDR2 with the key building blocks of ReproRun
is shown in Figure 7 (e.g., MicroBlaze, PRC, and AXI 1G/2.5G Ethernet Subsystem IP
cores). The shared access to the SDR2 SDRAM takes place in two nested Vivado block
designs. Other parts of ReproRun include blocks developed in Verilog code and a series of
modifications applied to the native RFNoC Verilog source code.

Electronics 2024, 13, x FOR PEER REVIEW 14 of 29 
 

 

Subsystem IP core of Xilinx, which helped us to establish a bidirectional AXI4 connection 
between the Ethernet MAC-layer and an instance of a MicroBlaze processor (i.e., acting as 
Processor 0). Some necessary modifications were applied to the RFNoC Verilog code to-
wards this end. 

The use of a MicroBlaze soft processor core instead of the ZPU processor that already 
exists in the RFNoC HDL firmware was decided due to several design and implementa-
tion reasons. First, the MicroBlaze processor is a well-documented Xilinx IP core with de-
tailed design guidelines and examples. The Xilinx software development kit (SDK) offers 
standard development tools, design automation options, and application examples for the 
MicroBlaze processor. In this respect, reusing the ZPU-embedded soft processor would 
have probably required additional effort (e.g., due to limited related documentation). 
Moreover, the coexistence of software functions in the ZPU processor serving both the 
RFNoC and ReproRun could imply the use of a real-time operating system (RTOS), in-
creasing again the overall design effort. Hence, the MicroBlaze microprocessor core was 
added to accelerate and simplify the development and also to decouple the processing 
load of the software functions running for the RFNoC-ZPU- and ReproRun-MicroBlaze-. 
The MicroBlaze processor is hosting a TCP/IP stack solution, the bare-metal firmware, and 
a subset of the SDR1 REWIRE functionality. An optimal system design would have re-
quired a redesign of the RFNoC framework to use a single Ethernet interface for the 
RFNoC and ReproRun and a single embedded microprocessor running RTOS. However, 
such redesign falls beyond the scope of this paper. 

The access to the DDR3 memory of the SDR1 had to be shared among the RFNoC 
and ReproRun without generating any read or write conflicts. This was made feasible by 
using an AXI Interconnect IP core of Xilinx and adjusting the memory-mapped address 
ranges for each of the two SDRAM accesses. Hence, the existing MIG [43] configuration 
of the RFNoC Verilog firmware was reutilized and suitably modified. 

As already mentioned before, the PRC IP provides management functions for the PR 
designs. Upon a trigger event initiated in the PL or PS, the PRC fetches partial bitstreams 
from an external memory and delivers them to the ICAP. The PRC also assists with logical 
decoupling and startup events, customizable per reconfigurable partition. By default, the 
PRC operates with RM known a priori to the controller. An AXI4-Lite register interface 
allows the core to be reconfigured at run-time, which means that the PRC can also be used 
in systems where the RMs could change at run-time. The core can be customized for a 
number of RMs per Virtual Socket and interface. The PRC in SDR2 was configured in the 
same way we did so in the case of SDR1. 

The Vivado block design of the SDR2 with the key building blocks of ReproRun is 
shown in Figure 7 (e.g., MicroBlaze, PRC, and AXI 1G/2.5G Ethernet Subsystem IP cores). 
The shared access to the SDR2 SDRAM takes place in two nested Vivado block designs. 
Other parts of ReproRun include blocks developed in Verilog code and a series of modifi-
cations applied to the native RFNoC Verilog source code. 

 
Figure 7. The top-level Vivado Block Design of SDR2. Figure 7. The top-level Vivado Block Design of SDR2.

The static FPGA design (static bitstream) is the combination of the modified RFNoC
Verilog firmware and the HDL code of ReproRun. Two counters were developed to show
the uninterrupted operation of the static bitstream (i.e., counting up and down) and their
operation was mapped to a Xilinx virtual input–output (VIO) IP core to monitor them
in real-time. In order to demonstrate the partial reconfiguration, we have selected the
rfnoc_siggen.grc GNU radio companion (GRC) example for RFNoC (Figure 8). This GRC
RFNoC example uses a coordinate rotation digital computer (CORDIC) function to produce
a sinusoid in the FPGA device of SDR2 and then passes the I and Q samples to the host
PC, where the samples are processed and visualized in the GRC project (e.g., time and
frequency domain analysis); some user set parameters, such as the digital gain of the signal,
can be manually modified from the host PC.

The definition of the RR for the partial reconfiguration cannot be applied at the
boundaries of the RFNoC blocks. By trying to do so, we noticed that when invoking
RFNoC from the host it was not responsive. Hence, the RR had to be defined in one of the
DSP functions of an RFNoC computation engine (CE), denoted as User IP in Figure 8. This
in turn resulted in several limitations for the PR, when for instance we want to use one
RR to run different partial bitstreams (e.g., size of RR, I/O compatibility of the different
partial reconfigurable functions targeting the RR). The partial bitstream was produced
following the standard PR design guidelines of Xilinx and the instructions for building



Electronics 2024, 13, 701 15 of 29

a user-defined RFNoC CE [44]. For the case of the rfnoc_siggen.grc GRC example, we
have applied the PR in the CORDIC function residing in this CE. The static bitstream was
also modified to provide programming access to the user registers (shown in Figure 9)
from the MicroBlaze processor through an AXI protocol converter IP core (from AXI4 to
AXI4Lite) and a series of state machines to manage the AXI4Lite transactions. This feature
allows the modified version of REWIRE to change at run-time the gain of the signal in the
rfnoc_siggen.grc example. Certain registers are monitored through VIO cores for testing
and debugging purposes.
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Figure 9. The RFNoC’s Computation Engine.

A view of the place and routed FPGA implementation (i.e., static bitstream with a
single RR) and the detailed implementation results are shown in Figure 10 and Table 2.
The FPGA implementation is medium-dense, it features various clock domains with some
resources being overused (e.g., all the available BUFGs are used, making it impossible to
use ILA cores to debug the system).



Electronics 2024, 13, 701 16 of 29

Electronics 2024, 13, x FOR PEER REVIEW 16 of 29 
 

 

 
Figure 9. The RFNoC’s Computation Engine. 

A view of the place and routed FPGA implementation (i.e., static bitstream with a 
single RR) and the detailed implementation results are shown in Figure 10 and Table 2. 
The FPGA implementation is medium-dense, it features various clock domains with some 
resources being overused (e.g., all the available BUFGs are used, making it impossible to 
use ILA cores to debug the system). 

 
Figure 10. The routed FPGA design in SDR2 showing the RR. 

Table 2. Implementation results of the SDR2 FPGA design. 

Slice LUTs 
(254,200) 

Slice Regs 
(508,400) 

F7/F8 Muxes 
(127,100/63,550) 

Slice 
(63,550) 

LUT as Logic/Memory/FFs 
(254,200/90,600/254,200) 

BRAMs 
(795) 

DSPs 
(1540) 

Bonded IOB 
(484) 

97,574 118,633 678/11 38,971 85,673/11,901/50,398 305 73 414 

6. Experimental Validation 
6.1. SDR1 Experimental Setup 

The SDR1 setup included a mainstream laptop, the Xilinx ZC706 development board, 
and the AD-FMCOMMS-2/3 RF front-end evaluation board featuring the popular AD9361 
RF transceiver IC (RFIC). The laptop featured an Intel Core i5-8300H central processing 
unit (CPU) running at 2.30 GHz, 16 GB of RAM, and a 64-bit Ubuntu 18.04.1 operating 
system. For the experiments with the SDR1, the following software components were in-
stalled in the laptop: Vivado System Edition 2017.4 with the Xilinx SDK, GNU compiler 
collection and GNU binutils, and ARM cross-compilation toolchain. The joint test action 
group (JTAG) and UART ports of the development board were connected to the laptop. 

Figure 10. The routed FPGA design in SDR2 showing the RR.

Table 2. Implementation results of the SDR2 FPGA design.

Slice LUTs
(254,200)

Slice Regs
(508,400)

F7/F8 Muxes
(127,100/63,550)

Slice
(63,550)

LUT as Logic/Memory/FFs
(254,200/90,600/254,200)

BRAMs
(795)

DSPs
(1540)

Bonded IOB
(484)

97,574 118,633 678/11 38,971 85,673/11,901/50,398 305 73 414

6. Experimental Validation
6.1. SDR1 Experimental Setup

The SDR1 setup included a mainstream laptop, the Xilinx ZC706 development board,
and the AD-FMCOMMS-2/3 RF front-end evaluation board featuring the popular AD9361
RF transceiver IC (RFIC). The laptop featured an Intel Core i5-8300H central processing
unit (CPU) running at 2.30 GHz, 16 GB of RAM, and a 64-bit Ubuntu 18.04.1 operating
system. For the experiments with the SDR1, the following software components were
installed in the laptop: Vivado System Edition 2017.4 with the Xilinx SDK, GNU compiler
collection and GNU binutils, and ARM cross-compilation toolchain. The joint test action
group (JTAG) and UART ports of the development board were connected to the laptop.
Since Linux running on the SDR1 is basically an Ubuntu distro, we have also connected
a keyboard and a monitor to it. The Ethernet port was connected to a switch in order to
bring up a network connection on the SDR1 and to enable remote access through a secure
socket shell (SSH) protocol session.

An overview of the experimental setup with all the functional blocks is shown in
Figure 10. The Ubuntu OS boots from an SD card. The static bitstream is programmed
by the first stage bootloader, which together with other files forms the Xilinx bootable
image, BOOT.BIN (also stored in the SD card). At the end of the start-up of Ubuntu, two
applications provided by Analog Devices are automatically launched (i.e., the Oscilloscope
and a configuration graphical user interface (GUI) for controlling the AD9361 RFIC). The
connections described above allow us to flexibly configure the platform using the keyboard
and the monitor. We have configured the AD-FMCOMMS-2/3 RF frontend using one of
the standard 5 G configurations stored in an SD card (i.e., waveform playback); in concrete,
the one supporting 1.4 MHz bandwidth signal.

The 100 Mb Ethernet port allows fetching partial bitstreams and firmware objects
from a remote location and placing them in the root filesystem. As Figure 11 shows,
the REWIRE is comprised of two parts running in separate Processors: one in a Linux
environment and the other in bare-metal environment under an AMP system configuration.
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The static part of the PL includes among others the block-controlling GPIO LEDs, which
are aimed at showing the uninterrupted operation of the platform before, during, and after
the partial reconfiguration (i.e., LEDs are blinking all the time). The REWIRE part running
on Processor 1 accepts a few command line parameters specifying the ID of the RM to
be reconfigured, the path to the bitstream, and the path to the object files. When started
without command line parameters (or with incorrect parameters), the REWIRE shows the
following usage message:

Usage: ./rewire -i <RM_IDX> [-b <FILE>] [-o <FILE>]
Options:
-i <RM_IDX> -specify index of RM which will be configured with a passed bitstream (-b)
-b <FILE> -specify path to a bitstream file
-o <FILE> -specify path to an object file
Examples:
(1) ./rewire -i 0 -b pr0_rm0_leds_blink.bin -o blinking_freq.o
Description:
Load .bin into PL DDR and write its size and address to a PRC config register associated with
RM0. Do the FPGA PR reconfiguration, FW reconfiguration and finally jump to a new FW code.
(2) ./rewire -i 1 -b pr0_rm1_leds_shift.bin -o leds_shift_config.o
Description:
Do the same using different input files, but associate bitstream with RM1
(3) ./rewire -i 0 -o blinking_freq_slow.o
Description
Program FPGA PR area with RM0 bitstream (preloaded) and execute specified.o firmware
(4) ./rewire -i 1
Description:
Program FPGA with RM1 bitstream (do not perform FW reconfiguration)
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As can be seen above, providing a path to the partial bitstream and object file is
optional. As long as different configurations are initially loaded for different RMs, REWIRE
allows to switch between them specifying the ID of the RM to be used in the reconfigurable
region. Of course, the described functionality must be supported by the other part of
the REWIRE running in the bare-metal environment. Processor 1 sends to Processor 0 a
reconfiguration message complying with the predefined format known to both processors.
Depending on the user’s input, this message may contain the information about the new
bitstream to be reprogrammed and in particular (i) its size and the SDRAM address where
it has been loaded; (ii) what RM must be associated with this bitstream; (iii) whether the
firmware has been reconfigured and thus must be executed after the PRC IP core finishes
its task.

The effect of programming a new partial bitstream and/or reconfiguring the firmware
can be observed in the ADI Oscilloscope or in the spectrum analyzer connected to the
RF output port of the AD-FMCOMMS-2/3. The following steps produce the output
of ReproRun:

• On the bootup of the SDR1, we need to program the filter coefficients with a 1.4 MHz
5 G NR-like config file using Analog Devices IIO Oscilloscope GUI (Figure 12) and
disable outputs, i.e., the DAC path. In some tests, not disabling the transmit path at
the start results in a DC component presented at the output.

• We load a waveform from a set of predefined signals, using the DAC buffer output
option of the IIO Oscilloscope GUI (e.g., 5GNR_5MHz signal), and we check the
spectrum in IIO Oscilloscope GUI or in a spectrum analyzer connected to the TX1 port
of the AD-FMCOMMD-2/3.

• We open the Vivado hardware manager, and we assign the dbg_probes.ltx file in
the probes.

• We set the value of the VIO register from logical ‘0′ to ‘1′. This register is basically
the control signal of a multiplexor that allows our custom PL block to provide data to
the DAC.

• As the RR is empty there is basically no output signal in the IIO Oscilloscope GUI (the
power of the output signal visually decreases) or the SA.

• We use the REWIRE solution to program a DDS DSP block inside RR (one of the two
partial bitstreams prepared for this experimental validation):

# ./rewire -i 0 -b ../pr_bs/DSP_DDS.bin

• A tone signal appears in the SA, as shown in Figure 13. The frequency was set to
100 KHz by default, but it can be changed by doing a firmware reconfiguration (as
explained later). You can also switch to a time-domain view in the IIO Oscilloscope
GUI (i.e., by setting the resolution bandwidth parameter at 56 kHz to conveniently
visualize the signal) or connect an oscilloscope equipment to the TX1 port of the
AD-FMCOMMD-2/3 (Figure 14).

• At this stage the RM can be changed in real-time by running the REWIRE again, this
time using the 5 G NR-like 1.4 MHz playback block:

# ./rewire -i 1 -b ../pr_bs/DSP_5GNR.bin

• When the reconfiguration is done, the visualized spectrum is the one shown in Figure 15.
• We can switch back to the first configuration by simply executing the following

command:

# ./rewire -i 0

• As far as the firmware reconfiguration is concerned, we have built two partial firmware
objects containing different DDS configurations, i.e., each one of them sets different
values for a synthesized tone frequency.

• By executing the following commands, the tone frequency is reconfigured on the fly:

# ./rewire -i 0 -o ../pr_fw/fw_dds_config_1.o
# ./rewire -i 0 -o ../pr_fw/fw_dds_config_2.o
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In the following, we also present the example output of the REWIRE program execu-
tion, including the initial AMP configuration:

root@analog:/home/analog/reprorun/rewire# echo rewire_cpu0 >
/sys/class/remoteproc/remoteproc0/firmware
root@analog:/home/analog/reprorun/rewire# echo start >
/sys/class/remoteproc/remoteproc0/state
CPU0: Starting application...
CPU0: VSM 0 status:
CPU0: Try to init remoteproc resource
CPU0: Init remoteproc resource succeeded
CPU0: Waiting for events...
root@analog:/home/analog/reprorun/rewire# modprobe rpmsg_user_dev_driver
root@analog:/home/analog/reprorun/rewire# ./rewire -i 0 -b ../pr_bs/DSP_DDS.bin
-- Starting REWIRE app --
[INFO] Opening rpmsg dev...success.
[INFO] Successfully opened .BIN file
[INFO] Finished transfering bitstream to PL DDR
CPU0: Reconfiguration Msg received

[LOG] received BS_ADDR = 80A00000
[LOG] received BS_SIZE = CB7DC
[LOG] received RM_ID = 0

CPU0: VSM status after SW_TRIGGER:
Mode: ACTIVE
STATE: FULL (7)
RM_ID: 0
BS_ID: 0
ERROR: NO ERROR (0)

[INFO] CPU1: received message: RECONFIG OK!
root@analog:/home/analog/reprorun/rewire#

6.2. SDR2 Experimental Setup

The experimental setup included a high-performance computer acting as the host fea-
turing an Intel Core i7-7700K CPU running at 4.2 GHz, with 32 GB RAM memory. This host
computer also includes a: 1 GigE interface used by ReproRun (residing in the motherboard
of the PC); a dual 10 Gigabit Ethernet PCIe Card used by the RFNoC framework (i.e., one
of the two interfaces); another 1 GigE interface providing the Internet access.

The host is a dual boot system (Fedora and Windows 10). In the Windows partition,
we installed the Vivado System Edition 2017.4 and the Xilinx SDK. An Ubuntu virtual box
(VB) machine was also installed in the Windows partition. The RFNoC framework with all
its dependencies was installed in the VB (i.e., development branch, version 4.0.0).

The following communication interfaces of the USRP X310 device were connected to
the host PC:

• The Ethernet port 0 is configured as 1 GigE.
• The Ethernet port 1 is configured as 10 GigE.
• The JTAG port is used for programming the FPGA device, for early system validation,

and for in-system debugging through the Vivado Hardware manager.

The two bitstreams, the static and partial one, are stored in the host PC where Processor
1 runs specific REWIRE functions. We program first the static part of the FPGA design using
the Vivado Hardware Manager. As already mentioned before, the static bitstream includes
two counters mapped to a VIO core in order to monitor the uninterrupted operation of
the static FPGA area during and after the configuration of the partial bitstream. The other
part of REWIRE runs in the bare-metal firmware of Processor 0 (i.e., MicroBlaze processor
configured in the FPGA device of the X310 USRP platform). This REWIRE part receives
commands from the host, specifying the name of the partial bitstream, which can be fetched
from a TFTP server running at the host. The command message may also provide control
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information for the firmware reconfiguration. In this case, Processor 0 receives also a
firmware object, which is serialized together with the rest of the commands and data
forming the full reconfiguration message. The REWIRE stores bitstreams locally in the
SDRAM memory of the SDR2, reprograms registers of the PRC core triggering it to start
the PR procedure, and in case of success the REWIRE jumps to a new firmware if this was
specified by the control commands; this firmware can access the control registers of a newly
programmed CE in order to set/change the digital gain of the signal. At the same time,
the rfnoc_siggen.grc RFNoC example must run at the host side, which shows the result of
the reconfiguration in real time. The general overview of the experimental setup is shown
in Figure 16.
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In the first stage of testing our PR solution in SDR2, none of the examples included in
the RFNoC framework and running in the GRC could be used in a run-time PR context. In
fact, a specific configuration-invoking procedure had to be followed to bypass the deadlocks
during the PR (i.e., probably produced in the communication between the ZPU and the
host PC) and bring up the correct operation of the GRC example.

The following steps produce the output of ReproRun:

• The static bitstream is programmed using the Vivado Hardware Manager (Figure 17).
• We observe the operation of the VIO core that monitors two counters (up and down).
• The GRC RFNoC example rfnoc_siggen.grc is launched setting before 1K in the sample

rate box and the IP address in the device arguments (in our case 192.168.40.2).
• Since the SigGen example includes an RR where the partial bitstream will be configured

(the latter includes the CORDIC function of the example), the GRC project GUI initially
does not produce an output.

• We run the following command to check that RFNoC is up and running: uhd_usrp_probe
--args=“type=x300,addr=192.168.40.2”.

• After receiving commands from the host, REWIRE fetches the partial bitstream making
use of a TFTP server; Processor 0 also receives a firmware object.

• Bitstreams are stored in the SDRAM memory of the SDR2.
• REWIRE programs register the PRC core triggering it to start the PR procedure.
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• Once the partial bitstream is configured, we can observe in real time that the GRC GUI
provides the time and frequency domain signal analysis (Figure 18).

• REWIRE jumps to a new firmware, which allows to access the control registers of the
SigGen RFNoC example and modifying the digital gain of the signal.

• Throughout the mentioned procedure, we can observe that the counters monitored by
the VIO core operate uninterrupted.
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Figure 18. After configuring the partial bitstream, the SigGen RFNoC example produces the cor-
rect/expected output.
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6.3. Discussion

In broad terms, the design and features of ReproRun are served more efficiently by
SDR1. The following variations are present in the two SDR platforms due to their inherent
hardware and firmware features:

In SDR1, one of the cores of the ARM A9 (processor 0) hosts a bare-metal application
linked with a partial bitstream and other necessary ReproRun functions that enable the
run-time firmware reconfiguration, whereas the other core, Processor 1, hosts the Linux
distribution of Analog Devices. The native version of the AMP framework was only applied
in SDR1 since the architecture of the FPGA device in SDR2 does not favor its full use. For
this reason, ReproRun was designed in a different way in the case of SDR2, since processor
0 was implemented using a MicroBlaze soft microprocessor IP core, while processor 1 was
represented by a host processor. As a result, the REWIRE controller in SDR2 features a
subset of the functionalities of its SDR1 counterpart.

In SDR2, it was required to integrate the PR glue logic with the RFNoC firmware
without compromising its native operation. The RFNoC FPGA images running at the SDR2
can be built to include up to ten DSP functions, which then can be interconnected based on
a GRC project. The latter provides a hardware-in-the-loop environment. In SDR1 Analog
Devices provides the necessary HDL reference design, a Linux distribution running at the
PS, and several other tools for a user to be able to prototype its own hardware-software
(HW-SW) system. It is important to highlight that the user code integration in SDR1 is
simpler and less dependable compared to SDR2 which uses the RFNoC framework. The
native functionality of the RFNoC HDL firmware of SDR2 was modified and extended
to contemplate ReproRun, resulting in an elevated code integration effort. As a general
conclusion, it has to be noted that the conceptual idea of the RFNoC framework is to be
used in its native version and not modified to add PR features. On top of that the SDR2
features an important limitation for being able to apply run-time PR, as it is further detailed
in Appendix A.

7. Conclusions and Future Work

In this work, we propose a novel framework that leverages the partial reconfiguration
solution of AMD-Xilinx along with the AMP framework in order to provide a seamless
tun-time reconfiguration of interlinked functions executed in the PL and PS portion of
FPGA devices.

The heart of ReproRun is a purpose-built controller denoted as REWIRE that is able to
micro-orchestrate the PL-based partial bitstreams along with their corresponding PS-based
firmware. REWIRE acts as a sort of adaptive linker for the object files and interacts both
with the native partial reconfiguration building blocks of AMD-Xilinx, as well as with the
AMP framework. In a Zynq 7000 family of devices, REWIRE resides in the same processor
core that hosts the operating system (e.g., PetaLinux), whereas the reconfigurable software
application is executed as a bare-metal one in the other processor core of the FPGA system.

ReproRun automates the management of all the processes related to the AMP and
partial reconfiguration functionality and allows for replacing at run-tome the software object
file or its interlinked partial bitstream counterpart, without downtimes of the combined
function executed simultaneously in the PS and PL. Hence, ReproRun can be considered
the run-time, dynamic re-programming extension of the hardware–software co-design flow
that is typically used during the implementation of an FPGA system featuring embedded
microprocessors. To showcase the versatility of the proposed solution, two different types
of FPGA devices were used featuring different functional characteristics, interfaces, and
programming procedures. During the testing and debugging stage of ReproRun, functional
differences and limitations were revealed between the two SDR boards.

The result of this combined run-time reconfiguration of hardware-accelerated and
firmware functions is a novel run-time programming framework that could serve the
emerging needs of programmable 6G radio and network technologies. For instance, Re-
proRun can be applied to FPGA-based SoC devices encountered beyond 5G disaggregated
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RAN architectures like the one specified by the O-RAN alliance to provide an agile re-
configuration framework of the high and low physical layer in order to achieve service
requirements related to performance, low latency, and energy efficiency.

Looking forward and in the short term, it is planned to migrate ReproRun to the DFX
framework using UltraScale+ Zynq as the target device family [1]. The combination of
the DFX with the isolation design flow makes this extension very promising to efficiently
address the long-standing security concerns related to PR. ReproRun is also planned to be
integrated into a virtualization framework and exposed to an intelligent controller at the
RAN level that will cognitively take decisions for a flexible hardware–software run-time
reconfiguration of network functions hosted in FPGA-based SoC devices.

Finally, considering the insecure nature of TFTP, which was adopted in this work as a
simplified method to fetch partial bitstreams and object files from a remote location (i.e.,
accelerating the validation and testing stages of ReproRun), the goal will be to replace it
with a safer networking connectivity solution. Towards this end, a secure shell (SSH) FTP
solution will be leveraged to offer the full security and authentication functionality of SSH
for the file transfer of the partial bitstreams and object files. On top of that and given the
foreseen migration of ReproRun to UltraScale + Zynq devices, it is planned to exploit their
bitstream encryption system which uses the advanced encryption standard Galois counter
mode (AES-GCM) authenticated encryption algorithm. The AES-GCM encryption standard
supports built-in authentication that will increase the security of the ReproRun framework,
since without knowledge of the AES-GCM key, the partial bitstream cannot be modified or
forged. Thus, this type of authentication will guarantee both data integrity and authenticity
of the partial bitstreams. Upon authentication failure, the reconfigurable region will not
start up and ReproRun will provide a fallback mechanism (i.e., a fail-safe partial bitstream
will be loaded) to guarantee the availability of dependable services running at the PS side
of the device.
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Appendix A

In SDR2, we have made use of the Xilinx PRC IP core and the ICAP port to apply
the run-time partial reconfiguration for a design clocked at 100 MHz. Based on the test,
validation, and extensive debugging of the system, we have spotted a hardware limitation
in the USRP X310 board that deters it from running the PR flow using the PRC and ICAP
port. In contrast, the PR works well in SDR2 when we reconfigure the same static and
partial bitstreams through the JTAG port (i.e., using the Vivado Hardware Manager). The
following points describe the debugging procedure and the limitation we found in the
USRP X310 board:

• A process in MicroBlaze fetches the partial bitstream (.BIN file format) from the host
PC via TFTP and copies the contents in the DDR3 memory.

# Using a breakpoint in the executed code, we are able to verify in SDK that the
contents in the DDR3 are the correct ones.

# The PRC is triggered by a process in the MicroBlaze to access the .BIN stored in
the SDRAM through its m_axi_mem port. Using an ILA core, we monitor that
the transaction takes place without any problems.

• The PRC IP core pushes the .BIN partial bitstream to the ICAP port to apply partial
reconfiguration. Another ILA debug core monitors the ICAP port (Figure A1). By
reading the ICAP “O” Port bits, we check the status bits as follows (see also Table A1):

# Initial status: 1001
# The ICAP receives the sync word: 1101
# The ICAP receives the DESYNC command: 0101
# The ‘icap_csib’ port produces a value of ‘1’: 0001
# The latter means that the ICAP indicates an error directly after receiving all the

data of the partial bitstream (.BIN) as it could be seen in Figure 18 (i.e., ILA
screen capture).

• At that stage of debugging, we went deeper to analyze why the partial reconfiguration
was not completed successfully.

# In order to make the partial reconfiguration work through the ICAP interface,
we need to activate the Slave SelectMAP configuration interface in our sys-
tem [45,46]. Table 2-1 in [45] (page 17) indicates that ports M [2:0] need to have
a ‘110’ value to set the Slave SelectMAP configuration.

# However, when revising the schematic diagrams of the USRP X310 board
(page 9), we realized that the M [2:0] ports take the value ‘111’, which in fact is
a hardwired value (thus, not reprogrammable by software).

# This value must change in order to be able to use the PRC and ICAP on this
SDR board.

# Looking at the schematic diagrams, the only work around is to remove the R70,
in which case, M2_0 will be connected to GND through the R71 resistance (i.e.,
likewise setting the M [2:0] with the required ‘110’ value).
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Table A1. the ICAP “O” Port bits [29].

ICAP “O”
Port Bits Status Bit Meaning

O [7] CFGERR_B
Configuration error (active-Low)

0 = A configuration error has occurred.
1 = No configuration error.

O [6] DALIGN
Sync word received (active-High)

0 = No sync word received.
1 = Sync word received by interface logic

O [5] RIP
Readback in progress (active-High)

0 = No readback in progress.
1 = A readback is in progress

O [4] IN_ABORT_B
ABORT in progress (active-Low)

0 = Abort is in progress.
1 = No abort in progress.

O [3:0] 1 Reserved
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