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Abstract: This study focuses on improving sentiment analysis in restaurant reviews by leveraging
transfer learning and transformer-based pre-trained models. This work evaluates the suitability of pre-
trained deep learning models for analyzing Natural Language Processing tasks in Portuguese. It also
explores the viability of utilizing edge devices for Natural Language Processing tasks, considering
their computational limitations and resource constraints. Specifically, we employ bidirectional
encoder representations from transformers and robustly optimized BERT approach, two state-of-the-
art models, to build a sentiment review classifier. The classifier’s performance is evaluated using
accuracy and area under the receiver operating characteristic curve as the primary metrics. Our
results demonstrate that the classifier developed using ensemble techniques outperforms the baseline
model (from 0.80 to 0.84) in accurately classifying restaurant review sentiments when three classes
are considered (negative, neutral, and positive), reaching an accuracy and area under the receiver
operating characteristic curve higher than 0.8 when examining a Zomato restaurant review dataset,
provided for this work. This study seeks to create a model for the precise classification of Portuguese
reviews into positive, negative, or neutral categories. The flexibility of deploying our model on
affordable hardware platforms suggests its potential to enable real-time solutions. The deployment of
the model on edge computing platforms improves accessibility in resource-constrained environments.

Keywords: sentiment analysis; natural language processing; Portuguese language; edge computing;
BERT; transformers

1. Introduction

Machine Learning (ML) and natural language processing (NLP) have evolved with
increased computational power and data availability and have been applied in various
fields, including language translation and sentiment analysis (SA), as demonstrated in
various scientific articles [1–3]. SA, a subfield of NLP, extracts sentiments from text and
more recently, usually employ deep learning (DL) models [4,5].

Classifying sentiments in restaurant reviews are a prominent problem in the NLP
area [6–8], as it demands substantial annotated data and computational resources. Au-
tomated SA can help monitor restaurant reputation, identify common customer issues,
improve restaurant brand monitoring, influence business decision making, and improve
products and services.

Developing efficient DL methods is of utmost relevance, and the standard approach in
NLP is to employ transfer learning (TL), leveraging pretrained models like bidirectional
encoder representations from transformers (BERT) [1], robustly optimized BERT pretraining
approach (RoBERTa) [2], and generative pretraining transformer 2 (GPT-2) [9]. In SA, TL
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can involve using a pre-trained DL model to extract features for sentiment classification. In
this work, the pre-trained DL models were transferred and then used as weak learners in
ensemble learning (EL) with boosting.

The classification of sentiment in restaurant reviews in Portuguese, involves determin-
ing the overall sentiment expressed in a written review. However, classifying sentiments
based on text is challenging due to ambiguity, irony and sarcasm, cultural context, subjectiv-
ity, and language evolution. Furthermore, there is a lack of data for the Portuguese-language
restaurant reviews.

More precisely, this work focuses on improving sentiment classification in restaurant
reviews using DL techniques. The primary goal is to enhance the accuracy (ACC) above
0.8, as this is a reasonable target in NLP problems of sentiment classification, categorizing
them as negative, neutral, or positive. This research also aims to make models deployable
on various low-cost hardware platforms, potentially enabling real-time solutions. This
approach could have applications in social media monitoring, market research, restaurant
brand monitoring, business decision making, and customer feedback analysis, offering a
valuable tool for researchers and practitioners in the field of SA.

The challenge at hand revolves around the current state of knowledge, which indi-
cates a lack of NLP models specifically tailored for sentiment classification in Portuguese
restaurant reviews. This issue holds significance as restaurant owners can leverage senti-
ment analysis to pinpoint the areas for improvement. For instance, negative sentiments
in reviews can highlight areas requiring attention, while positive sentiments can identify
aspects praised by customers. The neutral class facilitates an evaluation of potential areas
for enhancement.

While generic solutions may involve using LLM, these often come with associated
costs, depending on token usage, or may necessitate substantial computational power
if opting for open models locally. Consequently, this work proposes a tailored solution,
avoiding the need for extensive computational resources and achieving high performance
in sentiment analysis.

The structure of this article is as follows: Section 2 provides a theoretical introduction
to provide a comprehensive understanding of the subject; In Section 3, related work is
presented; Section 4 provides the research problematic; Section 5 presents the materials and
methods; Section 6 presents and discusses the results; Section 7 concludes the article.

2. Theoretical Background

This section describes a comprehensive theoretical introduction for the developed
solution. Two transformer-based approaches (applying TL) and two ensemble-based
models were examined for this SA classification problem. The transformer-based models
were BERT and RoBERTa. The ensemble model was performed using Adaptive Boosting
(Adaboost) with two classifiers and soft voting.

2.1. Transfer Learning

TL refers to leveraging the knowledge from one task to improve performance on
another related task. This approach has gained significant popularity due to its ability to
enhance model performance, reduce training time, and alleviate the need for large amounts
of labeled data [10,11].

2.1.1. Methods and Concepts

TL methods can be categorized based on different criteria, such as the homogeneity
of source and target data, the label-setting of source and target data, and the applied ap-
proaches. The most commonly applied approaches are model based, which use pretrained
models and adjust them for target data by freezing, finetuning, or adding layers. Finetuning
involves taking a pretrained model and adapting it to a new task by further training on a
smaller dataset.
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Adding new layers on top of the pretrained model’s layers allow the model to perform
a lighter training over the last layers (and eventually over the pretrained layers, if not
frozen) to capture complex task-specific patterns that allow the model to make prediction
about the input, requiring less hardware, time, and data resources [11].

2.1.2. Pretraining Techniques

Pretraining techniques are an integral part of TL. Pretraining involves training a model
on a large dataset and then using the learned representations as a starting point for a
target task.

There are two main challenges: catastrophic forgetting and overly biased pretrained
models [11,12]. Catastrophic forgetting occurs when a pretrained model loses its previous
knowledge when finetuned on a new task. Overly biased pretrained models occur when a
pretrained model cannot learn new features from target data due to the frozen layers. Pos-
sible solutions include progressive learning, which adds new layers to a frozen pretrained
model, and vertical expansion, which adds new nodes to the frozen pretrained layers.

2.2. Ensemble and Boosting

EL and boosting are two distinct approaches employed in ML to enhance the per-
formance and precision of predictive models. Nevertheless, they vary in terms of their
fundamental principles and methodologies. EL combines diverse models for enhanced
performance, deriving the final prediction through voting or averaging. Independently
created models use various algorithms, architectures, or data subsets, each contributing
equally to the final prediction. They can train independently and in parallel without explicit
feedback or adjustment [13].

Boosting enhances weak learners iteratively, correcting misclassifications through
sequential model training. The final prediction involves combining the weak learners’
outputs via weighted voting. AdaBoost, Gradient Boosting, and XGBoost are prominent
algorithms that dynamically adjust sample weights to emphasize misclassified instances.
Their base learner selection and weight update criteria vary. AdaBoost, notably popularized
by Freund and Schapire [14], is one of the most renowned boosting algorithms [15].

Adaboost Algorithm

Freund and Schapire introduced the AdaBoost algorithm [14,16,17], revolutionizing
boosting methods by utilizing weighted versions of training data, eliminating the need
for an extensive dataset. AdaBoost is recognized as a widely studied technique for con-
structing high-performing classifier ensembles. The algorithm sequentially generates a
set of classifiers through a weak learner, with re-weighted training data based on the
ACC of prior classifiers. Ensuring the appropriate weak learners are selected is crucial to
preventing excessive weight on outliers and noise and maintaining the effectiveness of the
algorithm [15].

While AdaBoost has excelled in two-class classification tasks, its performance in
multiclass problems, although adapted for such scenarios (Freund and Schapire 1997) [15],
may not be as remarkable. As a result, a variation, SAMME (Stagewise Additive Modeling
using a Multiclass Exponential loss function), was utilized for multiclass boosting [18].

2.3. Voting Classifier

The process of generating an ensemble often involves a choice between two funda-
mental voting strategies: hard and soft. These methods play a pivotal role in consolidating
predictions from individual models within the ensemble, ultimately shaping the collective
decision-making process.

2.3.1. Hard Voting

Hard voting predicts the final class label based on the most frequently predicted class
label among the classification models [19]. In hard voting, each model in the ensemble inde-
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pendently predicts the class label for a given input, and the final prediction is determined
by a majority vote. The class that receives the most individual votes from the models is
selected as the ensemble’s final prediction.

In a hard voting ensemble with three classifiers (Model A, Model B, and Model C) for
a three-class classification task (Class 1, Class 2, and Class 3), let’s consider a specific input:

• Model A predicts Class 1,
• Model B predicts Class 2,
• Model C predicts Class 3.

In hard voting, the final prediction is based on the majority vote. Each model gets
one vote, and the class with the highest number of votes is chosen. For this input, each
class receives one vote, resulting in a tie. In cases of a tie, the final prediction might
remain undetermined, and additional strategies or mechanisms may be implemented for
resolution, depending on the specific implementation of the hard voting ensemble. The
effectiveness of hard voting often relies on having diverse models within the ensemble to
capture distinct aspects of the underlying data patterns.

2.3.2. Soft Voting

On the other hand, in soft voting, the class labels are predicted by considering the
predicted probabilities p from each classifier, as follows:

ŷ = argmax
m

∑
j=1

wj pij, (1)

where wj is the weight that can be assigned to the jth classifier.
In a multiclass classification task with class labels represented as i ∈ {0, 1, 2}, let us

consider an example where our ensemble of classifiers makes the following prediction for a
given input x:

C1(x) → [p01, p11, p21],C2(x) → [p02, p12, p22], C3(x) → [p03, p13, p23].

Assigning the weights {w1, w2, w3} to the classifiers, and computing the average
probabilities would yield the predicted class label ŷ as follows:

p(i0 | x) = w1 × p01 + w2 × p02 + w3 × p03 (2)

p(i1 | x) = w1 × p11 + w2 × p12 + w3 × p13 (3)

p(i2 | x) = w1 × p21 + w2 × p22 + w3 × p23 (4)

ŷ = argmax[p(i0 | x), p(i1 | x), p(i2 | x)] (5)

This approach is only recommended if the classifiers are well-calibrated, as it yields
more reliable and accurate results.

3. Related Work

In the landscape of NLP tasks, a transformative moment came with the emergence
of transformers [20], quickly becoming the standard in nearly all NLP tasks due to their
remarkable efficacy. Large pre-trained models like BERT, RoBERTa, and XLNet are promi-
nent examples of these context-dependent architectures, demonstrating their utility across
various NLP tasks [21], namely in SA [22]. According to [23], utilizing a monolingual
pre-trained BERT model, specifically in Portuguese, yields superior outcomes to multilin-
gual BERT.

In addition, articles demonstrate that transformer-based models achieve superior
results compared to previous models, such as the case of LSTM and CNN [24]. It is possible
to adjust the hyperparameters in the training of the BERT and RoBERTa models to achieve
better results. Some of these experiments have been carried out recently [25]. It is necessary
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to be careful with these adjustments to avoid problems such as the fading of the gradient,
or the instability when finetuning is completed [26].

In ML, ensembles of classifiers are usually built by combining multiple learners
(weak or strong), following the strategy of boosting rather than relying on a single strong
classifier. This idea has gained interest in recent years [27], as it is often easier to train and
combine several simple classifiers than to learn a complex one. There is a growing trend
of utilizing different ensemble techniques and single-language pre-trained models, such
as RoBERTa and BERT, rather than multi-language models to achieve new state-of-the-art
results [21,22,28].

Gomes et al. [28], in 2022, employed cutting-edge transformer models to tackle two
specific subtasks within the realm of aspect term extraction (ATE) and sentiment orientation
extraction (SOE). They assert that they have attained the highest level of performance in
both subtasks, surpassing previously established benchmarks and setting new standards
for the Portuguese language.

In the case of ATE, this methodology involved the utilization of an ensemble com-
prising models from RoBERTa and mDeBERTa, which were trained on Portuguese and
multilingual datasets, respectively, achieving 67.1% of ACC. A voting ensemble consisting
of PTT5 large models was employed for the SOE subtask, without reliance on external
data sources.

Regarding SOE, the optimal outcomes were realized through the utilization of PTT5
Large in conjunction with the conditional text generation training strategy, reaching 82.4%
of ACC. This approach entailed presenting the complete review alongside the aspect term
as an input to the model without relying on external data sources.

Lopes et al. [22] present an approach designed to extract aspects from Portuguese-
language reviews using pre-trained BERT models. They conducted a performance com-
parison between Google’s multilingual BERT and BERTimbau. Remarkably, BERTimbau
attains a balanced ACC rate of up to 93% when applied to a corpus of hotel reviews. To
assess the efficacy of these models in aspect extraction, the authors employ an ACC and F1
score as evaluation metrics, with their findings indicating that BERTimbau outperforms the
multilingual BERT model across both metrics.

Furthermore, the authors incorporate an additional step termed post-training. This
post-training phase involves enhancing BERTimbau to cater to a specific domain, aligning it
with its intended field of application. When post-training is not employed, the initial results
yield an F1 score of up to 70% using polarity auxiliary sentences. The introduction of post-
training with polarity sentences yields enhanced performance, with the most noteworthy
results reaching a 77% F1 score after 5k and 10k post-training iterations, albeit with a
decrease in stability observed after the 10k steps. The model’s ACC also reaches up to 80%
with post-training.

Moura et al. [21] in their article, evaluates different methods for creating sentence
embeddings that can be used to cluster user intents in dialog data. They compared six
transformer-based models (BERT, RoBERTa, GPT-2, XLNet, ALBERT, and ELECTRA) for
text representation. They also evaluated two pre-trained Siamese transformers (SBERT
and SRoBERTa) and studied the impact of retraining them on domain data. Moreover,
the article explores the use of ensemble methods to combine different embeddings and
clustering algorithms. The article systematically assesses various approaches to generate
sentence embeddings aimed at clustering user intents within dialog data. Moreover, the
article delves into the exploration of ensemble methods, seeking to amalgamate diverse
embeddings and clustering algorithms for enhanced results.

4. Research Problems

The central challenge we confront pertains to the current knowledge landscape, which
reveals a dearth of NLP models specifically crafted for sentiment classification in Por-
tuguese restaurant reviews. This issue bears significance as it directly influences the ability
of restaurant proprietors to discern areas warranting improvement. Specifically, nega-
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tive sentiments within reviews offer insight into potential shortcomings, while positive
sentiments highlight the commendable aspects. Incorporating a neutral class facilitates a
comprehensive assessment, pinpointing specific areas ripe for enhancement.

While conventional remedies may involve the utilization of LLM, these often come
with associated costs, contingent on token usage. Alternatively, opting for open models
locally may demand substantial computational power. In response to these challenges, this
work advocates for a tailored solution that sidesteps the need for extensive computational
resources, ultimately achieving exemplary performance in sentiment analysis.

5. Materials and Methods
5.1. Research Methodology

In this chapter, we delve into the methodology employed. The chosen methodology,
presented in Figure 1, is designed to facilitate an examination of the approach undertaken.
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Figure 1. Representation of the methodology.

The methodology unfolds through a sequential progression, commencing with data
acquisition and transitioning into Exploratory Data Analysis (EDA) to gain insight into
the dataset’s characteristics. Following this, individual models undergo training, honing
their predictive capabilities. The next stage involves training these models with boosting
techniques to enhance their overall performance. Finally, the models are implemented in
an edge computing environment, ensuring practical applicability in real-world scenarios.

For those interested in exploring the open-source implementation, the code repository
can be accessed via the following link: [https://github.com/Alex-Branco/RRSO_Portugal.
git] (accessed on 1 January 2024).

5.2. Exploratory Analysis

The dataset for this study stemmed from a collaboration between Zomato’s techni-
cal team in the Restaurant Review Sentiment Output (RRSO) project, utilizing the data
provided by the online platform Zomato, stored using MongoDB. The dataset included
537,083 reviews with two columns, “text review” and “rating”, post-removal of null entries.
These reviews, assessing restaurants, were accompanied by customer-assigned scores col-
lected between 1 April 2014 and 2 September 2022. Minimal preprocessing was conducted,
and the reviews generally comprised 20 to 100 words, as depicted in Figure 2.
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Considering the average of 64 words, and since the chosen models use all the punctua-
tion, which makes the punctuation count as words, it was decided, heuristically, to make
an increment of about a third, thus using a maximum length of 100 words.

5.2.1. Data Visualization and Insights

The label distribution (which corresponds to the user score provided by the user when
submitting the review, from 1 to 5, where 1 is the worst and 5 is the best) is shown in
Figure 3, and it is heavily imbalanced, making it challenging for supervised training.
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Figure 3. Raw dataset rating distribution.

The work was carried out using 3 class classification models, with the original nine
label values being re-sampled to negative class (0), around 45 thousand, neutral class (1),
around 120 thousand, and positive class (2), around 370 thousand. The separation was
performed based on a heuristic decision [29].

5.2.2. Preprocessing

There was a need to handle an imbalanced dataset because the data were not equally
distributed. This can cause a bias towards the more represented classes in the model. The
inverse class frequency method is applied to balance the data, assigning weights to each
class, with higher weights given to underrepresented classes and lower weights given
to more represented classes. This increases the significance of underrepresented classes
during the training process, leading to a more accurate capture of patterns in the data.

Figure 4 shows the representation of the training dataset and the weights assigned to
each class.
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5.3. Training Parametrization

Leveraging a Graphics Processing Unit (GPU) enabled the use of larger batches, expediting
the training process. The adoption of PyTorch-based models, notably BERTimbau, prompted the
code to use PyTorch and Python [30]. Specifically, the used libraries were “torch 1.13”, “numpy
1.23.5”, and “pandas 1.5.3”. Based on insights from previous chapters and scientific discourse,
the following hyperparameters were established: max_len = 100; batch_size = 128; epochs = 20;
patience = 10; delta = 0.0003; dropout = 0.2; learning_rate = 2 × 10−5.

Data separation prioritizes training, with 80% for training, 14% for validation, and 6%
for testing. This division emphasizes greater attention to the training process, particularly
since the pre-trained model requires finetuning the output layers. A scheduler function
controls the learning rate, starting at 0 and gradually increasing during the warmup phase
before following a linear schedule. The warmup phase covers 10% of the total steps,
preventing suboptimal solutions. To address domain-specific biases in the NLP models
caused by a limited access to generalized datasets, 2-fold cross-validation is used for
comprehensive assessment and validation of the SA model’s generalization capabilities.

5.4. Sentiment Analysis Using BERTimbau

BERTimbau, developed by NeuralMind [30], is a Portuguese-tailored language model
based on the BERT architecture. Available in Base (12 layers) and Large (24 layers) sizes,
it is compatible with TensorFlow 2 and PyTorch 2, catering to various computational
requirements. Table 1 details insights about these two models and the RoBERTa base,
showing that the large model and RoBERTa are almost double the size of the base model.

Table 1. Parameters of the examined BERT and RoBERTa models.

BERTBASE BERTLARGE RoBERTaBASE

Layers 12 24 24

Hidden Size 768 1024 1024

Heads 12 16 16

Parameters 110 M 335 M 355 M
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BERTimbau was used, since it was shown to be capable of exceling in standard NLP
tasks [23], and its adaptability through finetuning with smaller datasets allows it to meet
domain-specific requirements and enhance task performance.

In this study, the model’s adaptability to specific domains was leveraged for senti-
ment classification with three classes, utilizing the Portuguese learned during pretraining.
Notably, two additional layers were meticulously engineered during the finetuning pro-
cess, providing a unique contribution to this research. A regularization layer was used to
enhance the model’s robustness, followed by a fully connected dense layer to bolster its
capacity for learning intricate patterns. These customized layers, not adopted from existing
models, were developed for this research. The architecture is shown in Figure 5. Finally, a
Softmax function was incorporated for prediction computation.
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Figure 5. Representation of a fully developed model.

The pretrained model was loaded into the SentimentClassifier along with the tokenizer.
Following this, the dataset was split, and a data loader object was created to manage the
appropriately sized and allocated samples during training. Both the pre-trained model and
tokenizer are part of the transformer’s library.

5.5. Sentiment Analysis Using RoBERTa

RoBERTa, a variant of BERT, involves adjustments to hyperparameters and embed-
dings. Its architecture mirrors that of the original BERT model. We incorporated the same
layers used in the BERTimbau model, including the regularization layer and fully connected
layer, to build the sentiment classifier block as shown in Figure 6. A Softmax function was
then applied to the output, as depicted in Figure 5.
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Figure 6. Architecture developed for SA.

This RoBERTa model is available in the Hugging Face model repository by team
thegoodfellas [31] and is a finetuned version of the xlm-roberta-base on the BrWac dataset.
The base parameters that RoBERTa uses are presented in Table 1, as in the original paper [2].

5.6. Boosting Sentiment Classifier Models

The sentiment classifier, represented in Figure 6, consists of a pre-trained model and
two preceding layers before its output. Whether using BERTimbau or RoBERTa, the pre-
trained model seamlessly integrates into the sentiment classifier. Figure 7 showcases the
ensemble architecture, considering its adaptability with either pre-trained model, ensuring
easy integration and versatility for future applications.
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5.7. Implemented Model

The framework below illustrates the review analysis process and the model’s role, de-
picting how textual content is transformed into numerical data using robust computational
techniques. Figure 8 enhances understanding, showcasing the model’s structure and the
transformation of textual content into a computationally significant format.



Electronics 2024, 13, 589 11 of 20Electronics 2024, 13, x FOR PEER REVIEW 11 of 20 
 

 

 

Figure 8. Full model architecture developed. 

These probabilities reflect the model’s confidence in the input sentence belonging to 

each sentiment class. In this example, the highest probability is for the “positive” class, 

suggesting that the model predicts a positive sentiment for the input sentence “Eu gostei 

do restaurante”. 

5.8. Performance Analysis 

This study evaluated the performance through hold-out validation for its simplicity 

and computational efficiency and employed stratified two-fold cross-validation to assess 

the result variability. The examined performance metrics were AUC, ACC, F1-Score, Sen-

sitivity, Specificity, and Precision, computed for the multiclass problem during the exam-

ination, utilizing macroaveraging to aggregate results. Furthermore, categorical cross-en-

tropy was used as the loss function during the models’ training. 

5.9. Hardware Implementation 

This sub-section explores sentiment classification on devices suitable for edge com-

puting, Jetson Nano and Raspberry Pi, against the RTX 3090 graphics card (used as a 

benchmark in this context). SA involves determining text sentiment, enabling real-time 

decision-making, and enhancing privacy by processing sensitive data locally, reducing 

dependence on cloud services. 

The comparison between the Raspberry Pi 4 and the Jetson Nano reveals distinctive 

attributes. While the Raspberry Pi 4 stands out for its cost-effectiveness, built-in Wi-Fi, and 

Bluetooth, it lags behind the Jetson Nano in terms of memory performance and the utili-

zation of its 64-bit hardware architecture with a 32-bit operating system. On the other 

hand, the Jetson Nano shines with its powerful GPU, making it an optimal choice for be-

ginners in ML applications. However, for projects that do not demand intensive ML mod-

els, the Raspberry Pi 4 offers adequate power at a lower cost. 

The models were preloaded onto their platforms to ensure smooth operation and 

prevent potential internet-related delays. Thus, this approach is aligned with the goal of 

BERT Tokenizer

Review

Restaurant Review Dataset

Embedding Layer

Token IDs Attention 

Masks
Input IDs

Sentiment Classifier

Softmax

Positive Neutral Negative

Review: “Eu gostei do restaurante”

Tokenized: [“Eu”, “gostei”, “do”, “restaurante”]

Token IDs:

[101, 1045, 2066, 

1996, 4825, 102]

Attention Mask:

[1, 1, 1, 1, 1, 1]

Input IDs:

[101, 1045, 2066, 1996, 

4825, 102, 0, 0, ...]

Token IDs correspond to specific learned embedding vectors. For

example, “Eu” has its vector, “gostei” has another, and so on. These

embeddings also include positional information.

The embeddings are then passed through the layers of the Sentiment

Classifier that takes the embeddings for the [CLS] token (which

represents the entire sequence) and processes them to produce logits.

The logits represent the model's predictions for each class. Example

Logits: [2.5, −1.2, 0.8]

The logits are passed through the softmax activation function to convert

them into probabilities for each class.

Positive: 0.877 Neutral: 0.110 Negative: 0.013

Figure 8. Full model architecture developed.

These probabilities reflect the model’s confidence in the input sentence belonging to
each sentiment class. In this example, the highest probability is for the “positive” class,
suggesting that the model predicts a positive sentiment for the input sentence “Eu gostei
do restaurante”.

5.8. Performance Analysis

This study evaluated the performance through hold-out validation for its simplicity
and computational efficiency and employed stratified two-fold cross-validation to assess the
result variability. The examined performance metrics were AUC, ACC, F1-Score, Sensitivity,
Specificity, and Precision, computed for the multiclass problem during the examination,
utilizing macroaveraging to aggregate results. Furthermore, categorical cross-entropy was
used as the loss function during the models’ training.

5.9. Hardware Implementation

This sub-section explores sentiment classification on devices suitable for edge com-
puting, Jetson Nano and Raspberry Pi, against the RTX 3090 graphics card (used as a
benchmark in this context). SA involves determining text sentiment, enabling real-time
decision-making, and enhancing privacy by processing sensitive data locally, reducing
dependence on cloud services.

The comparison between the Raspberry Pi 4 and the Jetson Nano reveals distinctive
attributes. While the Raspberry Pi 4 stands out for its cost-effectiveness, built-in Wi-Fi,
and Bluetooth, it lags behind the Jetson Nano in terms of memory performance and the
utilization of its 64-bit hardware architecture with a 32-bit operating system. On the other
hand, the Jetson Nano shines with its powerful GPU, making it an optimal choice for
beginners in ML applications. However, for projects that do not demand intensive ML
models, the Raspberry Pi 4 offers adequate power at a lower cost.

The models were preloaded onto their platforms to ensure smooth operation and
prevent potential internet-related delays. Thus, this approach is aligned with the goal of
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utilizing edge computing, avoiding costly cloud computing resources, despite occasional
space constraints.

6. Results and Discussion

This section presents the main results derived from the proposed solution. Following
the presentation, a discussion will be provided to delve deeper into the implications and
findings of the results.

The analysis encompasses a detailed examination of each classifier’s performance.
Initially, a standard English-based BERT model is used to compare against the performance
of a Portuguese-based BERT model, benchmarking the performance. Then, boosting is
examined for the Portuguese-based BERT model. Afterward, the experiment is performed
on RoBERTa, examining the performance with and without boosting. A discussion is
carried out with a comparative analysis with state-of-the-art works. Lastly the result of the
edge computing analysis were examined.

6.1. BERT Models

The initial results established a baseline, using BERT pretrained for English-spam
classification. Then, the dataset was translated to English, reaching an ACC of 70%. For
the initial training using the BERTimbau model and 60,000 balanced samples, heuristic
hyperparameters were selected including: maximum input length of 100; batch size of
128; maximum number of epochs of 200; patience for early stopping of 10; minimum
improvement for early stopping of 0.005. These parameters were aligned with the default
values for the problem.

The test (referenced as BaseModel), utilizing a balanced dataset sample, demonstrated
BERTimbau’s promise, achieving 0.77 ACC. Referencing the base model, the finetuning
process involved adjusting the scheduler and optimizer, applying inverse frequency bal-
ancing to a dataset comprising 60,000 samples. Various learning rates (3 × 10−9, 3 × 10−6,
2 × 10−5, and 1 × 10−4) were tested alongside two optimizers, AdamW and AdaGrad.

The tests identified the best-performing model when using a learning rate of 2 × 10−5

with AdaGrad. Based on these initial assessments, an initial warmup of 10% of the total
steps was applied to the scheduler, leveraging the model’s optimal performance in the
initial training epochs. This way, now using the complete dataset, it was possible to reach
80% ACC, and examining the ACC plot, shown in Figure 9a, it is evident that the best
epoch was twenty due to the monitorization of AUC, presented in Figure 9b; although, it
is visible that from epoch eight the model begins to have difficulty evolving more. These
results are referenced as SentAnalysisPt. In the figures, the dashed line indicates the epoch
with the highest validation AUC (thus selected by early stopping as the optimal epoch).
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As for the graph that represents the losses, presented in Figure 10a, the model did not
exhibit erroneous behavior, unlike the base model, and from epoch 14, the loss stabilized.
The CM in Figure 10b has a better ACC than the base model due to a more balanced class
distribution, ensuring the model performs better across all classes.
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Table 2 presents the performance of the BERT models and indicates that the ACC
improved to 81% from approximately 78% by using the improved configuration, despite a
slight precision decrease. Furthermore, the large BERTimbau model was also examined,
denoted as SentAnalysisPtBertLarge, only presenting a residual improvement, justifying
discarding the larger model due to its higher computational demands, aligning with the
objective of implementing it on edge computers.

Table 2. Average metrics of the different models developed using BERT using hold-out validation.

Model AUC ACC F1-Score Sensitivity Specificity Precision

BaseModel 0.892 0.777 0.778 0.778 0.888 0.780

SentAnalysisPt 0.923 0.805 0.752 0.784 0.887 0.727

SentAnalysisPtBertLarge 0.923 0.807 0.759 0.790 0.889 0.735

The class-based metrics, presented in Figure 11, demonstrate a minor decrease in the
positive class ACC but an enhancement in the negative and neutral classes, ensuring a
more balanced model classification.

When using two-fold cross-validation in the SentAnalysisPt, the average ACC was
0.820 (with a standard deviation of 0.009), while AUC was 0.892 (with a standard deviation
of 0.003). Furthermore, the per-class ACC of the model was 0.955, 0.826, and 0.858 for the
negative, neutral, and positive classes, respectively. These results indicate the suitability of
the proposed models.

Experiments with ensembles ranging from two to six classifiers were conducted, and
the results are shown in Table 3 using the SentAnalysisPt model as weak learner. The focus
was on identifying the optimal number of classifiers while accounting for the model’s size
expansion, concluding that when using more than two classifiers, the performance starts
to degrade. Such is likely due to the weak learner used, indicating that it is a quite strong
learner, as expected.
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Table 3. Average performance metrics for different approaches using ensemble and hold-out valida-
tion. The number at the end of the approach refers to the number of weak learners used.

Approach ACC F1-Score Sensitivity Specificity Precision

SentAnalyPtAdaBoost_2 0.840 0.777 0.765 0.885 0.790

SentAnalyPtAdaBoost_3 0.840 0.770 0.751 0.878 0.794

SentAnalyPtAdaBoost_4 0.838 0.759 0.733 0.869 0.797

SentAnalyPtAdaBoost_5 0.840 0.764 0.745 0.873 0.793

SentAnalyPtAdaBoost_6 0.838 0.758 0.728 0.869 0.801

6.2. RoBERTa Models

To perform TL based on the pre-trained RoBERTa model with the complete dataset,
it was necessary to change the hyperparameters. These included the batch_size, which
was reduced from 128 to 64, to decrease the computational demand for training, and an
increase in the learning rate to 1 × 10−4 instead of 2 × 10−5. This model was denoted as
SentAnalysisPtRoBERTa.

Figure 12a shows that there were epochs with a validation ACC higher than the best
epoch. That occurrence is often due to the complex and dynamic nature of the training
process. Looking at Figure 12b, which refers to the metric monitored (AUC) to have a
model with a performance more balanced among the three classes, it is evident that epoch
10 is the one that achieves the highest value, providing a more balanced validation. This
conclusion is further supported when examining the loss presented in Figure 13a.
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The CM shown in Figure 13b presents a good balance between classes, although
the intermediate class (neutral) always ended up being disadvantaged. This is one of
the characteristics of intermediate classes, as they are consistently subject to a higher
classification error and are likely more subjective in the user reviews.

Using hold-out validation, SentAnalysisPtRoBERTa attained an average AUC, ACC,
F1-Score, Sensitivity, Specificity, and Precision of 0.933, 0.820, 0.777, 0.806, 0.897, and 0.756,
respectively. These results highlight the advantages of employing the RoBERTa model for
SA, emphasizing its ability to yield enhanced overall performance, surpassing the SentAnal-
ysisP model. Furthermore, when using boosting subjected to two-fold cross-validation, the
average ACC was 0.829 (with a standard deviation of 0.013), while AUC was 0.897 (with a
standard deviation of 0.004). When compared to SentAnalyPtAdaBoost_2, it is notorious
that using two-fold cross-validation had a lower impact in the SentAnalyPtAdaBoost-
RoBERTa_2 model. Furthermore, when using two-fold cross-validation, the average ACC
was 0.829 (with a standard deviation of 0.013), while AUC was 0.897 (with a standard
deviation of 0.004). When compared to SentAnalysisPt, it is notorious that both models
attained a similar performance, but SentAnalysisPtRoBERTa was superior. These results
are further supported by the per-class ACC of the SentAnalysisPtRoBERTa at 0.955, 0.834,
and 0.867 for the negative, neutral, and positive classes, respectively.

Similarly, to the previous model using BERTimbau, boosting models were developed
using RoBERTa, and the same conclusion was reached; that it is preferable to use two
classifiers in the ensemble, attaining a performance, using hold-out validation, of 0.828,
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0.765, 0.757, 0.880, and 0.773 for the average ACC, F1-Score, Sensitivity, Specificity, and
Precision, respectively. This boosted model was named SentAnalyPtAdaBoostRoBERTa_2.

The tests in this chapter confirm that the RoBERTa architecture yields better results
individually compared to the standard BERT-based architecture in terms of ACC. But when
using boosting, the SentAnalyPtAdaBoost_2 was superior. Furthermore, this study also
aims to implement an efficient model on edge computing platforms through an ensemble
approach, which reveals the limitation of the RoBERTa architecture due to concerns about
the final model’s size.

6.3. Comparative Analysis

Regarding the AUC metric, the analysis focussed on SentAnalysisPt and SentAnal-
ysisPtRoberta models. Both exhibit AUC values exceeding 0.92, indicating exceptional
performance. High ACC is generally desirable, but it may not be the only metric to con-
sider, especially for imbalanced datasets. All models have relatively high ACC values,
with booting-based ones attaining the highest values. However, ACC alone might not
be sufficient for model selection. In regard to the F1-Score, all models attained a good
performance, signifying a commendable equilibrium between precision and sensitivity.

Based on the studied metrics, SentAnalyPtAdaBoost_2 was found to be the best model.
Table 4 provides a comparative analysis with well-known state-of-the-art works performing
SA in comparison to this work. Despite utilizing different databases, this comparative
analysis allows for an initial examination, revealing that the conducted work has achieved
significantly superior performance. This outcome further underscores the significance of
the work carried out.

Table 4. Comparative analysis with state-of-the-art works that performed SA with transformer-based
models.

Model Name Language ACC F1 Sensitivity Specificity

NB3 [32] Portuguese 0.65 0.60 - -

Self-AT_LSTM [33] English 0.67 0.68 0.68 -

SVM [29] Portuguese 0.81 0.83 - -

LogReg3 [34] English 0.77 0.76 0.77 -

PTT5 [28] Portuguese 0.82 0.82 0.82

BERTimbau [22] Portuguese 0.80 0.77 - 0.78

BERT [21] English 0.79 - - -

RoBERTa [21] English 0.78 - - -

This work
(SentAnalyPtAdaBoost_2) Portuguese 0.84 0.78 0.77 0.79

It is noteworthy that upon comparing the ensemble models outlined in [21] with those
developed within the scope of this work, a remarkable similarity emerges. Specifically,
when employing an ensemble with the RoBERTa model, there appears to be a consistent
decrease in ACC compared to the BERT model. This observation may suggest a potential
challenge in effectively forming an ensemble with this model.

6.4. Inference on Edge

The edge computing analysis compared the performance of the developed models
considering the inference two edge platform, Jetson Nano and Raspberry Pi, against
the benchmark GPU, the RTX 3090 platform, simulating a cloud computing system and
providing insights into the feasibility of implementing complex models on edge computing
platforms. Table 5 presents the average elapsed times for classifying the three classes in a
total of nine reviews of varying sizes.



Electronics 2024, 13, 589 17 of 20

Table 5. Average inference time per review of developed models.

Model Average Platform Time (Seconds)

Architecture Parameters Jetson Nano Raspberry Pi RTX 3090

SentAnalysisPt 110 M 2.720 4.193 2.107

SentAnalyPtAdaBoost_2 220 M 74.070 15.593 2.390

SentAnalysisPtBertLarge 335 M 40.427 15.393 0.597

SentAnalysisPtRoBERTa 355 M 4.033 4.330 2.107

SentAnalyPtAdaBoostRoBERTa_2 710 M 1295.867 188.567 3.683

Based on Table 5, a comprehensive analysis of computational efficiency across various
models and platforms, exploring the model complexity, comparing hardware platforms,
examining performance relative to model intricacy, assessing the impact of hardware, and
considering energy efficiency is conducted.

SentAnalysisPt and SentAnalysisPtRoBERTa exhibit relatively lower parameters, while
SentAnalyPtAdaBoost_2 and SentAnalyPtAdaBoostRoBERTa_2 are notably parameter
rich. Significantly divergent computational performances emerge when scrutinizing the
platforms. The RTX 3090 stands out as the most powerful, followed by the Jetson Nano
and Raspberry Pi.

A closer look at the models’ average times per platform, shown in Figure 14, re-
veals that computational efficiency extends beyond mere model complexity. Surprisingly,
SentAnalysisPtBertLarge, with fewer parameters than SentAnalyPtAdaBoost_2 and Sent-
AnalyPtAdaBoostRoBERTa_2, demonstrates notably swifter performance. This highlights
the pivotal role of model optimization and design in computational efficiency.
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The influence of hardware on computational efficiency is obvious. The RTX 3090
consistently outperforms the Jetson Nano and Raspberry Pi in several orders of magnitude
for the larger models. The Jetson Nano and Raspberry Pi, while less powerful in compu-
tational terms, manage well with smaller models; however, Raspberry Pi substantially
outperformed the Jetson Nano in the larger models, due to RAM memory availability.
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Choosing the appropriate model and platform hinges on the specific demands of the
task at hand. In resource-limited environments, where computational power and energy
efficiency are paramount, opting for SentAnalysisPt on the Jetson Nano or Raspberry Pi
may prove advantageous. In scenarios like cloud computing, where computational prowess
is paramount, the RTX 3090 paired with a larger model, such as SentAnalyPtAdaBoost_2,
is likely the best option. This analysis is clearly highlighted in Figure 14, where the
performance to complexity ratio shows a clear trendline for the hardware platforms. It
becomes evident that, on a global scale, as the complexity of the developed model and
architecture increases, in this case, the application of an ensemble system with boosting
and weighted voting, the platforms face significant challenges.

7. Conclusions

The surge of NLP in sentiment classification has driven substantial progress, par-
ticularly in tackling the scarcity of sentiment classification models in Portuguese. This
study navigated SA complexities using TL with transformer models, initially trained di-
versely and then finetuned for review language nuances. Our SA analysis of Portuguese
restaurant reviews, deploying BERT and RoBERTa on edge devices, showed commendable
speed–accuracy balance for real-time use, achieving an impressive 0.84 accuracy, surpassing
state-of-the-art models such as PTT5 (0.82) and BERTimbau (0.8) (Table 4). The model’s
performance in terms of F1, sensitivity, and specificity further solidifies its effectiveness,
outperforming existing models in various aspects (Table 4).

While boosting-based models improved performance, model size considerations arose,
impacting edge computing feasibility. Authentic restaurant reviews added complexity,
addressing diverse styles and irony. This work achieved its primary goal, providing robust
SA models for the Portuguese language, applicable on edge devices, and expanding to
real-world SA applications. Additionally, the average inference time per review for our
developed models, including SentAnalyPtAdaBoost_2, offer valuable insights for real-time
applications on platforms such as Jetson Nano and Raspberry Pi.

This study acknowledges the limitations in data size, language specificity, and device
variability, prompting opportunities for future enhancement. Access to larger, diverse
datasets could boost model generalization. Future work explores neural architecture search
for model architecture optimization, with the potential to achieve even higher accuracies.
Acknowledging our challenges, we look to expand into restaurant brand monitoring and
business decision making. Continuous exploration and refinement are vital. This work can
also be replicated for other languages by using the provided source code.
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