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Abstract: The rapid development of the RISC-V instruction set architecture (ISA) has garnered
significant attention in the realm of deep neural network applications. While hardware-aware neural
architecture search (NAS) methods for ARM, X86, and GPUs have been extensively explored, research
specifically targeting RISC-V remains limited. In light of this, we propose a latency-constrained NAS
(LC-NAS) method specifically designed for RISC-V. This method enables efficient network searches
without the requirement of network training. Concretely, in the training-free NAS framework,
we introduce an RISC-V latency evaluation module that includes two implementations: a lookup
table and a latency predictor based on a deep neural network. To obtain real latency data, we
have designed a specialized data collection pipeline for RISC-V devices, which allows for precise
end-to-end hardware latency measurements. We validate the effectiveness of our method in the
NAS-Bench-201 search space. Experimental results demonstrate that our method can efficiently
search for latency-constrained networks for RISC-V devices within seconds while maintaining high
accuracy. Additionally, our method can easily integrate with existing training-free NAS approaches.

Keywords: RISC-V; neural architecture search; latency-constrained

1. Introduction

RISC-V, a free and open instruction set architecture (ISA), has been instrumental in
revolutionizing the microprocessor industry. Its widespread adoption can be observed in
traditional computing devices, wearable devices, home appliances, and other domains,
owing to its cost-effectiveness and superior scalability [1]. As an exceptionally extend-
able open-source ISA, it is well suited for artificial intelligence applications like image
recognition [2], object detection [3], and natural language processing [4].

In recent years, the development of deep neural networks has significantly advanced
the field of computer vision. These networks are now prevalent in various embedded
device application scenarios, such as virtual reality (VR) systems [5], object detection,
tracking [6], and more. The success of computer vision tasks is chiefly credited to the
advent of convolutional neural networks (CNNs) [7], renowned for their robust feature
extraction, model expressiveness, and generalization capabilities.

However, manually designing competitive deep networks is a laborious task, de-
manding substantial human effort to identify the optimal network configuration due to
the vast design space of neural networks. To tackle this challenge, there has been a surge
of research on neural architecture search (NAS) methods, which automate the process of
designing high-performance deep neural networks [8]. The proposal of NAS has moved
researchers from designing network structures to designing algorithms for searching can-
didate networks [9,10]. The search process often involves training numerous candidate
networks to gather essential information for network evaluation, resulting in significant
time consumption during the NAS procedure.

To address this problem, NASWOT [11] and EPE-NAS [12] have proposed their
training-free methods for evaluating network accuracy, enabling search high-accuracy
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network architecture within seconds. However, these methods solely prioritize accuracy,
which could result in networks that fail to meet latency constraints. In latency-sensitive
systems, like autonomous driving and drone tracking, strict response time requirements
must be satisfied. TAS [13] and DASS [14] have designed methods that combine quanti-
zation with NAS, and pruning with NAS, respectively. The goal of these methods is to
reduce memory cost and speed up inference. DeepMaker [15] devised a neuro-evolutionary
approach that incorporates multiple objectives to search DNN architectures that are nearly
optimal in terms of both accuracy and network size. This method aims to strike a balance
between achieving high accuracy and keeping the network size as compact as possible.
While many studies use the number of floating point operations (FLOPs) to estimate hard-
ware costs [16,17], some research has shown that fewer FLOPs of network architectures
may not necessarily lead to higher efficiency [18]. For instance, NasNet-A [10] and Mo-
bileNetV1 [19] have similar computational complexities (564M vs. 575M), but MobileNetV1
utilizes hardware-friendly network architectures, resulting in much lower inference latency.

Several studies have suggested using hardware inference latency to evaluate hardware
costs. ProxylessNAS [20] introduces a novel hierarchical latency predictor that utilizes a
lookup table to estimate the inference latency. However, it should be noted that complex
network architectures may not exhibit a linear relation between the latency of individual
operators during inference. This is because neural network inference involves parallel
computing on hardware [21]. The actual end-to-end inference latency of the network on
hardware provides a more accurate reflection of its efficiency. Therefore, BRP-NAS [22]
and FastStereoNet [23] have designed latency predictors to estimate end-to-end inference
latency on FPGA, desktop CPU, and desktop GPU. While certain studies have measured
hardware inference latency on prevalent commercial edge devices such as ARM, FPGA,
and Edge GPUs [24,25], no benchmarking has been performed on RISC-V devices. If we
employ hardware-aware NAS on devices other than RISC-V, the final searched network
may not perform well [24].

The hardware-aware NAS methods mentioned above require network training during
the entire search process, resulting in a significant time commitment. Moreover, these
approaches do not optimize for RISC-V devices. Therefore, we propose a training-free
LC-NAS method specially designed for RISC-V and summarize the contributions of this
study as follows:

• We propose the LC-NAS method that integrates latency constraints with the scoring
function of existing training-free NAS methods. This approach further reduces the
search space of the network and enables the discovery of networks with high accuracy,
while also meeting latency constraints. We expedite the exploration of efficient network
architectures designed specifically for RISC-V devices, completing the entire process
within seconds.

• To incorporate latency constraints, we propose a latency evaluation module. Depend-
ing on the exhaustiveness of the search space, this module takes two forms: a lookup
table for exhaustive search space and a deep neural network-based (DNN-based)
latency predictor for inexhaustible search space. The latency data for the lookup table
and predictor are obtained using a latency collection pipeline on RISC-V devices.

• We conduct a comprehensive analysis of the collected latency dataset, which includes
examining the correlation between latency on RISC-V devices and other devices within
the same networks. We also investigate the correlation between inference latency and
network accuracy, among other factors. This work could provide valuable insights for
other researchers in developing hardware-aware NAS methods specifically designed
for RISC-V devices.

2. Related Works

The standard NAS process typically consists of two key components: (1) the search
space, which includes various network architectures and hyperparameter ranges, and (2)
the search algorithm, which aims to find the optimal architecture within the search space to
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maximize the objective function. The search algorithm typically involves a search strategy
and an accuracy evaluation module. The search strategy is primarily used to identify
candidate networks, while the evaluation module is used to assess their performance.
The evaluation module requires training to assess the performance of each candidate
architecture, which leads to significant computational costs. Employing traditional NAS
methods, the process of designing a suitable neural network architecture for a specific task
requires hundreds to thousands of GPU hours.

To eliminate the network training part of the NAS process, training-free NAS is pro-
posed. In training-free NAS, the main objective is to optimize the accuracy evaluation
component of the standard NAS, while keeping the other components unchanged. This is
achieved by utilizing proxy functions or models for evaluating accuracy. The key principle
of training-free NAS is to evaluate network architectures at initialization, obtaining accu-
racy before network training, to save significant training time for candidate architectures.
NASWOT [11], a pioneer in the field of training-free NAS, was the first to propose predict-
ing network performance by leveraging the activation overlap of datapoints in untrained
networks. EPE-NAS [12], which serves as our baseline, represents network inputs and
outputs using a Jacobian matrix. The Jacobian matrix provides information regarding the
relation between the network’s output and the input across multiple datapoints. An ef-
fective network should possess the capability to differentiate local linear operators for
individual data points while generating similar outcomes for similar data points, indicating
that they belong to the same class. Therefore, by assessing the correlation among datapoints
belonging to the same class, we could determine if an untrained network has the ability to
model complex functions.

EPE-NAS [12] assesses the network’s capability by modeling complex functions of the
covariance matrix for each class within the Jacobian matrix. The covariance matrix of each
class is computed to obtain the correlation matrix of the classes. The details can be found
in [12]. The scoring function can then be expressed using Equation (1).

s =

∑C
t=1 |et|, i f C ≤ τ

∑C
i=1 ∑C

j=i+1 |ei−ej|
‖e‖ , otherwise

(1)

where e is the vector that includes all of the correlation matrix scores, and et represents the
correlation matrix score for the t-th class. C represents the number of classes in the batch,
and τ is a threshold that determines whether normalization is applied. The purpose of
normalization is to reduce class differences. In EPE-NAS [12], τ is defined as 100, and our
work adopts the same value.

In our method, this scoring function will serve as the accuracy evaluation module for
evaluating network accuracy.

3. Materials and Methods

To obtain customized and efficient networks for RISC-V devices, we propose a latency-
constrained NAS approach, as shown in Figure 1. We employ a random search strategy [26]
as our search strategy and improve the existing training-free NAS performance evalu-
ation by incorporating a latency evaluation module. Before evaluating the accuracy of
the candidate networks, we incorporate a latency evaluation of the network architecture.
This module eliminates candidate architectures that do not satisfy the specified latency
constraints, and the accuracy evaluation module assesses the remaining networks. To mea-
sure the end-to-end inference latency for use in the latency evaluation module, we have
developed a versatile latency collection pipeline specifically designed for RISC-V devices.
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Figure 1. Overall framework of our latency-constrained NAS method.

3.1. RISC-V Inference Latency Collection Pipeline

To measure the real hardware inference latency of networks, we design a pipeline of
latency dataset collection. To address variations in processor speed and other external fac-
tors, we repeat the inference process 25 times and record the mean and standard deviation
of latency.

Figure 2 presents the latency dataset collection process, which involves the following
steps: (1) constructing the model based on the architecture configuration, (2) compiling
the neural network model into an executable file compatible with the RISC-V ISA, (3) de-
ploying the model on the target RISC-V hardware board, and (4) measuring the end-to-end
inference latency.

RISC-V CPU

Latency dataset

Mean values of 

latencies

Deploy

TVM model convert

Model

Model

Architecture 
configuration Host

Figure 2. Illustration of the RISC-V inference latency collection pipeline.

Specifically, during the compiling step, the TVM framework [27] serves as the deep
learning compiler, using the LLVM compiler to generate the executable code. The LLVM
compiler is configured to target the riscv64-unknown-linux-gnu platform, with the proces-
sor type specified as generic-rv64, and the ABI set as lp64d. Additionally, we enable several
RISC-V ISA extensions, including 64-bit operations, integer multiplication and division
(M), atomics (A), single-precision floating-point (F), double-precision floating-point (D),
and compressed instructions (C).

The host and target board are connected via Ethernet, with the host responsible for
compiling the PyTorch model into RISC-V binary executable files. Subsequently, these
executable files are transmitted to the target board using the remote procedure call (RPC)
protocol for multiple runs, and the mean and standard deviation of the model’s inference
latency are returned via RPC.

3.2. LC-NAS

By utilizing the latency collection pipeline, we gather end-to-end inference latency data
for RISC-V devices. These data are subsequently used in the latency evaluation module of
LC-NAS. Algorithm 1 presents the pseudocode for the proposed method, which integrates
the latency evaluation module with the training-free NAS method. Depending on the size of
the search space, an appropriate Latency_eva function can be selected between the lookup
table and the DNN-based predictor. Acc_eva function is the accuracy evaluation module.
From the search space, N candidate architectures are randomly selected, and latency
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evaluation is performed on these untrained networks. Subsequently, the networks that
meet the latency constraint Lc are evaluated by the accuracy evaluation module, and the
network Arch with the highest score is selected as the final network.

Algorithm 1 LC-NAS

Input: predefined search space, latency evaluation module, accuracy evaluation module,
latency constraint Lc, number of sampled architectures N.

Output: searched neural architecture: Arch.
1: initialize score = zeros(1, N)
2: A = random(N, search_space)
3: for i = 0 to N do
4: pred = Latency_eva(A[i])
5: if pred ≤ Lc then
6: score[i] = Acc_eva(A[i])
7: end if
8: end for
9: idx = argmax(score)

10: return Arch = A[idx]

The latency evaluation module serves to provide network latency information during
the latency-constrained NAS process. We classify it into two types based on whether the
search space can be exhaustively enumerated.

• The search space can be exhaustively enumerated. We employ a lookup table to
evaluate the latency.

• The search space cannot be exhaustively enumerated. Instead, we randomly gather
latency data for a subset of the search space and use this data to train a DNN-based
latency predictor.

3.2.1. Lookup Table for Latency

In cases where search spaces can be exhaustively enumerated, we can collect infer-
ence latency for all candidate networks in the search space by employing the previously
mentioned method to collect latency data. This approach is particularly effective for ex-
haustive search spaces because obtaining the actual end-to-end inference latency directly
on hardware provides a more realistic representation of real-world scenarios. This enables
the identification of the most efficient neural network for the target hardware. By creating a
lookup table from the latency data, we can quickly retrieve the network information using
the network architecture name as soon as a candidate network is found. This allows for a
latency evaluation to be completed in milliseconds.

3.2.2. DNN-Based Latency Predictor

In cases where search spaces cannot be exhaustively enumerated, it is impossible to
acquire the inference latency for all candidate networks. Furthermore, as the size of the
search space increases, the time required to search the table also increases. When the search
space reaches a certain threshold, the time spent searching the table becomes long.

Consequently, we propose a DNN-based predictor to estimate end-to-end inference
latency. This predictor takes into account factors such as the architecture and computational
complexity of the candidate networks. Subsequently, we only need latency information for
a subset of the search space to predict the latency for all candidate networks. The predictor
consists of an input layer, a one-hot encoding layer, a concatenation layer, and a fully
connected layer.

(1) Architecture Encoding: Prior to prediction, the network architecture is encoded.
It is evident that network inference latency is directly related to the network architecture.
The majority of candidate networks in the search space consist of predefined architec-
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ture and partially variable blocks. Therefore, encoding specific modules in the network
architecture as vectors is used as network architecture features.

Taking NAS-Bench-201 [28] as an example, each network architecture in NAS-Bench-
201 [28] consists of a predefined backbone network with the searched cells stacked 5 times
at 3 preset positions, respectively. Therefore, NAS can be considered as a search process
for an efficient cell architecture. Each cell can be represented as a directed acyclic graph
(DAG) with dense connections, consisting of 4 nodes and 6 edges. The connection op-
tions of each node include 5 representative operations: (1) zeroize, (2) skip connection,
(3) 1× 1 convolution, (4) 3× 3 convolution, and (5) 3× 3 average pooling layer. The convo-
lution within this connection set represents a condensed sequence of operations, including
ReLU, convolution, and batch normalization. The zeroize operation is used to remove
the corresponding edge. A detailed explanation of the cell architecture encoding scheme
is presented in Figure 3. Utilizing a predefined one-hot encoding table, we encode the
connection options of each node in the cell, resulting in six one-hot codes. These codes are
then concatenated into a 1× 30 vector, which serves as a partial input to the predictor.

Encoding

Cell Encoded Cell

Concat

zeroize
skip-connect
1×1 conv
3×3 conv
3×3 avg pool

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 1 0 0 0

0 0 0 0 1

Predefined One-Hot Encoding Table

0 0 1 0 0

1×1 conv

0 0 0 1 0

3×3 conv

1 0 0 0 0

zeroize

0 1 0 0 0

skip-connection

0 0 0 0 1

3×3 avg pool

Encoded Architecture

1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 …… 0 0 0 0 1

Figure 3. A detailed explanation of NAS-Bench-201 cell architecture encoding scheme.

(2) DNN-based Prediction Network: Inference latency is commonly influenced by
network architecture and computational complexity. The inference latency of the network
should be related to the input size, FLOPs, and architecture. Therefore, the predictor
takes 3 types of input: the input size, FLOPs, and variable blocks. The prediction network
architecture is illustrated in Figure 4. For non-numeric features like connection options,
we employ the one-hot encoding scheme as described earlier to encode the network ar-
chitecture. For numeric features such as input size and FLOPs, we directly concatenate
them with the one-hot encoded architecture. In the NAS-Bench-201 [28], this results in a
final 1× 32 vector feature representation. Then, the vector serves as the input for three
fully connected layers, each with 32, 64, and 1 neurons, respectively. The ReLU activation
function is utilized. It has a total of 3233 trainable parameters.
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Variable 
blocks 1

Variable 
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Figure 4. Illustration of the DNN-based latency prediction network architecture.

4. Experiments and Results

To validate the effectiveness of our proposed method, we conduct experiments within
the NAS-Bench-201 [28] search space. We select the NezhaD1 (https://d1.docs.aw-ol.com/
d1_dev/, accessed on 27 April 2021) as the RISC-V hardware platform for measuring
inference latency. The NezhaD1 is an embedded device equipped with a single-core 1 GHz
Xuantie C906 processor and 1 GB of memory. It is manufactured by All Winner Technology
Corporation in Zhuhai, China. All experiments are conducted on the Ubuntu20.04 platform
using PyTorch 1.13.1, Python 3.7.16, and CUDA 12.0. The CPU utilized in the experiments
is the CPU Intel (R) Core (TM) i7-6950X CPU @ 3.00 GHz, while the GPU employed is a
single NVIDIA TITAN X Pascal.

4.1. Analyzing on RISC-V Latency Dataset

We analyze and visualize the inference latency and corresponding accuracy data for all can-
didate architectures on CIFAR-10 and ImageNet16-120 in the NAS-Bench-201 [28] search space.

(1) Correlation between Different Devices: We conduct a visualization to observe the
inference latency correlation of the same network architecture on different devices. For this
purpose, we analyze the inference latency on the other 5 devices obtained from HW-NAS-
Bench [24] and compare them with the latency on the RISC-V device. Figure 5 illustrates the
Kendall correlation coefficients of inference latency between the RISC-V device and other
devices with different system architectures. The Kendall correlation coefficient is a rank
correlation coefficient used to assess the strength of the monotonic relation between two
ordered variables. Its values range from −1 to 1, where a larger absolute value indicates a
stronger monotonic correlation and a value of 0 suggests no correlation.

These figures suggest significant variations in inference latency for the same network
architectures when executed on different devices. These variations arise from disparities in
the underlying hardware micro-architectures and the available hardware resources. Thus,
to obtain efficient neural networks on RISC-V devices, device-specific NAS methods should
be employed.

https://d1.docs.aw-ol.com/d1_dev/
https://d1.docs.aw-ol.com/d1_dev/
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(2) Relation between Latency and Other Architecture Information: To assess the
necessity of LC-NAS, we conduct an analysis of the accuracy, FLOPs, and latency of
all architectures on the CIFAR-10 and ImageNet16-120 within the NAS-Bench-201 [28]
search space.

• In Figure 6a,b, it is evident that an increase in network inference latency does not nec-
essarily result in improved accuracy. Notably, network architectures with significantly
reduced inference latency can achieve similar accuracy as more complex ones. Hence,
the adoption of LC-NAS becomes crucial.

• In Figure 6c,d, we observe a weak positive relation between FLOPs and latency, so
it is inaccurate to use FLOPs alone as prediction information. However, it could
be valuable if we combine it with network architecture information as an input for
latency prediction.

In order to introduce latency constraints into the NAS process, we need to use a lookup
table or a DNN-based latency predictor. The lookup table can be built directly using the
latency dataset, while the latency predictor requires training.

(a) (b)
Figure 5. The Kendall rank correlation coefficient between the inference latency on RISC-V and other
5 devices on CIFAR-10 and ImageNet16-120. (a) Correlation coefficient between different devices on
CIFAR-10; (b) Correlation coefficient between different devices on ImageNet16-120.

4.2. DNN-Based Predictor Training

(1) Training Settings: To train the predictor, we employ the RISC-V inference latency
collection pipeline to obtain a latency dataset. 70% of the dataset is used as the training set,
while the remaining is used for testing. The widely used Adam optimizer with a learning
rate of 1 × 10−3 is utilized. The mean squared error loss serves as the loss function, and the
batch size is set to 1024.
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(a) (b)

(c) (d)

Figure 6. Relation between latency and other information of all architectures on CIFAR-10 and
ImageNet16-120. (a) Relation between latency and accuracy on CIFAR-10; (b) Relation between
latency and accuracy on ImageNet16-120; (c) Relation between latency and FLOPs on CIFAR-10;
(d) Relation between latency and FLOPs on ImageNet16-120. Where “ResNet” denotes candidate
networks with unit architectures identical to the residual network architectures designed by [29].

(2) Comparison with Other Methods: We conduct comparative experiments among
commonly used regression prediction models, including Support Vector Regression (SVR),
Linear Regression (LR), Elastic-Net, Gradient Boosting Decision Tree (GBDT) [30], BRP-
NAS [22], and our latency predictor. The results are illustrated in Table 1. All methods
except BRP-NAS [22] use the same input, which is a 1× 32 vector. Table 1 lists the results of
all methods evaluated on the latency dataset, with root mean squared error (RMSE), mean
absolute error (MAE), coefficient of determination (R2), and Pearson correlation coefficient
(Corrcoef). The RMSE metric is more responsive to larger error values, whereas the MAE is
more sensitive to smaller ones. Our method exhibits substantial improvement over other
approaches concerning the RMSE metric, demonstrating that our prediction method yields
smaller errors and the predicted latency is closer to the true values. To ensure fairness, we
conduct an experiment in the same evaluation metric as BRP-NAS, i.e., the percentage of
models whose predicted latency falls within the specified error bound of the measured
latency. The results are illustrated in Table 2.
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Table 1. Comparison with other prediction methods.

Method RMSE ↓ MAE ↓ R2 ↑ Corrcoef ↑

SVR 28.63 7.30 0.9868 0.9934
LR 9.91 5.08 0.9984 0.9992

Elastic-Net 11.94 4.88 0.9977 0.9988
GBDT 6.77 2.28 0.9992 0.9996

BRP-NAS
(CIFAR-10) 93.42 38.60 0.8539 0.9329

BRP-NAS
(ImageNet16) 22.87 10.83 0.8495 0.9289

Ours 2.89 2.11 0.9998 0.9999
Arrows indicate the relationship between values and performance. ↓ means that lower values present better
performance, ↑ means the opposite.

Table 2. Comparison with BRP-NAS [22] predictor method in error bound.

Error Bound
Our Predictor (%) BRP-NAS Predictor (%)

Cifar10 ImageNet16-120 Cifar10 ImageNet16-120

±1% 76.18 33.61 32.92 23.64
±5% 97.85 89.34 66.89 59.66
±10% 99.46 96.74 76.56 73.17
±20% 99.87 99.28 83.52 82.75

In Table 1, it can be observed that our latency predictor outperforms the other methods
in all evaluation metrics. Compared to the best method GBDT [30], the RMSE of the
predicted latency of our method is reduced by 57% in the case of a similar MAE. Of these,
the RMSE and MAE of BRP-NAS [22] on CIFAR-10 are significantly higher than our method
and other prediction methods. Our method is associated with a 96% reduction in RMSE
and a 94% reduction in MAE metrics when compared to BRP-NAS [22] on CIFAR-10,
respectively. In Table 2, when the error bound is ±10%, the accuracy of our predictor is
20% higher than that of BRP-NAS [22]. The results are analyzed as follows.

• Compared with SVR, LR, Elastic-Net, and GBDT [30], our predictor with deep neural
networks enhances its nonlinear learning capabilities, leading to better fitting of
latency data.

• Compared with BRP-NAS [22], we use the different input features. We consider not
only the neural network architecture but also the FLOPs and input size. However,
BRP-NAS only uses architecture information. In Figure 6c,d, it can be observed that
there is a relation between FLOPs and latency. It could be valuable to use it as one of
the inputs.

• Our method is more generalizable; we can use one predictor for the inference latency
of CIFAR-10 and ImageNet16-120. We can use the real latency of both CIFAR-10 and
ImageNet16-120 for training, so the predictor can learn more latency information.
However, BRP-NAS [22] is trained using information from a single latency dataset; it
cannot predict both CIFAR-10 and ImageNet16-120 at the same time.

4.3. Training-Free NAS with Latency Constraint

As an example of our proposed LC-NAS method, we use EPE-NAS [12] as our baseline
to search within the NAS-Bench-201 [28] search space on CIFAR-10, and ImageNet16-120,
respectively. The accuracy values of each neural architecture are directly obtained from
NAS-Bench-201 [28]. The image size of CIFAR-10 is 3× 32× 32, and the image size of
ImageNet16-120 is 3× 16× 16. In our experiments, we run the NAS algorithm 20 times to
obtain 20 final architectures and then calculate the mean and standard deviation of accuracy
and latency.

(1) Search with Different Latency Constraint: The experimental results of baseline and
our method are listed in Tables 3 and 4. The parameter N represents the number of ran-
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domly sampled network architectures, which is 1000. Lc is the latency constraint measured
in milliseconds (ms). Through Tables 3 and 4, we obtain the following conclusions.

• Referring to Tables 3 and 4, we observe that our method demonstrates a faster search
speed compared to EPE-NAS [12] and NASWOT [11], as certain candidate networks
are eliminated due to the imposed latency constraints. Only networks that meet
the latency constraints will be considered for evaluation in the accuracy evaluation
module. When the constraints become less strict, the accuracy of the searched networks
gradually converges toward the baseline.

• In Table 3, when the latency constraint is set to 500 ms, we achieve higher-accuracy
networks using 58% of the search time of NASWOT [11] with the predictor, and similar
accuracy networks using only 43% of the search time of NASWOT [11] with the lookup
table. Compared to the baseline, the search time is reduced to 90% and 68% of the
original, respectively, and the inference latency is also decreased.

• Networks that satisfy the latency constraints can be obtained using both the lookup
table and the latency predictor, and both approaches can speed up the NAS process.
In this experiment, the search space chosen is NAS-Bench-201 [28], which has a search
space size of 15,625. The lookup table is faster than the predictor. Because the lookup
table stores the latency of all network architectures in advance, the latency can be
obtained by simply performing a traversal lookup. Therefore, the search time of
the lookup table is related to the size of search space. As the search space increases,
the search time for the lookup table also increases, and may even result in failure to
build the lookup table. The time taken by the predictor does not vary with the size of
the search space; it remains constant. Therefore, for large search spaces, the predictor
could be a better choice.

• Figure 7a illustrates the distribution of all candidate network latency for CIFAR-10,
where a large number of neural architectures’ latency are concentrated between 300 ms
and 450 ms. As a consequence, in Table 3, when Lc is loosened from 300 ms to 500 ms,
there is a notable increase in the search time. Figure 7b shows the distribution of
latency for ImageNet16-120, and most of the latency is distributed between 100 ms
and 150 ms intervals. Therefore, when Lc is set from 100 ms to 150 ms in Table 4,
the search time increases by a large amount.

(2) Search with Different Sampling Number: Table 5 reports the results of different
sampling number N on CIFAR-10 dataset, where Lc is set 500 ms. Our method can search
networks that meet the specified latency constraints for various sampling numbers. With a
decrease in the sampling number, the search time also decreases, while the accuracy of the
identified networks remains relatively constant. When the sampling number is set from 10
to 1000, the search time.

(a) (b)

Figure 7. Distribution of inference latency on (a) CIFAR-10 and (b) ImageNet16-120 datasets, respectively.
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Table 3. Performance comparisons between LC-NAS and baseline on CIFAR-10. The mean ± std
search time, accuracy, and real latency are reported.

Method Latency
Constraint (ms)

Search
Time (s)

CIFAR-10

Acc (%) Latency (ms)

EPE-NAS
(baseline) None 223.69 ± 1.57 91.38 ± 1.85 461.60 ± 291.77

NASWOT None 347.09 ± 5.17 91.22 ± 1.93 328.54 ± 133.23

With Latency Predictor

Ours 100 54.40 ± 0.90 86.69 ± 1.21 77.47 ± 11.95
Ours 300 109.55 ± 3.22 88.24 ± 0.97 173.44 ± 46.91
Ours 500 202.15 ± 2.64 91.26 ± 1.51 374.60 ± 91.67

With Lookup Table

Ours 100 33.70 ± 0.73 86.43 ± 0.20 76.06 ± 13.18
Ours 300 77.04 ± 2.45 89.18 ± 1.14 172.66 ± 43.67
Ours 500 152.67 ± 2.21 91.19 ± 1.47 340.23 ± 131.83

Table 4. Performance comparisons between LC-NAS and baseline on ImageNet16-120.

Method Latency
Constraint (ms)

Search
Time (s)

ImageNet16-120

Acc (%) Latency (ms)

EPE-NAS
(baseline) None 176.08 ± 0.78 40.29 ± 3.81 134.13 ± 62.63

NASWOT None 273.24 ± 2.35 40.19 ± 3.38 107.82 ± 46.92

With Latency Predictor

Ours 50 68.41 ± 1.37 31.16 ± 3.75 45.15 ± 4.56
Ours 100 103.23 ± 1.89 32.72 ± 6.93 75.38 ± 21.52
Ours 150 159.14 ± 1.99 39.31 ± 4.63 111.55 ± 24.84

With Lookup Table

Ours 50 46.85 ± 1.47 31.57 ± 2.37 37.70 ± 8.89
Ours 100 76.56 ± 1.45 33.41 ± 3.27 62.73 ± 20.04
Ours 150 122.42 ± 1.78 39.77 ± 3.63 106.25 ± 26.76

Table 5. Different sampling number N of LC-NAS on CIFAR-10.

N Search Time (s) Acc (%) Latency (ms)

With Latency Predictor

10 2.03 ± 0.34 90.08 ± 3.19 318.12 ± 110.95
100 20.49 ± 0.99 91.22 ± 1.55 373.58 ± 78.33
500 101.79 ± 2.31 91.50 ± 0.68 412.77 ± 40.96

1000 202.15 ± 2.64 91.26 ± 1.51 374.60 ± 91.67

With Lookup Table

10 1.58 ± 0.26 90.82 ± 1.99 296.82 ± 130.57
100 15.41 ± 0.76 90.41 ± 2.05 298.67 ± 121.72
500 76.25 ± 1.74 90.85 ± 2.06 319.15 ± 126.07

1000 153.23 ± 2.11 91.19 ± 1.47 340.23 ± 131.83

5. Conclusions

The current training-free NAS methods fail to consider the inference latency of devices
and instead focus exclusively on network accuracy. Moreover, the hardware-aware NAS
is not optimized for RISC-V devices. Therefore, this paper proposes LC-NAS method
specifically designed for RISC-V devices, which can be seamlessly integrated with existing
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training-free methods. The method searches for high-accuracy networks while ensuring
compliance with latency constraints. The introduction of latency constraints helps reduce
the search space for networks, resulting in the acceleration of the NAS process. The visu-
alization of the experiment demonstrates that the architectures of efficient networks vary
significantly across different hardware devices. Hence, it is crucial to perform network
searches specifically tailored for RISC-V devices.
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