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Abstract: The frequency response of the fractional-order power-law filter can be approximated by
different techniques, which eventually affect the expected performance. Fractional-order control
systems introduce many benefits for applications like compensators to achieve robust frequency
and additional degrees of freedom in the tuning process. This paper is a comparative study of five
of these approximation techniques. The comparison focuses on their magnitude error, phase error,
and implementation complexity. The techniques under study are the Carlson, continued fraction
expansion (CFE), Padé, Charef, and MATLAB curve-fitting tool approximations. Based on this
comparison, the recommended approximation techniques are the curve-fitting MATLAB tool and the
continued fraction expansion (CFE). As an application, a low-pass power-law filter is realized on a
field-programmable analog array (FPAA) using two techniques, namely the curve-fitting tool and the
CFE. The experiment aligns with and validates the numerical results.

Keywords: fractional-order circuits; fractional-order approximations; fractional-order filters; power-law
filters; fractional-order compensators; FPAA

1. Introduction

Fractional calculus is a generalization of integration and differentiation to non-integer
orders, as it contains the rules that govern processes involving non-integer orders [1,2]. The
fractional calculus field started with a question asked by L’Hôpital, a French mathematician,
to Leibniz about the derivative of d1/2y(x)/dx1/2. The answer was, “It will lead to a
paradox, from which practical consequences would one day be drawn” [1,3]. In practical
applications, fractional calculus introduces invisible information in classical calculus, as
fractional-order derivatives are more informative compared to integer-order ones [4]. Also,
gradual changes happen when the orders are non-integers.

Non-integer-order signal processing has attracted significant research interest in many
applications, such as filters and oscillators, chaotic systems, sensor systems, and control
systems [5–7]. In addition, numerous physical phenomena are known to exhibit a fractional
power function dependence on frequency or, equivalently, a fractional slope on the log-log
plot, including certain types of electrical noise [8], the relaxation behavior of polarized
impedances in dielectrics [9], transmission lines, and the spectral densities of music [10].

The area of fractional-order control has attracted significant research interest due to the ad-
ditional degrees of freedom in the tuning process [11]. Many fractional-order filter applications
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were investigated, such as the design of a current feedback operational amplifier (CFOA)-
based inverse filter in [6]. Applications of non-integer-order signal processing systems require
levels of accuracy and sensitivity that can be achieved by the current feedback operational
amplifier implementation of the power-law filters approximated by the curve-fitting-based
technique [12]. Also, applications of analog pseudo-differential fractional frequency filters
use the Butterworth approximation of the fractional order (2+ α) [13]. Furthermore, many
fractional-order oscillators have been widely studied in [14,15].

The power-law filter is a new category of fractional-order filters that can be realized
without using the fractional-order Laplacian operator, thereby eliminating the need for
fractional-order elements when realizing this class of filters [16,17]. The fractional-order
lead/lag compensator provides additional degrees of freedom in the tuning process in
the fractional-order control area [18]. One of the forms of the fractional-order lead/lag
compensator involves raising the integer-order counterpart to a non-integer-order power,
transforming it into a type of power-law filter. The fractional-order lead/lag compensator
shapes the open- or closed-loop response to achieve the desired stability, robustness, and
other performance specifications [11,19]. In control systems, achieving robust frequency
compensation is a goal discussed in [16,20], particularly when dealing with plants with
uncertain poles, where selecting compensator parameters plays a crucial role. This type of
lead/lag compensator is realized by approximating the fractional-order transfer function
using the Padé approximation [11].

The dynamic behavior of fractional transfer functions can be approximated using
integer transfer functions or digital transfer functions [21,22]. Approximations are helpful
in numerical methods for solving fractional differential equations. Methods for solving
integer differential equations are more widely available in commercial software [21]. For
hardware implementations of fractional controllers, integer transfer functions are easier
and cheaper to implement [21]. This paper focuses on rational approximation techniques
for the applications of fractional power-law forms.

The concept of the mother function was introduced in [16] as Hm(s) , mother func-
tion based on power law. Considering H f (sα) = Hm(s)|s→sα leads to a clear conclusion
regarding the relation between the fractional-order function and the mother function based
on power law. The mother function is raised to a non-integer number α. The circuit re-
alization of sα needs a fractional-order element, which is not commercially available. So,
it is implemented using the fractional-order capacitor approximation through Cauer or
Foster techniques or fractional-order inductors achieved by adding Generalized Impedance
Converters (GICs) to the Cauer or Foster structure [16,23]. A different approach is to
approximate the fractional-order Laplacian operator through an integer-order transfer
function, using rational integer-order approximation techniques to obtain the function
H(s) ∼= H f (sα)|sα→T(s). The mother function’s representation gives us the magnitude and
phase responses, expressed as |H f (ω)| = [|Hm(ω)|]α and ∠H f (ω) = α×∠Hm(ω). This
leads to the next step of approximating [Hm(ω)]α after obtaining the frequency response
using appropriate magnitude and phase curve-fitting techniques. Many approximation
tools, like Oustaloup, Matsuda, and continued fraction expansion, are incapable of realizing
the power-law filters’ transfer function, as it is based on approximating the fractional-order
Laplacian operator itself sα [11,24]. Other approximations like the stability boundary locus
can improve stability preservation and achieve acceptable time and frequency response
matching for fractional-order systems [25].

This paper compares some of these approximations by modifying them to approxi-
mate the whole filter transfer function of power-law filters instead of approximating the
Laplacian operator only. The challenge in approximating this type of transfer function is
that the fractional order appears in both the numerator and denominator [16]. Therefore,
the power-law concept involves realizing transfer functions without fractional-order ele-
ments. A fractional-order low-pass power-law filter is realized using the curve-fitting and
the CFE approximation techniques and implemented using the FPAA and the NI ELVIS II
kit experimentally.Also, a fractional-order compensator is realized using the curve-fitting
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approximation technique and implemented as a software interface on the FPAA. This paper
is organized as follows, The power-law filters are discussed in detail in Section 2, Section 3
shows the usage of the approximation techniques, Section 4 compares the different real-
izations, and Section 5 demonstrates the FPAA realization. Finally Section 6 concludes the
comparison and the implementation observations.

2. Power-Law Functions

The power-law filter function is formed by raising the integer-order filter function to a
non-integer exponent [24]. These filters are derived from the first- and second-order mother
functions introduced in [16]. Also, the fractional-order lead/lag compensator is a power law
filter. Hence, this paper focuses on first-order power-law filters and lead/lag compensators.

2.1. First-Order Power-Law Filters

The Power-Law low- and high-pass filters’ corresponding transfer functions are
HPL−LP(s) and HPL−HP(s), respectively [16]:

HPL−LP(s) =
(

ω0

s + ω0

)α

, (1)

HPL−HP(s) =
(

s
s + ω0

)α

, (2)

where (0 < α < 1) is the fractional order, and ω0 is the pole frequency. To obtain the magnitude
and phase responses for each type, the following equations are utilized [16]:

|HPL−LP(s)| =
1[

( ω
ω0

)2 + 1
]α/2 , (3)

∠HPL−LP(s) = −α tan−1
(

ω

ω0

)
, (4)

|HPL−HP(s)| =
( ω

ω0
)α[

( ω
ω0

)2 + 1
]α/2 , (5)

∠HPL−HP(s) = α tan−1
(ω0

ω

)
. (6)

The point at which the gain is attenuated by 3 dB from the DC gain is called the half-power
frequency. And it can be determined by the pole frequency ωo and the fractional order α [5].
Equation (7) shows the calculation of the half-power frequency and the corresponding
phase for both low- and high-pass filters [16]:

ωh(−3dB)PL−LP = ω0

√
21/α − 1, (7a)

∠HPL−LP(ωh) = −α× tan−1
(√

21/α − 1
)

, (7b)

ωh(−3dB)PL−HP =
ω0√

21/α − 1
, (7c)

∠HPL−HP(ωh) = α×
[

π

2
− tan−1

(
1√

21/α − 1

)]
. (7d)

In Equations (7a) and (7c), the pole frequency determines the reference point, and the
fractional order determines the distances, as for the low- and high-pass ωh has equal
distances in logarithmic scale around the pole frequency as shown in [5]:

ω0 =
√

ωh,(PL−LP)×ωh,(PL−HP). (8)
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The attenuation slope for the low-pass filter is −20α dB/dec, whereas for the high-pass
filter, it is 20α dB/dec [5]. The phase for the low-pass at very low frequencies is equal
to zero, and it asymptotically tends to the value (−απ/2) at very high frequencies. For
the high-pass filter, the phase at very low frequencies tends to (+απ/2), whereas at high
frequencies, it tends to zero [16]. Raising the conventional filter functions to the non-integer
exponent α gives an additional degree of freedom, allowing for precise adjustment of the
filter’s characteristics, including the cut-off frequency and the transition slope from the
passband to the stopband [24]. The frequency responses of the derived functions exhibit an
attenuation gradient scaled by a factor equal to the order of the filter, in comparison to the
corresponding response of the mother filter function [24].

2.2. Power-Law Lead/Lag Compensators

The corresponding transfer function of a lead/lag compensator is [11]:

C(s) = K ×
(

1 + τs
1 + xτs

)α

, (9)

where K is the DC compensator gain, (τ > 0) is the time constant, and (x > 0) is the
scaling factor of the time constant that determines the type of compensator (lead or lag) [11].
The zero frequency is (ωz = 1

τ ), and the pole frequency is (ωP = 1
xτ ). For implementing

a fractional-order lead compensator, the zero frequency must be smaller than the pole
frequency (ωz < ωp), so the given condition must be achieved [11]:

(0 < x < 1), (10)

and for implementing a fractional-order lag compensator, the opposite condition must be
achieved, so [11]:

(x > 1). (11)

In forming the compensator type, the fractional order α represents a degree of freedom
which is visible in the design flexibility standpoint [11]. The geometric mean of the pole
and zero frequencies is given by (ωm =

√
ωz×ωP ). Expressing the zero in terms of the

pole yields:
ωz = x × ωP, (12)

so ωm can be written in terms of the characteristics of the compensator (x,τ) [11]:

ωm =
1

x1/2τ
. (13)

The magnitude and phase responses are calculated using Equation (9) [11]:

|C(s)| = K ×
[

1 + (ωτ)2

1 + (xωτ)2

]α/2

, (14a)

∠C(s) = α × tan−1
[

ωτ(1 − x)
1 + x(ωτ)2

]
. (14b)

The gain (Km) and phase (ϕm) values at the ωm frequency are [11]:

Km =
K

xα/2 , (15a)

ϕm = α × sin−1
(

1 − x
1 + x

)
. (15b)

Therefore, the compensator’s low-frequency gain is (K) and its high-frequency gain is
( K

xα ). The transition slope between them is ±20α dB/Dec. The fractional order (α) enables
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choosing the compensator type and reasonably adjusting the transition gradient [11]. The
gain and phase are affected by the order at the mean frequency (ωm) and also the gain value
at the high-frequency band, for the mean frequency the order does not affect its value [11].

3. Approximation Techniques
3.1. Curve-Fitting Approximation Using MATLAB

An efficient curve-fitting method can be used to approximate the frequency-domain
behavior of the power-law function by curve-fitting the data of the frequency response
of the power-law function and converting the fractional-order transfer function into an
integer-order one [16,24]. This can be accomplished using one of the MATLAB curve-
fitting tools, such as (fitfrd) or (tfest). For (fitfrd), based on the concept of the mother
function introduced in [16], the algorithm first obtains the frequency response data of the
power-law transfer function using the MATLAB, Version 23.2.0.2489961 (R2023b), built-in
command (frd) and then obtains the state-space model using the (fitfrd) command. In this
curve-fitting technique, the transfer function is estimated using the Sanathanan–Koerner
(SK) least-square iterative method. For (tfest), it directly obtains the transfer-function
model of the data [24]. All the commands mentioned are offered in the Symbolic Math
Toolbox™ [24]. The achieved rational integer-order transfer function is in the form of an
ath-order approximation [16]:

H(s) =
Aasa + Aa−1sa−1 + . . . + A1s + A0

sa + Ba−1sa−1 + . . . + B1s + B0
, (16)

where (Ai) and (Bj) are real coefficients, and (a) is the approximation order provided in the
algorithm as one of the degrees of freedom. The (tfest) function approximation maintains
consistently low percentage errors [24]. The (fitfrd) function approximation exhibits only
slightly larger errors at high frequencies, but it provides a nearly perfect response at low
and mid frequencies [24]. Thus, the (fitfrd) function approximation provides the smallest
deviation from the ideal responses. “It must be mentioned that optimization techniques
can distinctly outperform the Sanathanan–Koerner (SK) method-based solution based on
the magnitude and phase error metrics” [24]. These observations, illustrated in Figure 1,
demonstrate the frequency response magnitude and phase of the low-pass power-law filter
for fractional order (α = 0.5), as described by Equation (1).
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Figure 1. Bode plots for the low-pass power-law filter for α = 0.5 using different curve-fitting techniques:
(a) Magnitude responses and percentage errors. (b) Phase responses and percentage errors.
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3.2. Padé Approximation

The Padé approximation is a distinctive feature of rational approximations for power
series. The Padé approximation often provides a more accurate function approximation
compared to truncating its Taylor series due to the advantages of the multipoint summation
strategy [26]. Moreover, it can approximate linear fractional-order transfer functions [2], and
with only a few general terms, it extracts information from power-series expansions [24].
The Padé form is a good approximation due to its convergence acceleration, which gives
an efficient approximation even beyond a power-series expansion’s radius of convergence
(it may still work where the Taylor series fails to converge) [24]. In the MATLAB, version
23.2.0.2489961 (R2023b), the Padé function is used to obtain the rational integer-order
approximation. It takes the expansion point ωpade, representing the center frequency
around which the approximation is applied, and the integer order of approximation [m/n]
designating the zeros and poles, respectively [24]. The rational integer-order approximated
transfer function is in the form [24]:

H(s) =
Amsm + Am−1sm−1 + . . . + A1s + A0

sn + Bn−1sn−1 + . . . + B1s + B0
, (17)

where Ai , i = (0, . . . , m) and Bj , j = (0, . . . , n − 1) are real coefficients. It can be used to
approximate a fractional-order lead/lag compensator. The approximated transfer functions
are expressed in the same form as the rational integer-order transfer functions. The approx-
imation is based on calculating the rational function coefficients by solving the (m + n + 1)
linear equations as shown [11]:

c0 − p0 = 0, (18a)

q1c0 + c1 − p1 = 0, (18b)

q2c0 + q1c1 + c2 − p2 = 0, (18c)

. . . . . . . . . . . . . . . . . . . . . . . . . . .

qmcn−m + qm−1cn−m+1 + . . . + cn − pn, (18d)

and:
qmcn−m+1 + qm−1cn−m+2 + . . . + q1cn + cn+1 = 0, (19a)

qmcn−m+2 + qm−1cn−m+3 + . . . + q1cn+1 + cn+2 = 0, (19b)

. . . . . . . . . . . . . . . . . . . . . . . . . . .

qmcn + qm−1cn+1 + . . . + q1cn+m−1 + cn+m = 0, (19c)

where ck, (k = 0, . . . , n + m) is calculated using [11]:

ck =
1
k!

× dk

dsk [C(s)]s=0, (20)

and the condition of the Padé approximation to represent a rational integer-order function,
is that its derivatives at s = 0 must be continuous. The coefficients are calculated from qn
and pm, as the rational integer-order function is in the form [11]:

H(s) =
( pm

qn
)sm + ( pm−1

qn
)sm−1 + . . . + ( p1

qn
)s + ( p0

qn
)

sn + ( qn−1
qn

)sn−1 + . . . + ( q1
qn
)s + 1

qn

. (21)

From a practical implementation point of view, an essential aspect of the approximated
fractional-order transfer function is the zero and pole distance [11]. The approximation
has a limited bandwidth of accuracy, which depends on the approximation order [11].
As the distance between the pole and zero increases, the required order of approxima-
tion increases, leading to increased active and passive elements [11]. The approximation
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accuracy is based on the expansion point (ωpade), which is the center frequency around
which the approximation is performed. For the low-pass power-law filter, we can see the
approximation around (ωpade = 1).

3.3. Charef Approximation

To represent and study the dynamical behavior of the fractional-order system pre-
sented in [10] by singularity function, we use the following transfer function:

H(s) =

(
1

1 + s
PT

)α

, (22)

where 0 < α < 1 is the power factor or the fractional order, and PT is the relaxation
time constant (the corner frequency is determined at a point of −3α dB from the original
transfer function [10]). A method of singularity function consisting of cascaded branches
with several pole-zero (negative real) pairs is used to approximate the fractional-order
function [10,27]. The idea is to approximate the slope of −20α dB/dec by using zig-
zag lines with individual slopes of −20 dB/dec and 0 dB/dec. The singularities for the
approximation are chosen by assuming a constant discrepancy (y) in dB between the
−20α dB/dec and the zig-zag lines. To obtain the maximum deviation from the original
magnitude response (y), define a and b using [10]:

a = 10
y

10(1−α) =
Z0

P0
=

Z1

P1
= . . . =

ZN−1

PN−1
, (23a)

b = 10
y

10α =
P1

Z0
=

P2

Z1
= . . . =

PN
ZN−1

, (23b)

where a is the location ratio of a zero to a previous pole, and b is the location ratio to a
previous zero. P0 and Z0 are the first pole and zero, respectively, and PN and ZN−1 are
the last pole and zero, respectively [10]. The high- and low-frequency properties of the
magnitude of the transfer function cause the lowest and highest singularities of the transfer
function approximation to be poles [10]. So, the value of the last pole and the value of its
preceding pole in the approximation are within the specified range [10].

PN−1 < ωmax < PN . (24)

The total number of singularities, as determined by the frequency band of the system, is
N + 1 [10]:

N = 1 +
ln (ωmax

P0
)

ln (ab)
, (25)

where ωmax is the maximum frequency of the system. P0 is calculated using [10]:

P0 = PT
√

b. (26)

After obtaining the number of singularities, the values of the pole-zero pairs are calculated
using [10]:

Zi = aP0(ab)i, i = 1, . . . , N − 1, (27a)

Pi = P0(ab)i, i = 1, . . . , N. (27b)

The singularity structure for a single fractal system modeled in the frequency domain, rep-
resented by its pole-zero pair, is shown in (28) factorized into the zero-pole-gain form [10].

H(s) =
1

(1 + s
PT
)α

= lim
N→∞

∏N−1
i=0 (1 + s

Zi
)

∏N
i=0(1 +

s
Pi
)

. (28)



Electronics 2024, 13, 591 8 of 22

3.4. Carlson Approximation

To obtain the value of the expression (a1/n), where (a ∈ ℜ) and (n ∈ Z), we can define
f (x) = xn − a. The Newton–Raphson method is then employed to find the roots of f (x),
which starts with an estimation of x0 and improves the value through an iterative method
like the one described in [21]:

xk+1 = xk −
f (xk)

D f (xk)
, (29)

where k is the number of iterations. Using the method described in (30) is preferable, as it
provides a linear approximation for f (x) around a1/n such that D2 f (a1/n) = 0,

f (x) =

{
x2m+1−a

xm , n = 2m + 1, n is odd
x2m−a
xm−1 + λ x2m−a

xm , n = 2m, λ → x, n is even

=


xm+1 − ax−m, n = 2m + 1, n is odd

xm+1 − ax−m+1 + λxm − λax−m, n = 2m,

λ → x, n is even

(30)

Using λ = xk yields [21]:

xk+1 =
(2m − 1)xm+1

k + (2m + 1)ax−m+1
k

(2m + 1)xm
k + (2m − 1)ax−m

k

= xk
(2m − 1)x2m

k + (2m + 1)a
(2m + 1)x2m

k + (2m − 1)a

= xk
(n − 1)xn

k + (n + 1)a
(n + 1)xn

k + (n − 1)a

(31)

The roots can be obtained using [21]:

xk+1 = xk
(n − 1)xn

k + (n + 1)a
(n + 1)xn

k + (n − 1)a
, (32)

and by replacing (a1/n) with (sα) and xk with Hk(s), the approximation of sα can be achieved
through [21]:

Hk+1(s) = Hk(s)
(1/α − 1)H1/α

k (s) + (1/α + 1)s

(1/α + 1)H1/α
k (s) + (1/α − 1)s

. (33)

Assume that H1(s) = 1 is an excellent initial estimation that leads to accurate results
with fewer iterations [21]. It should be noted that the approximation works only when
1/α ∈ Z; otherwise, the approximation itself would involve fractional powers of s [21]. The
disadvantage of the Carlson approximation is the large integer order it produces because
the number of zeros and poles in Equation (33) increases with k and depends on 1/α.
The poles and zeros resulting from the approximation may be complex and are always
stable [21]. The range of frequency of the approximation is valid and is centered around
ω = 1 rad/s, as the first estimation is H1(s) = 1. Suppose there is a desire to change the
frequency range to be centered around ωu by multiplying all zeros and poles by ωu and
adjusting the gain accordingly. The Carlson approximation has been modified to make it
suitable for cases where 1/α is not an integer [28]. Assume that G(s) is a rational transfer
function and H(s) is the fractional-order transfer function such that H(s) = [G(s)]α, where
α = m

p is the fractional order of the transfer function. The fractional-order transfer function
H(s) is recursively approximated by [28]:

Hk+1(s) = Hk(s)
(p − m)[Hk(s)]n + (p + m)G(s)
(p + m)[Hk(s)]n + (p − m)G(s)

, (34)
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It is found that n ≥ 2 results in a good phase approximation within the range (0 < ϕ < π
2 ) [28].

When using H0(s) = 1 and n = 2 in (34), the approximation simplifies to [28]:

Hk+1(s) = Hk(s)
G(s) + q[Hk(s)]2

qG(s) + [Hk(s)]2
, (35)

where q = p−m
p+m =

1− m
p

1+ m
p

= 1−α
1+α , so (α = 1−q

1+q ). Therefore, when H(s) = sα, it acts as a

differentiator when α > 0 as q < 1 and as an integrator for α > 0 as q > 1 [28].

3.5. Continued Fraction Expansion (CFE)-Based Techniques

Continued fraction expansion-based techniques are commonly used for designing
filters [4,29]. The typical form of a continued fraction expansion of the function f (x) is [4]:

f (x) = b1 +
(x − a)c1

b2 +
(x−a)c2

b3+
(x−a)c3

b4+
(x−a)c4

b5+
(x−a)c5

. . .

, (36)

where bi are constants, ci are rational numbers, and a is the reference point. Using ci = 1
yields rational approximations [4].

4. Comparison of Power-Law Function Approximation Techniques

For the different approximation techniques, the comparison is based on three cases: the
low-pass power-law filter, high-pass power-law filter, and lead/lag compensator. Following
are the investigations for each case.

4.1. Low-Pass Power-Law Filter

For the pole frequency ω0 = 1 rad/sec, the transfer function for the low-pass power-
law filter is given by Equation (37):

H(s) =
(

1
1 + s

)α

. (37)

Figures 2–5 show the magnitude and phase responses and percentage errors of the
different approximations for α = 0.3, 0.5, 0.7, 0.9, respectively. Tables 1 and 2 summarize
the maximum gain and phase percentage errors observed for different orders.
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Figure 2. Bode plots for the low-pass power-law filter for α = 0.3 using different approximations:
(a) Magnitude responses and percentage errors. (b) Phase responses and percentage errors.
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Figure 3. Bode plots for the low-pass power-law filter for α = 0.5 using different approximations:
(a) Magnitude responses and percentage errors. (b) Phase responses and percentage errors.
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Figure 4. Bode plots for the low-pass power-law filter for α = 0.7 using different approximations:
(a) Magnitude responses and percentage errors. (b) Phase responses and percentage errors.
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Figure 5. Bode plots for the low-pass power-law filter for α = 0.9 using different approximations:
(a) Magnitude responses and percentage errors. (b) Phase responses and percentage errors.
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Table 1. Maximum relative gain percentage errors observed for different orders of the low-pass
power-law filter.

Approximation
Error (%)

α = 0.3 α = 0.5 α = 0.7 α = 0.9

Padé 8 13 10 10

Charef 18 10 2 0.3

Carlson 26 16 80 80

Curve-fitting 2 3 7 7.5

CFE 5 8 5 3

Table 2. Maximum relative phase percentage errors observed for different orders of the low-pass
power-law filter.

Approximation
Error (%)

α = 0.3 α = 0.5 α = 0.7 α = 0.9

Padé 62 20 40 19

Charef 80 20 18 3

Carlson 80 20 50 80

Curve-fitting 5 4 8 2

CFE 1 1 3 1

The CFE and the curve-fitting approximations exhibit minor magnitude and phase
percentage errors, both being less than 10%. The Carlson approximation exhibits the
most significant percentage errors for α = 0.3, 0.7, 0.9. The percentage errors for the Padé
approximation start to increase at high frequencies, as demonstrated in Figure 2 for α = 0.3,
the phase percentage error reaching around 62%. The Charef approximation provides a
good approximation for α = 0.5, 0.7, 0.9 but exhibits a significant phase percentage error
for α = 0.3. From this, we can observe that the Carlson approximation can be used only for
α = 0.5, with maximum relative percentage errors of 16% and 20% for the gain and phase,
respectively. The Padé approximation is a good choice for α = {0.5, 0.9}, with maximum
relative gain percentage errors of 13% and 10%, and phase percentage errors of 20% and
19% The Charef approximation is a perfect choice for α = 0.9, exhibiting maximum relative
gain and phase percentage errors of 0.3% and 3%. The curve-fitting approximation is
perfect for α = 0.5, exhibiting maximum relative gain and phase percentage errors of 3%
and 4%, respectively. The CFE approximation is a perfect choice for α = 0.7, with maximum
relative gain and phase percentage errors of 5% and 3%, respectively.

4.2. High-Pass Power-Law Filter

For the pole frequency ω0 = 1 rad/s, the transfer function for the high-pass power-law
filter is given by Equation (38):

H(s) =
(

s
1 + s

)α

. (38)

Figures 6–9 show the magnitude and phase responses and percentage errors of the
different approximations for α = 0.3, 0.5, 0.7, 0.9, respectively. Tables 3 and 4 summarize the
maximum gain and phase percentage errors observed for different orders. We can see that
the curve-fitting approximation exhibits the smallest percentage errors, the CFE and Padé
approximations are similar, and the Carlson approximation exhibits large approximation
percentage errors, except for α = 0.5. As a result, the Carlson approximation can be used
only for α = 0.5 and is not preferred, as the other approximations exhibit better percentage
errors. Similar to the low-pass power-law filters, the Padé approximation is a good choice
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for α = 0.9, with maximum relative gain percentage error of 10%, and phase percentage
error of 19%. The Charef approximation is unsuitable for approximating the high-pass
power-law filter, as it is designed to approximate the slope of −20α dB/dec by using zig-zag
lines with individual slopes of −20 dB/dec and 0 dB/dec. Additionally, the high- and
low-frequency properties of the magnitude of the transfer function lead to the lowest and
highest singularities of the transfer function approximation being poles. The curve-fitting
approximation is a perfect choice for α = {0.5, 0.9}, with maximum relative gain percentage
errors of 10% and 5%, and phase percentage errors of 19% and 1%, respectively. Finally, the
CFE approximation is only good for magnitude approximation and does not offer a better
choice for any alpha from a phase point of view.

Table 3. Maximum relative gain percentage errors observed for different orders of the high-pass
power-law filter.

Approximation
Error (%)

α = 0.3 α = 0.5 α = 0.7 α = 0.9

Padé 8 14 18 10

Charef - - - -

Carlson 26 13.5 100 100

Curve-fitting 1 10 18 5

CFE 9 13 18 10

Table 4. Maximum relative phase percentage errors observed for different orders of the high-pass
power-law filter.

Approximation
Error (%)

α = 0.3 α = 0.5 α = 0.7 α = 0.9

Padé 60 60 48 19

Charef - - - -

Carlson 90 63 100 100

Curve-fitting 18 19 8 1

CFE 60 60 48 32
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Figure 6. Bode plots for the high-pass power-law filter for α = 0.3 using different approximations:
(a) Magnitude responses and percentage errors. (b) Phase responses and percentage errors.
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Figure 7. Bode plots for the high-pass power-law filter for α = 0.5 using different approximations:
(a) Magnitude responses and percentage errors. (b) Phase responses and percentage errors.
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Figure 8. Bode plots for the high-pass power-law filter for α = 0.7 using different approximations:
(a) Magnitude responses and percentage errors. (b) Phase responses and percentage errors.
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Figure 9. Bode plots for the high-pass power-law filter for α = 0.9 using different approximations:
(a) Magnitude responses and percentage errors. (b) Phase responses and percentage errors.

4.3. Power-Law Lead/Lag Compensator

The lead compensator case by substituting in Equation (9) with K = 1, x = 0.5, τ = 2 s,
ωm = 0.707 rad/s (the geometric mean of the pole and zero frequencies), and fm = 0.1125 Hz,
yields:

H(s) =
(

1 + 2s
1 + s

)α

. (39)
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Figures 10–13 show the magnitude and phase responses and percentage errors of the
different approximations for α = 0.3, 0.5, 0.7, 0.9, respectively. Tables 5 and 6 summarize the
maximum gain and phase percentage errors observed for different orders. The curve-fitting
approximation exhibits the lowest approximation percentage errors, with almost all being
zero, followed by the CFE approximation then the Padé approximation. The Carlson
approximation exhibits high approximation percentage errors for α = {0.7, 0.9}. As we can
see, the Carlson approximation yields better results when used for the lead compensator
compared to the filters, exhibiting maximum relative gain percentage errors of 9%, 0.001%
and phase percentage errors of 0.001%, 0% for α = {0.3, 0.5}, respectively. It is not a good
choice for α = 0.9 for phase approximation, with a maximum relative phase percentage
error of 80%. The Padé approximation exhibits a percentage error of zero for α = 0.9. The
Charef approximation is not used, as discussed in the previous sections. The curve-fitting
approximation exhibits percentage errors of zero for α = {0.5, 0.7, 0.9}, and the CFE also
exhibits a percentage error of zero for α = 0.9.
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Figure 10. Bode plots for the lead compensator for α = 0.3 using different approximation techniques:
(a) Magnitude responses and percentage errors. (b) Phase responses and percentage errors.
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Figure 11. Bode plots for the lead compensator for α = 0.5 using different approximation techniques:
(a) Magnitude responses and percentage errors. (b) Phase responses and percentage errors.
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Figure 12. Bode plots for the lead compensator for α = 0.7 using different approximation techniques:
(a) Magnitude responses and percentage errors. (b) Phase responses and percentage errors.
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Figure 13. Bode plots for the lead compensator for α = 0.9 using different approximation techniques:
(a) Magnitude responses and percentage errors. (b) Phase responses and percentage errors.

Table 5. Maximum relative gain percentage errors observed for different orders of the lead compensator.

Approximation
Error (%)

α = 0.3 α = 0.5 α = 0.7 α = 0.9

Padé 0.1 0.001 0 0

Carlson 9 0.001 9 50

Curve-fitting 0.1 0 0 0

CFE 0.1 0.001 0.01 0

Table 6. Maximum relative phase percentage errors for different orders of the lead compensator.

Approximation
Error (%)

α = 0.3 α = 0.5 α = 0.7 α = 0.9

Padé 0.03 0.019 0.01 0

Carlson 0.001 0 10 80

Curve-fitting 0 0 0 0

CFE 0.01 0.009 0.005 0
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5. FPAA Implementation

Field-programmable analog arrays (FPAAs) are used in analog signal processing, simi-
lar to field-programmable gate arrays (FPGAs) in digital signal processing [30]. Operations
that can be performed using FPAAs include differentiation, integration, subtraction, sum-
mation, division, multiplication, scaling, and filtering [31]. In addition, the low-pass filter,
high-pass filter, and lead compensator are implemented using the curve-fitting and CFE
techniques, which yield smaller magnitude and phase approximation errors, as discussed
in the previous section. The AN231K04 AnadigmApex development board is programmed
through the AnadigmDesigner®2 EDA software, version 2.8.0.10 [32].

5.1. Converting the Transfer Functions for Implementation on the FPAA

The rational integer-order transfer functions resulting from the different approximation
techniques are converted to partial fraction expansions for implementation on the FPAA
using the FPAA configurable analog modules(CAMS), as follows:

TF(s) =
a3s3 + a2s2 + a1s + a0

b3s3 + b2s2 + b1s + b0
(40)

The partial fraction expansion will be in the form:

TF(s) =
k1

s + k1
+

k2

s + k2
+

k3

s + k3
+ C. (41)

5.2. Curve-Fitting-Based Implementation for Low-Pass Power-Law Filters

For the low-pass power-law filter,

H(s) =
(

1
1 + s

)0.5
(42)

The approximated rational integer-order transfer function using curve fitting (fitfrd) is:

G f it f rd(s) =
0.057s3 + 7.827s2 + 85.52s + 140

s3 + 33.77s2 + 155.2s + 140
. (43)

The partial fraction expansion form is:

G f it f rd(s) =
4.104

s + 28.496
+

1.177
s + 4.066

+
0.616

s + 1.208
+ 0.057. (44)

Based on the standard Follow-the-Leader-Feedback (FLF) multi-feedback structure, as
described by the transfer function [16]:

HFLF(s) =
G3s3 + G2

τ1
s2 + G1

τ1τ2
s + G0

τ1τ2τ3

s3 + 1
τ1

s2 + 1
τ1τ2

s + 1
τ1τ2τ3

, (45)

where (Gi) is the gain constant, and (τi) is the time constant. The IFLF topology is commonly
used in cases where differential signals are used, whereas parallel filters are preferably
used in the case of current-mode signals [16]. The gain factors and time constants, obtained
by comparing the coefficients of Equations (43) and (45), are shown in Table 7.

Table 7. Time constants and scaling factors to transform Equation (44) into the form of Equation (45).

Time Constants Scaling Factors

τ1 τ2 τ3 G0 G1 G2 G3

0.03 0.218 1.109 1 0.551 0.232 0.057
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For implementation on an FPAA using the sum of integrators, Equation (44) must be
of the form:

G(s) = k0 +
k1

1 + τ1s
+

k2

1 + τ2s
+

k3

1 + τ3s
, (46)

where kn and τn represent the gain and time constant of the nth integrator in the FPAA.
Table 8 summarizes the values of these factors.

Table 8. Values of the scaling factors and time constants for the implemented transfer function
presented in Equation (44).

Scaling Factors Time Constants

Variable Value Variable Value

k0 0.057

k1 0.144 τ1 0.035

k2 0.29 τ2 0.246

k3 0.509 τ3 0.828

The experimental results shown in Figure 14 using the NI ELVIS II show frequency
responses within the range of [1, 100k ] Hz of the low-pass power-law filter of (α = 0.5). The
difference in magnitude percentage errors between the ideal response and the approximated
curve-fitting FPAA implementation is less than 10%, and it is almost zero at frequencies
less than the cut-off frequency, as shown in Figure 14a. The phase percentage error shown
in Figure 14b is less than 20% within the frequency band of interest before the attenuation.
When comparing the errors observed in the experiment to the theoretical errors in Table 1,
we can see a higher percentage of errors in the experiment, caused by the parasitic elements
of the NI ELVIS II kit and the FPAA’s internal connections.
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Figure 14. Experimental results showing the frequency responses of the curve-fitting approximation
for the low-pass power-law filter of α = 0.5 using the NI ELVIS II kit: (a) Magnitude responses.
(b) Phase responses.

5.3. CFE-Based Implementation for Low-Pass Power-Law Filters

The rational transfer function obtained from the CFE approximation for the low-pass
power-law filter with α = 0.5 and τ = 1 is:

H(s)CFE =
s3 + 129s2 + 1515s + 2899

17.15s3 + 565.8s2 + 2932s + 2912
. (47)
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Using partial fraction expansion, the transfer function of Equation (47) is:

H(s)PFE =
3.717

s + 26.862
+

1.145
s + 4.817

+
0.736

s + 1.312
+ 0.058 (48)

So, the implemented transfer function is as follows:

H(s) =
k1

τ1s + 1
+

k2

τ2s + 1
+

k3

τ3s + 1
+ k0. (49)

The values of the scaling factors k and time constants τ using Equations (48) and (49) are
summarized in Table 9.

Table 9. Values of the scaling factors and time constants for the implemented transfer function
presented in Equation (48).

Scaling Factors Time Constants

Variable Value Variable Value

k0 0.058

k1 0.138 τ1 0.037

k2 0.238 τ2 0.208

k3 0.561 τ3 0.762

For the FPAA implementation, the transfer function utilized is in Equation (50), Table 10
shows the substituted coefficients from Equation (48) [33]:

H(s) = ±G×2π f0

s + 2π f0
(50)

Table 10. Values of the scaling factors and time constants for the implemented transfer function
presented in Equation (49).

Scaling Factors Time Constants

Variable Value Variable Value

G 0.138 f 4.275

G 0.238 f 0.767

G 0.561 f 0.208

The experimental results shown in Figure 15 using the NI ELVIS II show the frequency
response within the range of [1, 100k] Hz of the CFE approximation for the low-pass
power-law filter of α = 0.5. The difference in the magnitude percentage errors between the
ideal response and the approximated curve-fitting FPAA implementation is less than 10%,
and it is almost zero at frequencies less than the cut-off frequency, as shown in Figure 15a.
The phase percentage error shown in Figure 15b is less than 20% within the frequency band
of interest before the attenuation.
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Figure 15. Experimental results showing the frequency responses of the CFE approximation
for the low-pass power-law filter of α = 0.5 using the NI ELVIS II kit: (a) Magnitude responses.
(b) Phase responses.

5.4. Lead Compensator FPAA Implementation

The curve-fitting approximation’s integer-order transfer function is:

H =
1.414s3 + 2.9s2 + 1.936s + 0.421

s3 + 2.301s2 + 1.725s + 0.421
(51)

and its partial fraction expansion form is:

H(s) =
−0.225
s + 0.97

+
−0.099

s + 0.758
+

−0.03
s + 0.57

+ 1.41 (52)

arranging it in the form:

H(s) =
K1

τ1s + 1
+

K2

τ2s + 1
+

K3

τ3s + 1
+ K0. (53)

H =
−0.232

1.031s + 1
+

−0.131
1.32s + 1

+
−0.052

1.75s + 1
+ 1.41 (54)

The curve-fitting FPAA implementation is demonstrated in Figure 16. The reason for cascad-
ing two gain stages in the FPAA implementation is to enhance the range of implementable
scaling factors [34].

Figure 16. AnadigmDesigner®2 EDA software interface for the lead compensator realized using the
curve-fitting technique.
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The CFE approximation’s integer-order transfer function is:

H =
1.09s3 + 2.3s2 + 1.57s + 0.35
0.77s3 + 1.82s2 + 1.4s + 0.35

(55)

and its partial fraction expansion form is:

H(s) =
−0.143
s + 1

+
−0.223

s + 0.784
+

0.007
s + 0.58

+ 1.416 (56)

arranging it in the form:

H(s) =
K1

τ1s + 1
+

K2

τ2s + 1
+

K3

τ3s + 1
+ K0. (57)

H =
−0.1423

s + 1
+

−0.285
1.276s + 1

+
0.012

1.724s + 1
+ 1.416 (58)

The last equation (transfer function) for the approximated CFE can be realized on the FPAA
the same way the approximated curve-fitting one has done.

6. Conclusions

This paper discussed different fractional-order power-law form approximation tech-
niques using MATLAB and implemented an application case study using an FPAA. The
design procedure operated in the frequency domain within the range of [10−2, 102] rad/s.
The fractional-order power-law forms were simulated with orders α = {0.3, 0.5, 0.7, 0.9}.
The performance of the filters was evaluated through simulations and experiments in the
cases of the first mother functions of the low- and high-pass filters, and lead compensator. A
third-order approximation was utilized, implementing low- and high-pass filters and a lead
compensator, with the obtained results showing that accurate operation was achieved. The
curve-fitting and CFE approximations exhibited the best performance in our case. However,
the Carlson approximation was only good when α = 0.5 for the low- and high-pass filters.
Also, it was good for the lead compensator approximation. On the other hand, the Charef
approximation was not compatible with the lead compensator. The accuracy of the Padé
approximation highly depended on the center frequency used. Table 11 demonstrates
which approximation technique is suitable for each power-law filter formula.

The comparative analysis of the different approximations is general and can be applied
to all known integer-order filter functions. In addition, all conventional design methods and
active elements could be utilized. For example, more robust operational transconductance
amplifiers (OTAs) implemented using integrated circuit technology could be utilized.
Future research could include employing a more general approximation technique with
high accuracy for different power-law form applications. This technique could then be
used to implement different applications in controllers for precision mechatronic systems.

Table 11. Comparison of test cases for power-law filter approximations.

Approximation Case (1): Denominator
H(s) = k × ( 1

1+s )
α

Case (2): Compensator

H(s) = k ×
(

1+Ts
1+xTs

)α

Padé ✓ ✓

Charef ✓ X

Carlson ✓ ✓

Curve-fitting ✓ ✓

CFE ✓ ✓
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representation of fractional order lead compensator using Padé approximation. In Proceedings of the 2018 7th Mediterranean
Conference on Embedded Computing (MECO), Budva, Montenegro, 10–14 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4.

3. Tsirimokou, G.; Psychalinos, C.; Elwakil, A. Design of CMOS Analog Integrated Fractional-Order Circuits: Applications in Medicine
and Biology; Springer International Publishing: Berlin/Heidelberg, Germany, 2017.

4. Xue, D. Fractional-Order Control Systems: Fundamentals and Numerical Implementations; Walter de Gruyter GmbH & Co KG:
Berlin/Heidelberg,Germany, 2017; Volume 1.

5. Kapoulea, S.; Psychalinos, C.; Elwakil, A.S. Versatile Field-Programmable Analog Array Realizations of Power-Law Filters.
Electronics 2022, 11, 692. [CrossRef]

6. Hamed, E.M.; Said, L.A.; Madian, A.H.; Radwan, A.G. On the approximations of CFOA-based fractional-order inverse filters.
Circuits Syst. Signal Process. 2020, 39, 2–29. [CrossRef]

7. Monje, C.; Ramos, F.; Feliu, V.; Vinagre, B. Tip position control of a lightweight flexible manipulator using a fractional order
controller. IET Control. Theory Appl. 2007, 1, 1451–1460. [CrossRef]

8. Dutta, P.; Horn, P. Low-frequency fluctuations in solids: 1 f noise. Rev. Mod. Phys. 1981, 53, 497. [CrossRef]
9. Sun, H.H.; Onaral, B. A Unified Approach to Represent Metal Electrode Polarization. IEEE Trans. Biomed. Eng. 1983,

BME-30, 399–406. [CrossRef] [PubMed]
10. Charef, A.; Sun, H.; Tsao, Y.; Onaral, B. Fractal system as represented by singularity function. IEEE Trans. Autom. Control 1992,

37, 1465–1470. [CrossRef]
11. Kapoulea, S.; Tsirimokou, G.; Psychalinos, C.; Elwakil, A.S. Employment of the Padé approximation for implementing fractional-

order lead/lag compensators. AEU-Int. J. Electron. Commun. 2020, 120, 153203. [CrossRef]
12. Nako, J.; Psychalinos, C.; Elwakil, A.S.; Minaei, S. Non-Integer Order Generalized Filters Designs. IEEE Access 2023, 11, 116846–116859.

[CrossRef]
13. Sladok, O.; Koton, J.; Kubanek, D.; Dvorak, J.; Psychalinos, C. Pseudo-differential (2+ α)-order Butterworth frequency filter.

IEEE Access 2021, 9, 92178–92188. [CrossRef]
14. Elwy, O.; Rashad, S.H.; Said, L.A.; Radwan, A.G. Comparison between three approximation methods on oscillator circuits.

Microelectron. J. 2018, 81, 162–178. [CrossRef]
15. Elwy, O.; AbdelAty, A.M.; Said, L.A.; Madian, A.H.; Radwan, A.G. Two implementations of fractional-order relaxation oscillators.

Analog Integr. Circuits Signal Process. 2021, 106, 421–432. [CrossRef]
16. Kapoulea, S.; Psychalinos, C.; Elwakil, A.S. Power law filters: A new class of fractional-order filters without a fractional-order

Laplacian operator. AEU-Int. J. Electron. Commun. 2021, 129, 153537. [CrossRef]
17. Gadallah, S.I.; Ghoneim, M.S.; Elwakil, A.S.; Said, L.A.; Madian, A.H.; Radwan, A.G. Plant Tissue Modelling Using Power-Law

Filters. Sensors 2022, 22, 5659. [CrossRef] [PubMed]
18. Monje, C.A.; Calderon, A.J.; Vinagre, B.M.; Feliu, V. The fractional order lead compensator. In Proceedings of the Second IEEE

International Conference on Computational Cybernetics, Vienna, Austria, 30 August–1 September 2004; IEEE: Piscataway, NJ,
USA, 2004; pp. 347–352.

19. Dogruer, T.; Tan, N. Lead and lag controller design in fractional-order control systems. Meas. Control 2019, 52, 1017–1028.
[CrossRef]

20. Kosmas, D.; Schouten, M.; Krijnen, G. Hysteresis Compensation of 3D Printed Sensors by a Power Law Model with Reduced
Parameters. In Proceedings of the 2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS),
Manchester, UK, 16–19 August 2020; pp. 1–4. [CrossRef]

21. Valério, D.; Da Costa, J.S. Introduction to single-input, single-output fractional control. IET Control Theory Appl. 2011, 5, 1033–1057.
[CrossRef]

22. Oprzedkiewicz, K.; Mitkowski, W.; Gawin, E. Application of fractional order transfer functions to modeling of high—Order
systems. In Proceedings of the 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR),
Miedzyzdroje, Poland, 24–27 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1169–1174.

http://doi.org/10.3390/electronics11050692
http://dx.doi.org/10.1007/s00034-019-01155-5
http://dx.doi.org/10.1049/iet-cta:20060477
http://dx.doi.org/10.1103/RevModPhys.53.497
http://dx.doi.org/10.1109/TBME.1983.325040
http://www.ncbi.nlm.nih.gov/pubmed/6618507
http://dx.doi.org/10.1109/9.159595
http://dx.doi.org/10.1016/j.aeue.2020.153203
http://dx.doi.org/10.1109/ACCESS.2023.3325911
http://dx.doi.org/10.1109/ACCESS.2021.3091544
http://dx.doi.org/10.1016/j.mejo.2018.07.006
http://dx.doi.org/10.1007/s10470-020-01640-x
http://dx.doi.org/10.1016/j.aeue.2020.153537
http://dx.doi.org/10.3390/s22155659
http://www.ncbi.nlm.nih.gov/pubmed/35957213
http://dx.doi.org/10.1177/0020294019858094
http://dx.doi.org/10.1109/FLEPS49123.2020.9239580
http://dx.doi.org/10.1049/iet-cta.2010.0332


Electronics 2024, 13, 591 22 of 22

23. Ushakov, P.A.; Maksimov, K.O.; Stoychev, S.V.; Gravshin, V.G.; Kubanek, D.; Koton, J. Synthesis of elements with fractional-order
impedance based on homogenous distributed resistive-capacitive structures and genetic algorithm. J. Adv. Res. 2020, 25, 275–283.
[CrossRef]

24. Tsouvalas, E.; Kapoulea, S.; Psychalinos, C.; Elwakil, A.S.; Jurišić, D. Electronically Controlled Power-Law Filters Realizations.
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