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Abstract: Drug discovery aims to keep fueling new medicines to cure and palliate many ailments
and some untreatable diseases that still afflict humanity. The ADME/Tox (absorption, distribution,
metabolism, excretion/toxicity) properties of candidate drug molecules are key factors that determine
the safety, uptake, elimination, metabolic behavior and effectiveness of drug research and develop-
ment. The predictive technique of ADME/Tox drastically reduces the fraction of pharmaceutics-
related failure in the early stages of drug development. Driven by the expectation of accelerated
timelines, reduced costs and the potential to reveal hidden insights from vast datasets, artificial intel-
ligence techniques such as Graphormer are showing increasing promise and usefulness to perform
custom models for molecule modeling tasks. However, Graphormer and other transformer-based
models do not consider the molecular fingerprint, as well as the physicochemicals that have been
proved effective in traditional computational drug research. Here, we propose an enhanced model
based on Graphormer which uses a tree model that fully integrates some known information and
achieves better prediction and interpretability. More importantly, the model achieves new state-of-the-
art results on ADME/Tox properties prediction benchmarks, surpassing several challenging models.
Experimental results demonstrate an average SMAPE (Symmetric Mean Absolute Percentage Error)
of 18.9 and a PCC (Pearson Correlation Coefficient) of 0.86 on ADME/Tox prediction test sets. These
findings highlight the efficacy of our approach and its potential to enhance drug discovery processes.
By leveraging the strengths of Graphormer and incorporating additional molecular descriptors, our
model offers improved predictive capabilities, thus contributing to the advancement of ADME/Tox
prediction in drug development. The integration of various information sources further enables
better interpretability, aiding researchers in understanding the underlying factors influencing the
predictions. Overall, our work demonstrates the potential of our enhanced model to expedite drug
discovery, reduce costs, and enhance the success rate of our pharmaceutical development efforts.

Keywords: ADME/Tox; drug discovery; Graphormer

1. Introduction

Drug discovery, with roots tracing back through the epochs of human civilization,
persists as a central focus for the pharmaceutical industry and dedicated chemical sci-
entists [1–4]. The prevalent utilization of small-molecule drugs, encapsulated in tablets
or capsules, underscores their practical advantages in absorption and cost-effectiveness
over larger counterparts. However, the multifaceted challenges inherent in drug discovery,
marked by protracted timelines and substantial resource investments, necessitate a closer
examination [5,6]. Scrutinizing clinical trial data spanning from 2010 to 2017 illuminates
diverse factors contributing to the high incidence of clinical failures in drug development,
encompassing issues related to clinical efficacy, toxicity, drug-like properties, and strategic
planning oversights [7–9]. The late-stage discovery of unfavorable ADME/Tox properties
further compounds these challenges, often culminating in attrition during advanced phases
of drug development [10,11].
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Amidst these challenges, the evolving landscape of drug discovery technologies
underscores a critical imperative for the development of robust ADME/Tox prediction
models and high-throughput screening (HTS) methodologies. The continuous emergence
and evolution of these technologies not only broaden the application domain of small-
molecule drugs but also present novel prospects for future advancements.

The preceding half-decade has witnessed a marked surge in interest surrounding
the integration of artificial intelligence (AI) approaches into drug research and develop-
ment [12–16]. Among the diverse array of models and solutions for ADME/Tox prediction,
statistical-based approaches such as QikProp employ Monte Carlo statistical mechanics
simulations. Simultaneously, AI-based solutions exemplified by Graphormer leverage deep
learning models built upon the standard Transformer architecture, renowned for its supe-
rior performance in graph-level prediction tasks [17–19]. Widely adopted models, including
iDrug, Discovery Studio, and ADMETlab, cater to distinct facets of drug discovery, ranging
from molecular database integration to protein modeling and pharmacokinetics/toxicity
predictions [20,21].

While Graphormer and other transformer-based models excel in extracting the po-
sition and connection information of small molecules within the spatial topology, our
argument posits that these models may fall short in adequately considering molecular
fingerprints and essential physicochemical properties—elements proven effective in tra-
ditional computational drug research. To address this limitation, this paper introduces
an enhanced model incorporating a tree model for secondary training, synergistically
leveraging the strengths of both approaches. This integrated model aims to provide more
comprehensive insights, resulting in improved prediction accuracy and interpretability.

This paper aspires to make a substantial contribution to the field of drug discovery by
proposing a holistic model that amalgamates state-of-the-art transformer-based techniques
with established principles. The organizational structure of this paper is outlined as follows:
Section 2 undertakes a thorough analysis of related works, delving into the nuances of
Graphormer, CatBoost and SMILES. In Section 3, we meticulously present the key design
aspects of our proposed solution, providing readers with an in-depth understanding of
its conceptual underpinnings. Section 4 serves as a comprehensive summary, encapsu-
lating the essence of our research and its implications. This structured approach aims to
guide readers through a coherent narrative, ensuring a nuanced comprehension of our
contributions and methodologies.

2. Related Works
2.1. ADME/Tox Properties

Drug discovery is a supremely challenging mission due to the numerous attributes
that must be simultaneously optimized to obtain an efficacious drug compound. It is
estimated that close to 50% of drug candidates fail because of unacceptable efficacy and
that up to 40% of drug candidates have failed in the past due to toxicity. ADME/Tox [22,23]
is a crucial feature in guiding selection and optimization that can investigate how a drug
compound is processed by a living organism. It can break down five steps: absorption,
distribution, metabolism, excretion and toxicity. Absorption is the process by which a drug
enters the bloodstream. And it consists of four ways, including passive diffusion, facilitated
diffusion, active diffusion and endocytosis. Distribution is the process by which the drug
moves from the absorption site to tissues after absorption. Metabolism is the conversion
of generally more lipophilic xenobiotic compounds to hydrophilic metabolites that can be
eliminated from the body via excretion. Excretion is the irreversible loss of a substance
from the system. In most cases, all drug-related material, including the parent drug and
metabolites, are eventually cleared from the body. Toxicity assessment is a systematic
and comprehensive examination of the potential harmful effects exerted by a chemical
substance or physical agent on living organisms, serving as a critical component in the
fields of pharmacology, environmental science, and chemical safety, providing essential
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insights into the safety profile of substances and guiding regulatory decisions in the realms
of drug development.

2.2. Prediction Model

Within the contemporary landscape of pharmaceutical enterprises, the strategic in-
tegration of computational methodologies has emerged as a pivotal and transformative
practice. This paradigm shift is fundamentally underpinned by the compelling advantages
of cost-effectiveness and the expeditious selection of lead molecules, marking a significant
transition in drug discovery processes [24–26]. The infusion of computational approaches
into the fabric of pharmaceutical research reflects a profound recognition of the potential
to revolutionize traditional methodologies and expedite the identification of promising
drug candidates. The economic advantages inherent in computational methodologies
are multifaceted. Notably, these approaches enable the in silico assessment of diverse
chemical entities, significantly reducing the necessity for resource-intensive experimental
endeavors at early stages. The cost-effectiveness of computational techniques, therefore,
extends beyond the fiscal domain to encompass the judicious allocation of resources and a
heightened responsiveness to emerging challenges in drug development.

Graphormer [27], an implementation grounded in the standard Transformer archi-
tecture, is publicly accessible on GitHub (https://github.com/Microsoft/Graphormer
accessed on 1 December 2023). Recognized for its outstanding performance across diverse
graph representation learning tasks, Graphormer features a distinctive architectural modifi-
cation. Specifically, layer normalization (LN) precedes multi-head self-attention (MHA) and
feedforward blocks (FFNs), deviating from the conventional post-graph neural network
(GNN) operation. Notably, recent enhancements have enabled Graphormer to adeptly
address 3D molecular dynamics simulations. These refinements empower Graphormer
to outperform its vanilla counterpart, demonstrating noteworthy advancements on ex-
pansive molecular modeling datasets. Remarkably, it notably reduces the mean absolute
error (MAE) when compared to the originally reported results on the PCQM4M quantum
dataset [28].

CatBoost [29], an acronym for categorical boosting, stands out as a state-of-the-art
boosting algorithm specifically tailored for seamless handling of categorical data. In-
cepted in 2017, CatBoost surpasses its contemporaries, such as XGBoost and LightGBM,
for various reasons. Comprehensive tutorials (https://catboost.ai/en/docs/concepts/
tutorialsaccessedon1December2023) and the official GitHub repository (https://github.
com/catboost/catboost accessed on 1 December 2023) provide detailed insights. In a
recent study, Samat et al. (2022) [30] harnessed CatBoost to enhance the classification
performance of remote sensing (RS) image classification. The algorithm demonstrated
efficacy in facilitating spatial feature extraction, underscoring its utility in complex tasks.
CatBoost’s advanced ensemble learning capabilities manifest in classification tasks, effec-
tively mitigating overfitting, even with a substantial number of boosting iterations. Beyond
its applications in regression and classification, CatBoost finds utility in diverse domains,
including ranking, recommendation systems, forecasting, and notably, drug discovery. It
has been employed as a feature selection method [31].

In the dynamic confluence of artificial intelligence and molecular sciences, advanced
models play a pivotal role in significantly enhancing the efficiency and precision of drug
discovery processes. The synergistic integration of AI within molecular research represents
a paradigm shift, expediting the identification of potential drug candidates and enriching
our comprehension of intricate molecular interactions. In essence, the amalgamation of
artificial intelligence and molecular sciences represents a transformative force in drug
discovery, driving advancements that are both efficient and precise. As these technologies
continue to evolve, their application holds the promise of revolutionizing the pharmaceu-
tical landscape, ushering in an era of accelerated drug development and more targeted
therapeutic solutions.

https://github.com/Microsoft/Graphormer
https://catboost.ai/en/docs/concepts/tutorials accessed on 1 December 2023
https://catboost.ai/en/docs/concepts/tutorials accessed on 1 December 2023
https://github.com/catboost/catboost
https://github.com/catboost/catboost
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2.3. Smiles

SMILES (Simplified Molecular Input Line Entry System) is a chemical notation that
encodes a molecular structure as single line of text. It was developed to represent molecular
structures in a compact and easy-to-read format that can be used in computer databases,
search engines, and other software applications. SMILES has five basic syntax rules (atoms
and bonds, simple chains, branches, rings and charged atoms) which must be observed.
In SMILES notation, atoms are represented by their elemental symbols, with hydrogens
typically omitted unless necessary to indicate bonding. Bonds between atoms are repre-
sented by various symbols, including “-”, “=”, “#”, and “:”. Parentheses are used to group
atoms together, and brackets are used to indicate branches or repeating substructures. The
following is an example of SMILES string:

CN1C = NC2 = C1C(= O)N(C(= O)N2C)C

In this notation, “C” represents a carbon atom, “N” represents a nitrogen atom, and
“O” represents an oxygen atom. The numbers and symbols between atoms indicate bonds,
with “=” representing a double bond, “-” representing a single bond, and “#” representing
a triple bond. The parentheses and brackets group atoms and indicate branching. The
SMILES notation for caffeine indicates that it contains 8 carbon atoms, 10 hydrogen atoms,
4 nitrogen atoms, and 2 oxygen atoms, arranged in a specific pattern of bonds to form the
caffeine molecule. If the basic rules of chemistry are not followed in SMILES entry, the
system will warn the user and ask that the structure be edited or reentered. Anderson et al.
(1987), Weininger (1988) and Weininger et al. (1989) [32–34] discuss SMILES in more detail.

3. An Enhanced Graphormer Model
3.1. Model Architecture

This study builds upon the foundational architecture of the traditional sequence
transformer model, extending its capabilities to incorporate graph-oriented features. This
augmentation enhances the model’s capacity to effectively discern spatial topology in-
formation and connectivity details within molecular structures, shown by Figure 1. In
cognizance of the evolving requirements for ADME/Tox prediction, our methodology ac-
knowledges specific limitations within the traditional model. Notably, it lacks the inclusion
of molecular fingerprint-like features, recognized for their historical efficacy in traditional
computational chemistry research. These features, often grounded in expert knowledge,
along with the consideration of key physicochemical properties, are deemed indispensable
for a comprehensive understanding of molecular behavior. Our proposed methodology,
rooted in the transformer architecture, systematically addresses these limitations through a
meticulously designed training regimen. This involves pre-training—initial model training
to capture foundational patterns in molecular data; fine-tuning—iterative refinement of the
model using task-specific data, adapting it to the nuances of ADME/Tox prediction; and
end-to-end training—a comprehensive training phase incorporating both pre-training and
fine-tuning, culminating in the generation of specialized embedding for small molecules.

To augment predictive performance, our methodology introduces a secondary training
phase utilizing a tree model, specifically CatBoost. This strategic addition is aimed at
comprehensively integrating diverse information types, encompassing molecularity. At last,
model evaluation is conducted using rigorous performance metrics tailored for ADME/Tox
prediction tasks. The key metrics include Symmetric Mean Absolute Percentage Error,
which is used to calculate an accuracy measure based on percentage (or relative) errors and
is defined as the following:

SMAPE = (2 ∗ (
n

∑
i=1

|yi − ŷl |/|yi|+ |ŷl |)/n,
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where yi is the target value, and (yi) is the predictions. The Pearson Correlation Coefficient
(PCC) is measuring the linear relationship between predicted and actual values. It is
defined as the following:

rx,y = (
n

∑
i=1

(xi − x̄)(yi − ȳ))/(

√
n

∑
i=1

(xi − x̄)2

√
n

∑
i=1

(yi − ȳ)2),

where x̄ and ȳ are the mean value x and sample value y, respectively. These metrics
provide a quantitative assessment of the model’s predictive capabilities, ensuring a robust
evaluation of its performance.

(R-Square) is a statistical measure in a regression model that determines the proportion
of variance in the dependent variable that can be explained by the independent variable. It
is defined as the following:

R2 = 1 − ∑n
i=1 (pred − real)2

∑n
i=1 (

¯real − real)2 .

In the initial phase of our model development, we fine-tune the Graphormer model
based on the PCQM4Mv2 dataset, originally curated under the PubChemQC project. This
dataset, rooted in quantum chemistry, enables the transfer of 2D/3D molecular graphs
represented in SMILES format into embeddings:

h∗(l) = MHA(LN(hl−1)) + hl−1

h(l) = FFN(LN(h∗(l))) + h∗(l)

Subsequently, we integrate molecular fingerprinting and molecular properties based
on the embeddings generated by the Graphormer model in the preceding step. This
integration encompasses three types of information. First, the Molecule Embedding is
computed, incorporating Centrality Encoding to describe the importance levels of nodes in
a graph, Spatial Encoding to represent the spatial positions of nodes, and Edge Encoding in
Graphormer to encode relationships between nodes. Notably, this differs from traditional
graph neural networks by not relying solely on the Euclidean distance between node
embeddings of connected nodes:

Cemb(0)
i = λi + degi(in) + degi(out)

Sembij =
(CemdiWQ)(CemdjWK)

T

√
d

+ ∆ij

Eembij =
(CemdiWQ)(CemdjWK)

T

√
d

+ ∆ij + βij

Centrality Encoding refers to describing the importance level of nodes in a graph.
Spatial Encoding refers to the process of representing the spatial position of nodes in a
graph as part of the input to the Graphormer model. Edge Encoding in Graphormer refers
to the process of encoding the relationships between nodes in a graph. This is unlike
traditional graph neural networks, which are generated by the Euclidean distance between
the node embeddings of two connected nodes. Moreover, the prediction model not only
considers the embedding feature, which represents position and connection information,
but also considers the molecular fingerprint, as well as the physicochemicals (connectivity,
estate, kappa, burden, charge, property, etc.) that have been proved effective in traditional
computational drug research. Here, we define the COMBINE operation.

Furthermore, our prediction model extends beyond considering embedding features
that capture position and connection information. It incorporates molecular fingerprinting
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and various physicochemical properties (connectivity, estate, kappa, burden, charge, prop-
erty, etc.) that have demonstrated effectiveness in traditional computational drug research:

COMBINE = {molecule_ f ingerprint, molecule_
properties, molecule_embedding},

.

Figure 1. Enhanced Graphormer model architecture.

In this paper, we employ CatBoost as the final processing step on the last COMBINE
result, the detailed procedure shown by following algorithm. CatBoost is chosen for its
robustness in handling heterogeneous data, as it consistently outperforms the majority
of boosting algorithms in the initial run. This selection is grounded in its ability to ef-
fectively navigate diverse data types and optimize predictive performance, ensuring a
reliable and comprehensive analysis of the combined molecular features obtained from the
preceding steps.

Algorithm 1: Generative tree.
Input: Training set {(si, ti)}n

i=1, a differentiable loss function Loss(t, Func(x)), number of
iterations N;

Output: FuncN(s)
1 Initialize the CatBoost model as follows:
2 Func0(s) = arg min

γ
∑n

i=1 Loss(ti, γ).

3 for n = 1 → N do
4 Loop in iterations of N:
5 for i = 1 → n do

6 rin = −[ ∂Loss(ti ,Func(si))
∂Func(si)

]Func(s)=Funcn−1(s);

7 Fit a base learner (e.g., tree) hn(s) to pseudo-residuals, i.e., train it using the training set
{(si, rim)}n

i=1.
8 Compute multiplier γn by solving the following one-dimensional optimization

problem:
9 γn = arg min

γ
∑n

i=1 Loss(ti, Funcn−1(si) + γhn(si)).

10 Update the model:
11 Funcn(s) = Funcn−1(s) + γnhn(s).

12 return FuncN(s).



Electronics 2024, 13, 624 7 of 15

3.2. Benchmark

The properties of drug molecules typically encompass fundamental attributes, ADME-
related pharmacokinetic properties, and toxicity properties. Given the multitude of relevant
properties and to ensure comparability with commercial software and web platforms, we
selected five benchmark properties: solubility (logS), clearance (CL), permeability (PAPP),
plasma protein binding (PPB), and median lethal dose (LD50). These chosen properties
serve as key benchmarks, providing a focused and standardized set of criteria for evaluating
and comparing the performance of our model against established commercial tools and
web-based platforms in the field of drug discovery and development.

Solubility (logS) constitutes a pivotal parameter in the comprehensive assessment of
drug molecules, bearing direct implications for their absorption and distribution within
the ADMET framework. This parameter holds particular significance, as it profoundly
influences the oral bioavailability of a drug, emerging as a critical pharmacokinetic prop-
erty necessitating meticulous optimization in the drug discovery process. The quantifica-
tion of solubility, denoted by the 10-based logarithm (logS), assumes paramount impor-
tance in shaping formulations and determining the subsequent therapeutic efficacy of a
drug [35–37].

Clearance (CL) is a pivotal pharmacokinetic parameter denoting the volume of plasma
from which a drug is systematically removed per unit time. This parameter serves as
a critical indicator for evaluating drug metabolism, reflecting the rate at which a drug
undergoes elimination from the body. Key organs involved in drug elimination encom-
pass the liver, kidneys, lungs, and intestines, each contributing to diverse drug-specific
elimination pathways. Within the intricate landscape of drug metabolism, the clearance
rate, represented by the CL value, is subject to multifaceted influences. These encom-
pass intrinsic factors, such as the physicochemical properties of the drug, the prevailing
physiological state of the organism, and the activity of the metabolic enzyme system. The
resultant CL value becomes a vital quantitative measure, offering insights into the dynamic
interplay between a drug and the biological milieu. In academic and clinical contexts, the
discernment of drug clearance intricacies stands as an essential foundation, contributing
profoundly to the formulation of evidence-based pharmaceutical strategies and clinical
decision making [38–40].

Permeability (PAPP) stands as a pivotal index in assessing a drug’s capability to
traverse cell membranes and reach its intended site of action. Widely employed in the
realm of drug discovery and development, PAPP furnishes indispensable insights into
the pharmacokinetic attributes of potential drug candidates. The discernment gleaned
from PAPP assessments serves as a cornerstone for optimizing drug design, enhancing
the likelihood of success in subsequent clinical trials. The adoption of PAPP as a metric
underscores its significance in shaping the trajectory of drug development endeavors,
propelling advancements in the rational design of pharmacotherapeutics [41–44].

Plasma protein (PPB) denotes the extent to which a drug molecule associates with
proteins in the plasma, predominantly with albumin. Upon introduction into the blood-
stream, a drug may manifest in two distinct states: as free or unbound drug molecules and
as drug molecules bound to plasma proteins. Only the unbound drug molecules retain
pharmacological activity, enabling interaction with target sites in the body to elicit the
desired therapeutic effects. The intricate binding of drugs to plasma proteins significantly
governs their distribution, metabolism, and elimination within the biological milieu. Ele-
vated plasma protein binding has the potential to constrain the availability of free, active
drug molecules, thereby exerting a pivotal influence on the drug’s therapeutic efficacy. This
underscores the imperative for the meticulous consideration of plasma protein binding
dynamics in the determination of dosage regimens [45,46].

The median lethal dose (LD50) stands as a critical measure in the assessment of
substance toxicity. This standardized metric involves the systematic administration of
progressively increasing doses of the substance to discrete groups of test animals until 50%
of them succumb. The ensuing dose–response data are then utilized to derive the LD50
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value, representing the quantity of the substance expected to induce mortality in 50% of a
population upon exposure. Embraced extensively in regulatory toxicology, the LD50 test
retains its fundamental role in evaluating acute toxicity and establishing safety thresholds
for substances that carry potential risks to human health. Conventionally expressed in
milligrams of the substance per kilogram of the body weight of the test animal, LD50 data
are pivotal for informed risk assessment and the development of safety guidelines [47,48].

In our comprehensive investigation of bioactive molecules and their drug-like prop-
erties, we meticulously compiled a valuable dataset by amalgamating information from
two distinct sources. The primary contributor to our dataset is the Chembl database, a
meticulously curated repository of bioactive molecules renowned for possessing drug-like
characteristics. This database seamlessly integrates chemical, bioactivity, and genomic
data, providing an invaluable resource to facilitate the translation of genomic informa-
tion into the development of effective new drugs. Specifically, forecast data related to CL
(clearance), caco-2 permeability, PPB (plasma protein binding), and LD50 were extracted
from the Chembl database. These parameters play pivotal roles in understanding the
pharmacokinetics and toxicity of bioactive compounds, critical aspects in drug develop-
ment. Following a meticulous filtering process, our local dataset now comprises a total
of 1128 entries for logS (logarithm of aqueous solubility), 2999 entries for CL, 1209 entries
for caco-2 permeability, 2081 entries for PPB, and 2633 entries for LD50. Each entry in this
curated dataset encapsulates essential information contributing to a holistic understanding
of the properties and behavior of the bioactive molecules under investigation. To enhance
the robustness of our dataset and ensure its applicability across diverse scenarios, we
incorporated additional test data points for logS, CL, PPB, and LD50. These test data points
were randomly generated to provide a representative sample for further validation and
assessment of the predictive models. For a more detailed breakdown of the dataset, please
refer to Table 1, which encapsulates a comprehensive overview of the entries and properties
included in our exploration of bioactive molecules.

Table 1. Data source of the experiments. logS/CL/caco-2/PPB/LD50 contain 1128, 2999, 1209, 2081,
and 2633 entries, respectively.

Feature Output Unit Data Source Data Size

logS log (mol/L) data-src (Delaney) 1128
CL mL/min/kg chembl 2999
Caco-2 (papp) cm/s chembl 1209
PPB % chembl 2081
LD50 mg/kg chembl 2633

4. Experiments
4.1. Overall Result

In this section, a comprehensive comparative analysis is conducted between our
proposed model and four commercial models. Models under scrutiny are described as
follows: iDrug is an open platform for preclinical drug discovery that utilizes a deep
learning algorithm developed by Tencent AI Lab. ADMETLab is a Python-based platform
accessible at http://admet.scbdd.com/ (accessed on 1 December 2023) that provides sys-
tematic ADME/Tox evaluation for chemicals, relying on an extensive database comprising
288,967 entries. QikProp is serving as a robust screening tool predicting various chemical
and physicochemical properties associated with drug candidate molecules. DS (Discov-
ery Studio), developed by Dassault Systemes BIOVIA (formerly Accelrys), specializes in
simulating small molecule and macromolecule systems.

In our analysis of key indicators, SMAPE and PCC demonstrated comparability across
properties, leading to their selection for multi-property averaging. The comprehensive
average results indicate that our fusion model exhibits superior performance, followed by
iDrug, ADMETLab, QikProp and DS. Despite the potential utilization of our test set data

http://admet.scbdd.com/
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by other platforms during training, given the use of public datasets, the overall outcome
remains satisfactory.

A notable limitation observed in the these existing models is their ability to provide
fewer property predictions or exhibit significant differences in caliber. Concerning the key
different properties of logS, CL, PAPP, PPB and LD50, there is a notable enhancement across
different properties. In relative terms, our fusion model demonstrates stable learning and
reasoning capabilities, particularly when the dataset is clearly defined. This leads to more
reliable results, emphasizing the importance of a well-defined dataset for model stability
and predictive accuracy in complex environments. The experimental results show that the
improved model attains an average SMAPE (Symmetric Mean Absolute Percentage Error)
of 18.9% and an average PCC (Pearson Correlation Coefficient) of 0.86 on ADME/Tox
prediction test sets. Please refer to Table 2 for detailed results.

Table 2. The results of SMAPE and PCC on various tasks.

Model SMAPE Result PCC Result SMAPE Rank# PCC Rank#

iDrug 34.1 0.46 4 5
ADMETLab 31.7 0.58 3 3
QikProp 29.4 0.60 2 2
DS 74.2 0.56 5 4
Enhanced Graphormer 18.9 0.86 1 1

4.2. Detail Result

(1) logS: It is true that iDrug and our model achieve optimal results on different metrics.
It seems that the ambiguity difference of the dataset is relatively small, and the final results
of the benchmark has good availability. Please refer to Figure 2 and Table 3 for detailed
logS results.

(2) CL: We found that different species and different ways of taking drugs have
a greater impact on CL values. For the sake of accuracy, we limited the data to be in
the human liver. Experiments show that our enhanced model leads significantly on the
benchmark. Please refer to Figure 3 and Table 4 for detailed CL results.

(3) PAPP: On this metric, the PCC and SMAPE results produced by the model signifi-
cantly outperform ADMETLab and QikProp, while being lower than iDrug. Please refer to
Figure 4 and Table 5 for detailed PAPP results.

(4) PPB: On this metric, the R2, PCC and SMAPE results produced by the model
significantly outperform iDrug and DS. Please refer to Table 6 for the detailed PPB result.

(5) LD50: On this metric, the PCC and SMAPE results produced by the model signif-
icantly outperform iDrug and DS, while the R2 result is higher than DS and lower than
iDrug. Please refer to Table 7 for detailed LD50 results.

Moreover, a comprehensive performance analysis of the proposed model was con-
ducted, with a specific emphasis on the dynamics of AUC and Loss. As illustrated in
Figure 5, it becomes apparent that, throughout the training process, the AUC attains a peak
and subsequently stabilizes, signifying sustained high performance in subsequent training
sessions. Figure 6 demonstrates the model’s initial elevated Loss, which progressively
diminishes during training, ultimately stabilizing to achieve a favorable convergence effect.

Table 3. The logS results of R2, SMAPE and PCC on various tasks.

Model R2 Result PCC Result SMAPE Result R2 Rank# PCC Rank# SAMPE Rank#

iDrug 0.944 0.972 17.4 1 1 2
ADMETLab 0.936 0.969 18.2 2 2 3
QikProp 0.8 0.9 32.1 5 5 4
DS 0.88 0.9528 44 4 4 5
Enhanced Graphormer 0.9 0.953 25.1 3 3 1



Electronics 2024, 13, 624 10 of 15

Table 4. The CL results of R2, SMAPE and PCC on various tasks.

Model R2 Result PCC Result SMAPE Result R2 Rank# PCC Rank# SAMPE Rank#

iDrug 0.62 0.98 96 1 1 2
ADMETLab 0.5 0.32 86 3 2 3
QikProp / / / / / /
DS / / / / / /
Enhanced Graphormer 0.7 0.84 38 2 1 1

Table 5. The PAPP results of R2, SMAPE and PCC on various tasks.

Model R2 Result PCC Result SMAPE Result R2 Rank# PCC Rank# SAMPE Rank#

iDrug 0.74 0.87 5.2 2 1 1
ADMETLab 0.52 0.72 7.1 4 3 3
QikProp 1.58 0.25 14.8 4 4 4
DS / / / / / /
Enhanced Graphormer 0.62 0.8 6.6 3 2 2

Table 6. The PPB results of R2, SMAPE and PCC on various tasks.

Model R2 Result PCC Result SMAPE Result R2 Rank# PCC Rank# SAMPE Rank#

iDrug 0.23 0.51 17.5 3 3 3
ADMETLab 0.33 0.59 15.9 2 2 2
QikProp / / / / / /
DS / / / / / /
Enhanced Graphormer 0.65 0.81 12.2 1 1 1

Table 7. The LD50 results of R2, SMAPE and PCC on various tasks.

Model R2 Result PCC Result SMAPE Result R2 Rank# PCC Rank# SAMPE Rank#

iDrug 0.9 0.168 34.2 1 2 3
ADMETLab / / / / / /
QikProp / / / / / /
DS 0.78 0.169 104.3 3 3 2
Enhanced Graphormer 0.781 0.87 12.8 2 1 1

(a) (b) (c)

Figure 2. (a) Scatter-plot of logS for iDrug; (b) Scatter-plot of logS for ADMETLab; (c) Scatter-plot of
logS for the enhanced model.
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(a) (b) (c)

Figure 3. (a) Scatter-plot of CL for iDrug; (b) Scatter-plot of CL for ADMETLab; (c) Scatter-plot of CL
for the enhanced model.

(a) (b) (c)

Figure 4. (a) Scatter-plot of PAPP for iDrug; (b) Scatter-plot of PAPP for ADMETLab; (c) Scatter-plot
of PAPP for the enhanced model.

(a) AUC of CL (b) AUC of LD50

(c) AUC of logS (d) AUC of PAPP

Figure 5. AUC of the model.
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(a) Loss of CL (b) Loss of LD50

(c) Loss of logS (d) Loss of PAPP

Figure 6. Loss of the model.

5. Conclusions

Navigating the intricate landscape of drug development requires addressing the
intricate challenges posed by the absorption, distribution, metabolism, excretion, and
toxicity (ADME/Tox) properties. A substantial portion of molecules in the developmental
pipeline face an elevated risk of failure due to deficiencies in these critical attributes.
In response to this pressing issue, our paper introduces a sophisticated model aimed
at advancing predictive accuracy, with the overarching objective of enhancing success
rates in drug discovery. In the crucible of experimentation, our proposed model not only
demonstrates cutting-edge performance but also establishes itself as a standard of precision.
Attaining an outstanding Symmetric Mean Absolute Percentage Error (SMAPE) of 18.9
and a robust Pearson Correlation Coefficient (PCC) of 0.86 on ADME/Tox prediction
test sets, the model substantiates its capacity to furnish accurate and reliable predictions.
These metrics stand as a testament to the model’s prowess in distilling complex drug
properties into actionable insights, thereby reshaping the landscape of decision making in
drug development.

As we project our trajectory into the future, our research endeavors extend beyond the
confines of initial success. Our strategic focus revolves around the refinement and augmen-
tation of our model through a series of follow-up initiatives. These initiatives encompass
the following:

(1) Feature enrichment based on chemical/physical principles: Our commitment to
accuracy compels us to delve deeper into the chemical and physical underpinnings of small
molecules. We endeavor to enrich our model by incorporating additional features aligned
with fundamental principles, capturing nuanced aspects contributing to the intricacies of
drug behavior.

(2) Integration of 3D structural information: Recognizing the three-dimensional nature
of molecular structures as a crucial determinant in drug properties, our model is poised
for evolution. Efforts are underway to enhance its capability to process and leverage 3D
structural information, thereby refining predictions through a more holistic consideration
of spatial arrangements.

(3) Sophistication through state-of-the-art graph-based models: To elevate the model’s
analytical prowess, we aim to infuse it with the sophistication of state-of-the-art graph-
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based models and incorporate additional performance metrics. This enhancement will
empower our model to unravel complex relationships within molecular structures, provid-
ing a more nuanced understanding of small molecules.
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Abbreviations
Symbols in this model.

Symbol Description
Cemb Centrality Encoding
Semb Spatial Encoding
Eemb Edge Encoding
λ Feature vector
∆ Distance metric
β Edge metric
deg(in) In degree
deg(out) Out degree
MHA Multi-head self-attention
FFN Feed-forward blocks
LN Layer normalization
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