
Citation: Safavi, V.; Bazmohammadi,

N.; Vasquez, J.C.; Guerrero, J.M.

Battery State-of-Health Estimation: A

Step towards Battery Digital Twins.

Electronics 2024, 13, 587. https://

doi.org/10.3390/electronics13030587

Academic Editor: Fabio Corti

Received: 26 October 2023

Revised: 12 January 2024

Accepted: 29 January 2024

Published: 31 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Battery State-of-Health Estimation: A Step towards Battery
Digital Twins
Vahid Safavi 1,*,† , Najmeh Bazmohammadi 1,† , Juan C. Vasquez 1,† and Josep M. Guerrero 1,2,3,†

1 Center for Research on Microgrids (CROM), AAU Energy, Aalborg University, 9220 Aalborg East, Denmark;
naj@energy.aau.dk (N.B.); juq@energy.aau.dk (J.C.V.); josep.m.guerrero@upc.edu (J.M.G.)

2 Center for Research on Microgrids (CROM), Department of Electronic Engineering, Technical University of
Catalonia, 08034 Barcelona, Spain

3 Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23,
08010 Barcelona, Spain

* Correspondence: vsa@et.aau.dk
† These authors contributed equally to this work.

Abstract: For a lithium-ion (Li-ion) battery to operate safely and reliably, an accurate state of health
(SOH) estimation is crucial. Data-driven models with manual feature extraction are commonly
used for battery SOH estimation, requiring extensive expert knowledge to extract features. In this
regard, a novel data pre-processing model is proposed in this paper to extract health-related features
automatically from battery-discharging data for SOH estimation. In the proposed method, one-
dimensional (1D) voltage data are converted to two-dimensional (2D) data, and a new data set is
created using a 2D sliding window. Then, features are automatically extracted in the machine learning
(ML) training process. Finally, the estimation of the SOH is achieved by forecasting the battery voltage
in the subsequent cycle. The performance of the proposed technique is evaluated on the NASA
public data set for a Li-ion battery degradation analysis in four different scenarios. The simulation
results show a considerable reduction in the RMSE of battery SOH estimation. The proposed method
eliminates the need for the manual extraction and evaluation of features, which is an important step
toward automating the SOH estimation process and developing battery digital twins.

Keywords: lithium-ion batteries; state of health; data pre-processing; discharging characteristics;
digital twin; deep learning; CNN-LSTM

1. Introduction

Lithium-ion (Li-ion) batteries are attractive power storage technologies for many
applications, such as in power systems, electric cars, telecommunications, aerospace, and
other industries, due to their small size, high energy density, low self-discharge rate, low
cost, and long life [1]. Li-ion batteries degrade over time and charging/discharging cycles,
which results in reductions in their capacity and output power [2]. Also, the incorrect
utilization of the battery increases its speed of degradation. A battery management system
(BMS) can provide risk warnings to users and help with timely battery maintenance and
replacements to guarantee the satisfactory performance of a battery [3]. An essential
metric for monitoring the health status of batteries in BMS is their state-of-health (SOH),
which is defined as the ratio of the current capacity of the battery to its initial capacity.
The SOH directly indicates the degree of degradation of the battery over its lifetime [4].
Accidents such as battery leakage, insulation failure, and partial short circuit problems
can occur when battery health degrades to a certain degree and can create several safety
issues [5,6]. A battery’s SOH cannot be measured directly by sensors; instead, it can only be
calculated from measurable variables such as battery voltage, current, and temperature [7].
Additionally, the degradation of Li-ion batteries is a very complex process with varying
degrees of dependence on the working conditions [8].
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The internal characteristics of Li-ion batteries are highly nonlinear, and their lifespan
is influenced by several factors. In this sense, accurate state of charge estimation, SOH
monitoring, thermal management, and increasing the useful life of batteries are among
the main challenges of BMS [9]. During recent years, digital twin (DT) technology has
attracted a great deal of attention for battery monitoring and control from both academia
and industry. Using DT, living models can be developed for systems and components to
closely track their SOH and completely understand their degradation behavior to prolong
components’ life and minimize abnormal events [10]. A good overview of DT-based
predictive maintenance can be found in [11–13].

Although the DT technique is still in its early stages of development, it has already
been shown to be useful in the design, monitoring, and control of complex systems, such as
Li-ion batteries. A battery DT creates a mapping between the physical entity and its virtual
model, which interact closely with one another through bidirectional data exchange. Big
data analytics, artificial intelligence, blockchain, and the (Industrial) Internet of Things are
among the main DT-enabling technologies [14]. Figure 1 represents a general overview of a
battery DT and its services. Zhao et al. [15] present a DT framework using machine learning
(ML) for battery SOH estimation to improve the BMS and optimize the operation of battery
storage units. The framework combines a hybrid model that integrates long short-term
memory (LSTM) as a data-driven model to provide precise initial state-of-charge (SOC)
estimations and impedance data for an extended Kalman filter as a physical-based model.
The BMS measures, estimates, and regulates battery conditions to ensure the efficient
and safe operation of the battery. However, numerous voltage, current, and temperature
sensors are needed, which can pose new challenges, such as high costs, limited space, poor
efficiency, and high failure rates. Muaaz et al. [16] suggested a DT-based solution to these
issues that allows the BMS to estimate and predict the SOH of the battery using only a
voltage sensor. They also explained the importance and feasibility of implementing a BMS
DT. In addition, to identify relevant variables for ML modeling, they analyzed a correlation
matrix of all the variables of the BMS and considered variables with a correlation coefficient
greater than 0.6. Simple and multi-linear regression models were then employed to predict
the continuous output variables.
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Figure 1. A general overview of a battery DT and its services.

One of the most important services of a battery DT is providing an accurate estimation
of the SOH of the battery during its lifetime. Such information is critical for the efficient
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operational management of the battery, especially when integrating it with other power
resources in microgrids, and the timely maintenance of the battery. The role of the battery
DT is to provide an accurate model of the battery considering its operating environment
as well as an efficient platform for integrating and managing the enormous amounts
of data that are collected over the battery’s life [17]. The DT-driven SOH estimation
strategy features key attributes of autonomy and adaptation. The ultimate goal is to
have a SOH estimation technique that is automatically updated based on the most recent
information about the battery and the surrounding environment using efficient learning
algorithms. Although there are many studies dedicated to battery SOH estimation, a
DT-based approach taking full advantage of DT technologies is still missing. To develop
such a model, a step-by-step approach should be adopted. This paper provides a brief
overview of the current SOH estimation strategies for Li-ion batteries. A SOH estimation
method with a novel data pre-processing technique is then proposed and validated through
different simulation scenarios to enhance the SOH estimation accuracy without increasing
the model’s complexity. Afterward, future steps towards developing an adaptive and
automatic SOH estimation technique are discussed, and a conceptual framework for battery
digital twinning is presented.

The rest of this paper is organized as follows. In Section 2, a brief overview of battery
SOH estimation methods is given. Section 3 is dedicated to the introduction of the NASA
data set for battery degradation analysis, and feature extraction for predicting the SOH of
Li-ion batteries is also discussed. A novel data pre-processing framework for ML-based
models to estimate battery SOH is provided in Section 4. In Section 5, the performance
of the proposed model is evaluated in four different scenarios, and simulation results are
thoroughly discussed. In Section 6, online learning is introduced to develop a DT of a
battery. Finally, concluding remarks are presented in Section 7.

2. Battery SOH Estimation

Many studies have been conducted to determine an accurate estimation of the SOH
of batteries. Generally, these studies can be classified into two categories: model-based
and data-driven methods. The three commonly used model-based methods used for SOH
estimation are based on equivalent circuit, electrochemical, and empirical models [18].
Modeling batteries with equivalent circuits is a simplistic approach with low accuracy [19].
Electrochemical models are accurate laboratory models with complex partial differential
equations [20], while empirical models use a simple model of the battery to identify the
key parameters with difficulty in describing the capacity degradation [21]. Nowadays,
continuous advancements in enhancing the electrochemical performance of Li-ion bat-
teries are achieved by applying intricate chemical mechanisms that make the physical
modeling of Li-ion batteries more and more complicated. Reference [22] introduced a
self-assembly strategy focusing on terminal groups to improve lithium adsorption capabil-
ity, low activation energy for lithium diffusion, and excellent structural stability. On the
other hand, data-driven techniques provide appropriate solutions to battery degradation
estimation problems with fewer requirements for understanding the physical and chemical
mechanisms. Due to their flexibility and effectiveness, data-driven methods have been
increasingly attracting interest in the SOH estimation of batteries. In data-driven models,
the SOH of the battery is directly calculated using historical data that are easy to collect
from sensors. Data-driven models for battery SOH estimation can be further classified into
two categories: statistical and ML models [2].

A data-driven battery SOH estimation method generally involves the following four
steps: data collection, feature extraction, model training, and SOH estimation [23]. Many
data-driven techniques have been presented for battery SOH estimation, which either
directly use battery capacity data or extract features from sensor data to estimate the
SOH [24]. The remaining useful life (RUL) of a battery defines how many charge–discharge
cycles are left before the battery state drops to a specific threshold. To compute the RUL of
the battery, Lyu et al. [25] used an optimized relevance vector machine approach. To predict
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the RUL and SOH of Li-ion batteries, Khumprom and Yodo [26] provided a data-driven
prognostic method using deep Neural networks (NNs); the effectiveness of data-driven
methods for battery aging characterization and SOH estimation was found to depend on the
quality and quantity of the available data. Sufficient and representative data from various
battery operating conditions and aging scenarios are crucial to ensure accurate predictions.
By analyzing, identifying, and classifying the patterns and trends of the measurement data,
such as the voltage, current, and temperature, and deploying deep neural network (DNN)
models, an aging behavior pattern indicator for battery SOH estimation was proposed
by Xia and Abu Qahouq [27]. To forecast battery aging, She et al. [28] integrated an
incremental capacity analysis with a radial basis function (RBF) NN. The input data,
including the accumulated mileage of vehicles and initial charging SOC, average charging
temperature, average charging current, and the average discharging temperature of battery
systems, and a classification factor for the incremental capacity peak values were chosen.
A RBF NN model was used to reduce the dependency on the quality of data sets and
increase the flexibility for noisy data while being particularly useful for pattern recognition
and regression tasks. It could also learn the relationship between the battery’s aging
parameters (capacity fade) and the corresponding incremental capacity analysis values and
measurement data.

Convolutional neural network (CNN), recurrent neural network (RNN), gated re-
current unit (GRU), and LSTM models for predicting battery SOH and RUL have been
established by different researchers for predicting the SOH and RUL of Li-ion batteries.
An RNN model was provided in [29] to estimate SOH degradation in batteries using
current and voltage measurements. To improve the accuracy of the battery RUL pre-
diction, Park et al. [30] combined multichannel charging profiles with a LSTM model.
Zheng et al. [31] proposed a CNN–GRU model using current and voltage measurement
data to estimate battery SOH. Ren et al. [32] used a CNN–LSTM model to predict the
RUL of the battery by considering the discharge capacity, linearly interpolated discharge
capacity, linearly interpolated temperature, the quantity of discharge, and discharge time
as main parameters. Kara et al. [33] combined a CNN–LSTM model with particle swarm
optimization (PSO) to improve the accuracy of RUL prediction. In this model, spatiotem-
poral relations are extracted from multivariate time series data, and the PSO algorithm is
utilized to optimize the NN hyperparameters.

Data-driven models that do not directly use sensor data, such as voltage, current,
and temperature, cannot estimate battery capacity with high accuracy. A solution to this
is to extract efficient health features from measured data to improve the performance of
SOH prediction models. There are two types of feature extraction: manual and automatic.
In the manual feature extraction techniques, features are selected from the charging or
discharging data of the battery, such as voltage, current, etc., and the most relevant features
are fed into ML algorithms to estimate battery capacity [34]. For example, Cui et al. [35]
extracted the duration of the constant voltage (CV) phase, the ratio of the constant current
(CC) time and charging time, the area under the CC characteristic, and the time required for
equal voltage rise, current drop, and voltage drop intervals as features. Then, the extracted
features were evaluated by the Pearson and Spearman’s rank correlation coefficients. To
evaluate the short-term SOH and long-term RUL of Li-ion batteries, Wang et al. [36]
applied indirect health indicators, such as the time corresponding to the same charging
voltage interval, discharge voltage interval, and discharge temperature change, and a
Gaussian process regression model. Zhu et al. [37] proposed a method to estimate the
battery SOH using a support vector machine and extracted features from battery cycle
data. They focused on the relaxation process that occurs after a full charge, as it is highly
related to battery degradation. Each voltage relaxation characteristic was transformed
into six statistical features: the variance, skewness, maxima, minima, mean, and excess
kurtosis. These features served as input to the SVM for SOH estimation, allowing for
the accurate assessment of battery health based on the extracted characteristics from the
relaxation process.
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To track battery degradation, Ma et al. [38] integrated a RNN model with the differen-
tial thermal voltammetry (DTV) signal processing method. In the beginning, DTV curves
were smoothed using the Savitzky–Golay method and Pearson correlation analysis, and
three key features were derived from various dimensions. Then, using National Aeronau-
tics and Space Administration (NASA) [39] battery data sets, four RNNs were developed
and analyzed. In addition, a Monte Carlo (MC) simulation was performed to evaluate the
performance under uncertainty, and the Bayesian optimization method was applied to
modify hyper-parameters. A SOH estimation method integrating transfer learning and a
deep belief network (DBN)–LSTM model was presented by Ma et al. [40]. Transfer learning
was applied to learn the features, and a DBN was used to estimate the SOH of the battery,
while LSTM was utilized to consider the impact of historical data. The measured voltage,
current, and temperature were used directly to extract six health features. The performance
of their proposed technique was evaluated on the MIT battery data set and a mean absolute
percentage error (MAPE) of 0.99% was reported.

Xu et al. [41] presented a feature selection method to improve the training efficiency of
a NN by eliminating irrelevant features from the input data. Also, by increasing the layers
of the NN, the accuracy rate tends to saturate and bring more errors to the prediction results.
They addressed this problem by incorporating skip connections into the CNN–LSTM model
to improve the accuracy of SOH prediction while reducing the computational burden and
enhancing the robustness. A CNN is used to extract features from the original data, LSTM
is applied to predict the SOH, and a skip-connection is added by concatenating the outputs
of two different LSTMs and using concatenated outputs as an input layer of LSTM.

Manual feature extraction in battery SOH estimation has the merit of being rooted
in the understanding of the battery’s physical behavior and can be scaled and applied
effectively. However, the need for developing efficient automatic feature extraction methods
is growing due to the increasing complexity and diversity of battery data sets. Automatic
feature extraction offers the advantage of discovering hidden patterns and capturing
complex relationships that may not be apparent while manually selecting features. It
enables the exploration of a broader range of features and facilitates a more comprehensive
characterization of battery behavior. Additionally, automatic feature extraction techniques
can adapt to varying battery chemistries, configurations, and operating conditions, ensuring
scalability and generalizability [42].

For battery SOH estimation, there are not many studies that specifically investigate
feature extraction automatically, and existing techniques frequently combine feature extrac-
tion and SOH estimation techniques into a supervised model that is trained using SOH
values as labels and raw battery data as inputs. An effective deep learning (DL) model
that is frequently used to extract features from measured data automatically is the CNN
architecture. Typically, a one-dimensional (1D) CNN is utilized to extract the temporal
features of sequence data, while a two-dimensional (2D) CNN is applied to extract spatial
features, such as images [43]. Gong et al. [44] calculated battery SOH using a CNN and
encoder–decoder model while the encoder combines a CNN with a super-attention method
for automatic feature extraction. In their model, for estimating battery SOH, only the raw
measurements of battery current, voltage, and temperature are required.

CNN models are commonly used to extract features automatically from sensor data.
However, in most studies, the focus is on improving the feature extraction methods to
enhance the accuracy of SOH estimation by increasing the model complexity [45] without
much attention to the pre-processing of data. Zhou et al. [46] proposed an attention
depthwise temporal convolutional neural network (TCNN) model for feature extraction to
improve battery SOH prediction. The TCNN is designed to capture temporal dependencies
and patterns in battery data. The TCNN architecture typically consists of multiple layers
of 1D temporal convolutional blocks, which are followed by pooling and fully connected
layers. In order to capture long-range dependencies in the input sequences, the TCNN
utilizes dilated causal convolution. By employing dilated convolutions, the model can
incorporate a broader temporal context without significantly increasing computational
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costs. Additionally, attention mechanisms are integrated into the TCNN to focus on
relevant temporal features of battery conditions. This integration allows the model to
prioritize important patterns of the battery data to enhance its ability to analyze and
interpret the temporal dynamics effectively. However, according to Andrew Ng, founder
of DeepLearning AI, good data are defined consistently and covers all edge cases [47].

In this paper, a novel data pre-processing model is proposed that integrates the
current research findings on the SOH estimation of Li-ion batteries with the most recent
advancements in DL algorithms. With this model, the numbers and usefulness of training
data that are fed into the ML models are increased to improve the accuracy of the battery
SOH estimation. The proposed pre-processing method converts the 1D discharge voltage
data for all cycles to a 2D data set (discharge voltage cycle) extracts the new training
data set from the large 2D data set by considering a constant length and width for the
sliding window and moving this window over the entire 2D data set. Then, by feeding
the 2D training voltage data to an ML model, features are automatically extracted in
the training process. Finally, the battery voltage in the next cycle is predicted, and the
SOH of the battery is calculated. An advantage of this model is that the autonomous
feature extraction technique eliminates the need for extra mathematical calculations and
the manual evaluation of measured data for extracting features. Another advantage is that
the root-mean-squared error (RMSE) values are considerably reduced only by applying
the proposed data pre-processing technique without increasing the complexity of the ML
model. The performance of the proposed technique is evaluated on the NASA battery
degradation data set, which is introduced in the next section.

3. Battery Data and Health Feature Extraction

Battery SOH is an important indicator of the health status of the battery over its
lifetime that needs to be continuously monitored by the BMS. According to the definition,
the SOH is the ratio of the current capacity of the battery to the capacity of the battery at
the beginning of its life, i.e., the capacity of the new battery, as shown below:

SOHt =
Ct

C0
(1)

where Ct and C0 represent the capacity of the battery in cycle t and its initial capacity,
respectively. Commonly, the SOH is represented in the form of a graph showing the trend
of the battery degradation against the operation cycles (charging and discharging) of the
battery. In this section, the data set used for estimating the SOH of the battery is introduced.
Further, the effect of battery degradation on voltage, current, and temperature during the
charging and discharging of the battery is described, and the proposed feature extraction
method is explained.

3.1. Battery Data Set

An 18,650 rechargeable Li-ion battery with a capacity of 2.0 Ah was chosen from the
NASA Ames Prognostics Center of Excellence (PCOE) open-access battery data set for
the examination of the proposed method for battery SOH estimation. To collect the data
set, three different operational profiles (charge, discharge, and electrochemical impedance
spectroscopy) were applied to Li-ion batteries. Deep discharge aging effects were induced
by setting some voltage thresholds lower than the end voltage. Also, repeated charge
and discharge cycles were used to accelerate the battery aging. The tests ended when
the batteries experienced a 30% capacity fade (from 2 Ah to 1.4 Ah), defining the end-of-
life (EOL) criterion. The charging data were obtained using CC and CV strategies at a
temperature of 24 ◦C. The battery was charged at 1.5 A until reaching 4.2 V, then charged at
4.2 V until the current dropped to 20 mA. Discharge data were obtained with a constant
current of 2 A until the voltage dropped to 2.7 V for battery B0005, 2.5 V for battery B0006,
and 2.2 V for battery B0007. The battery capacity degradation for the selected batteries is
shown in Figure 2, and the battery data set is presented in Table 1.
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Figure 2. Capacity degradation for batteries B0005, B0006, B0007, and B0018 in NASA data sets.

Table 1. NASA data set for analyzing lithium-ion battery degradation.

Battery ID Rated Capacity
Rated

Voltage/End
Voltage

Discharge
Current CC/CV

B0005 2 Ah 3.7/2.7 V 2A 20 mA
B0006 2 Ah 3.7/2.5 V 2A 20 mA
B0007 2 Ah 3.7/2.2 V 2A 20 mA

3.2. Extraction of Battery Health-Related Features

During the CC phase, a fixed current is applied to the battery until it reaches a
certain voltage threshold. In the case of an aged battery, its internal resistance tends to
increase over time. The higher internal resistance of an aged battery results in an increased
voltage drop and reduces the effective voltage available for the CC charging of the battery.
Additionally, the increased internal resistance leads to losses of more energy within the
battery. These power losses manifest as heat generation, which can be detrimental to the
battery’s efficiency and health. Excessive heat generated during charging can accelerate the
degradation of the battery, compromising its capacity and lifespan [48].

The charging and discharging profiles of voltage, current, and temperature for battery
B0005 in various cycles are shown in Figure 3. As can be observed, for the aged battery, the
required time to reach 4.2 V in CC is shorter, and the slope of the current in the CV charging
stage is smaller as compared with the new battery (Cycle 1). Also, the temperature of the
more-used batteries reaches its maximum value more quickly. According to the discharging
profiles with the CC, the time of discharge and time to reach the maximum temperature are
decreased, while the slope of the discharging voltage is increased.

Many studies use measured data such as the voltage, current, and temperature to
predict the battery SOH. In these methods, the amount of required data for each charging
and discharging cycle is too large. Therefore, efficient methods are required to reduce the
size of the data or create more abstract knowledge by extracting features from the measured
data without losing any important information. In addition, there are parameters such as
the electrochemical reaction rate and the change in the internal resistance of the battery
that are important indicators of the SOH of the battery but are not used due to practical
issues and a lack of measurement devices and their poor applicability. Measuring internal
resistance accurately requires specialized equipment and techniques, and this often involves
the use of high-precision instruments and complex measurement setups, the availability
and affordability of which may vary, especially in certain environments. Also, interpreting
and applying internal resistance measurements correctly can be complex. Factors such as
temperature, state of charge, and operating conditions can influence resistance readings
and require careful consideration and analysis [48]. In addition, choosing features that
can efficiently represent the SOH of the battery and evaluating the correlation among
different variables are challenging tasks to improve the performance of the prediction
methods. Because of the above-mentioned problems and the complex behavior of batteries
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in different operating conditions, automatic feature extraction from measured data is
highly needed.

Figure 3. Charging and discharging voltage, current, and temperature for cycles 1, 50, and 100.

4. Methods

Extracting features from only one cycle of voltage data is insufficient for accurately
predicting the behavior of subsequent cycles. To address this limitation, we introduced a
novel approach to converting the 1D voltage data into a 2D representation using a sliding
window technique. The goal is to capture the temporal patterns and dependencies within
the voltage data by considering the information from previous cycles. By transforming the
1D data into a 2D matrix and applying a sliding window of a specific size (e.g., 10 previous
cycles), we can extract features from a broader temporal context that allows us to consider
not only the preceding cycle but also the patterns and trends observed in the previous cycles.
This enables us to capture more comprehensive information and potentially improve the
accuracy of predictions for future cycles. The proposed SOH estimation method consists of
three stages: data pre-processing, model training, and SOH prediction using the validated
model as shown in Figure 4.

Building 2D Discharge Voltage 
Data Frame

Battery Raw Data

Data Cleaning, Resampling and 
Normalization

Splitting Data to Training, 
Validation and Test Set

V, T, Capacity Data

Data Preprocessing

Test Set

Voltage Estimation

Capacity Calculation

Validation, Prediction, and 
Evaluation

Training Set + Validation Set

Model Training

CNN Model
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CNN + LSTM Model

Model Training, and Validation

Voltage Estimation Model

Performance Evaluation

Sliding Window and Building a 
New 2D Dataset

Figure 4. The proposed battery SOH prediction framework.
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In this section, the proposed DL-based battery SOH estimation method is explained
in detail. First, the approach to transform the measured time series voltage data to a 2D
data set and 2D data processing is introduced. Then, the training process is presented. To
verify the performance of the proposed pre-processing method, two other DL models are
presented and discussed.

4.1. Pre-Processing Method

The measured data of the battery, including voltage, current, and temperature, are
among the most widely used data for SOH estimation and are typically measured directly at
constant intervals. The proposed pre-processing technique included five steps, as follows.

4.1.1. Cleaning Data

Data cleaning is the process of identifying and correcting inaccurate records in a data
set, as well as recognizing and removing unreliable or irrelevant parts of the data. In this
step of the proposed data pre-processing method, the irrelevant discharge voltage data were
replaced using the interpolation technique. When the discharge voltage values declined
to the end voltage, the discharge currents were interrupted, leading to the bounce-back
phenomenon in the measured discharge voltages. At this step, these values of voltage data
that were less than the end voltage or measured after discharge current interruption were
set to the end voltage using Table 1. Figure 5a represents the cleaned data of the measured
voltage at constant time intervals for the discharging of battery B0005 over 168 cycles. It
is worth noting that two sampling rates of 10 and 20 s were used to collect the data in the
NASA data set. Unification of data was then performed in the resampling stage.

Figure 5. Building the new training data set after cleaning (a), resampling, and normalization (b) and
applying the 2D sliding window with the size of 10 × 10 (c). Processes (a–c) adhere to a 20 s voltage
data sampling rate, while all three processes collectively generate a new 2D data set every 200 s with
10 points with each point representing a 20 s interval in the voltage data.

4.1.2. Resampling Data

By increasing the number of measured data, the number of variables in the DL model
increased, which could affect the processing time and complexity of the learning process.
To resolve this issue, the sampling rate was increased to have one voltage measurement
every 20 s. In the initial cycles with a 10-second sampling rate, a resampling approach ws
employed to average every two measured voltage data points.

4.1.3. Normalizing Data

Training a NN on data with different scales can lead to large weighting parameters.
Such models can be poor in learning and tend to be sensitive to changes in the input values.
Hence, the data were normalized in the range of [0, 1] using a min-max scaling algorithm
following Equation (2):

Xnorm =
X − Xmin

Xmax − Xmin
(2)
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where Xmin and Xmax represent the minimum and maximum battery discharging voltage
values, respectively. The minimum values, denoted as Xmin, correspond to the end volt-
age values, as provided in Table 1. The maximum voltage values were determined by
considering the highest voltage observed during the initial discharge cycles.

4.1.4. Building the 2D Discharge Voltage Data Set

In many battery capacity estimation methods, the collection of various features from
measured data is a prerequisite. The accuracy of the estimation in these methods relies on
the quality of the extracted features and how they are calculated. Also, the correlations
between measured variables at different sampling periods must be analyzed to utilize
all historical data efficiently. However, doing this manually with high accuracy is not a
straightforward task. This issue can be resolved by using a CNNs. To employ a CNN for
automated feature extraction and capacity estimation, an initial transformation process is
required to generate a 2D data set from 1D-normalized voltage data. As shown in Figure 5b,
200 sequential data points with a sample rate of 20 s were extracted from the battery voltage
data of each discharging cycle for all 168 cycles. Then, to transfer the 1D data to 2D data, a
new matrix with the dimension of 168 × 200 was created from the discharging voltage data.
As we can see, the battery degradation is visible in the 2D data presented as an image. The
battery capacity can be calculated in each cycle using the voltage data samples.

4.1.5. Applying a Sliding Window and Building a New 2D Data Set

In this paper, a 2D sliding window was used to create a new data set for battery
SOC and SOH estimation. The new data set was extracted from the original data set by
considering a constant length and width for the window and moving this window over
the entire data set. Two sampling windows with dimensions of [10 × 10] and [1 × 1] were
used to build the training (X) and target (Y) data sets, respectively. With this newly formed
data set, changes in voltage values within the selected time slice could be monitored using
a ML model to predict the voltage in the subsequent cycle.

Figure 5c illustrates the outcomes of the proposed methodology, employing a sliding
window to construct a new 2D data set. It shows a new set of training data (X) generated
through resampling, normalization, and the application of a [10 × 10] sliding window to
the discharge voltage data obtained from cycles 1 to 10. In this process, a new set of the
training data’s target value (Y) was derived by utilizing a [1 × 1] sliding window on cycle
11. To predict discharge voltage values for each cycle, an ML model ws trained using this
newly constructed data set. Figure 6 explains the sequence of steps involved, including
the selection of a new 2D test data from cycles 120 to 129 (a), deploying this data to the
trained CNN model (b), predicting the normalized discharge voltage for cycle 130, and
subsequently comparing the actual and predicted voltage values. The prediction results for
cycle 130 show that the number of predicted voltage values that were more than the end
voltage is 115 voltage samples with a sample rate of 20 s, and the predicted discharge time
is 2300 s (115 × 20).

Figure 6. Discharge voltage prediction process (cycle 30): (a) creating new 2D test data, (b) deploy-
ment of the data to the trained CNN model, (c) prediction of normalized discharge voltage values,
and (d) comparison between predicted and actual values.
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The battery discharge time, representing the duration until the measured voltages
decreased to the end voltage, was calculated using Equation (3).

tdischarge
cycle(i)

(s) = Ndischarge
cycle(i)

× sampling rate(s). (3)

Table 1 provides information on the constant discharge currents for selected batteries
across all cycles. It is noteworthy that, in each cycle, the batteries were discharged to the
specified end voltages. The battery discharge capacity was subsequently computed using
Equations (4)–(6) [49].

Idischarge
cycle(i)

= 2 A, (4)

Qdischarge
cycle(i)

(Ah) = Idischarge
cycle(i)

× tdischarge
cycle(i)

(h), (5)

Qdischarge
cycle(i)

(Ah) = Idischarge
cycle(i)

× tdischarge
cycle(i)

(s)× 1
3600

. (6)

in which Qdischarge
cycle(i)

represents the discharge capacity for cycle i in ampere-hours (Ah),

tdischarge
cycle(i)

denotes the discharge time for cycle i in hours (h), Idischarge
cycle(i)

shows the discharge

current for cycle i in amperes (A), Ndischarge
cycle(i)

indicates the number of voltage samples that

are more than the end voltage for cycle i, and the sampling rate shows the rate at which
voltage data are sampled, measured in seconds (s).

4.2. Training Model

Time series data are prevalent and constantly generated in many technical processes.
Thus, efficient strategies for extracting useful information from these data are critical. From
AlexNet, ResNet, Inception, and Xception to the SSD and YOLO series, DNNs have made
significant advances in machine vision due to their efficient feature extraction capabilities.
In this paper, a DNN is used to extract features from battery data to estimate the SOH of
the battery. As can be seen in Figure 2, the general trend indicates a definite decline in the
Li-ion battery capacity. As a result, a model that takes gradual degradation into account
has certain inherent advantages.

4.2.1. CNN Model for Automatic Feature Extraction

CNNss are a class of artificial NNs used in DL for automatic feature extraction from
high-dimensional data, which generally is implemented on 2D data (e.g., ImageNet, object
detection, segmentation, medical imaging, diagnosis, etc.) [50]. CNNss have been employed
in various applications, such as image processing, classification, and natural language
processing. Further, CNNs have been used for time series forecasting and estimation,
as well as fault diagnosis [51]. For each influencing input element of the model, a CNN
can perform feature extraction and data dimension reduction, which helps to reduce the
number of feature parameters and model complexity [52].

CNNss also have structural properties, such as local correlation and weight sharing,
which serve to prevent overfitting in the model [53]. Time series data are prevalent and
constantly generated in many technical processes. Thus, efficient strategies for extracting
useful information from these data are critical. Considering the merits of CNNs, such as
automatic feature extraction and a low risk of overfitting, their applications in dealing
with a large number of time series signals have also been investigated. This is one of the
main reasons for selecting the CNN model for automatic feature extraction and capacity
prediction for battery degradation in this paper. To estimate the battery SOH, a convolution
layer was used to extract features from the input data. In the proposed method, the size
of the input training data and convolution kernel (a kernel is a matrix of weights that is
multiplied by the input to extract features) were set to [10 × 10] and 10, respectively. After
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scanning all the input data by moving the convolution kernel, the output features were
obtained. The 1D convolution is presented in Figure 7, as well as Equations (7) and (8):

s(n) = f(n)g(n), (7)

s(n) = f(n)
l−1

∑
i=1

g(n−m). (8)

where s(n) is the convolution result, f(n) is the input data, and g(n) is the convolution kernel
with the size of l.
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Figure 7. 1D convolution NN for automatic feature extraction from battery voltage data.

4.2.2. LSTM Model for Temporal Dependency

RNNs are a popular type of DL architecture, where connections between units form
a directed graph along with the sequence of information from the input. RNNs process
a sequence of input data by using their internal states. RNNs suffer from the vanishing
gradient problem, which has a major negative effect on their accuracy. An enhanced version
of the RNN architecture is LSTM, which overcomes the vanishing gradient problem via the
concept of gates (input, forget, and output gates) and memory cells. LSTM operation is
defined by Equations (9)–(14) [30].

ft = σ
(

Ŵ f · [ht−1, xt] + B f

)
, (9)

it = σ
(

Ŵi · [ht−1, xt] + Bi

)
, (10)

Ĉt = tanh
(

ŴC · [ht−1, xt] + BC

)
, (11)

Ct = ( ft × Ct−1) + (it × Ĉt), (12)

ot = σ
(

Ŵo · [ht−1, xt] + Bo

)
, (13)

ht = ot × tanh(Ct). (14)

in which xt is the network input, ht is the output of the hidden layer, ot represents the
output gate, σ represents the Sigmoid function, and Ct is the cell state (memory). The state
candidate’s values are represented by Ĉt, and Ŵ f , Ŵt, Ŵc, and Ŵo are the weights for the
input, output, forget gate, and memory cells, respectively. B f , Bi, Bc, and Bo represent the
bias for the input, output, forget gate, and cell, respectively. The input gate decides whether
input data will be reserved or not, while the forget gate verifies if data will be lost or not,
and the cell records the processing state. Finally, the output is delivered through the output
gate. This architecture is specially designed to address the vanishing gradient problem
in RNNss.

The LSTM structure is shown in Figure 8.
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Figure 8. LSTM model.

4.2.3. CNN–LSTM Model for Automatic Feature Extraction

The necessity of dealing with the vast volumes of sequential sensor data that are
connected to the battery is one of the obstacles that arise when trying to predict the
SOH of a battery. It has been shown that CNN–LSTM models have the potential to be
effective in addressing these issues, and they are well-matched to succeed in accomplishing
this objective [32]. In Figure 9, a CNN–LSTM model for automatic feature extraction is
illustrated. The model comprises two primary components: a CNN and LSTM. The CNN
consists of a convolutional layer followed by a max-pooling layer. The convolutional layer
has 32 filters with a size of [10 × 1]. The max-pooling layers reduce the height dimension.
The LSTM, with 128 hidden units, is responsible for capturing the temporal dependencies
in the data. The output of the LSTM layers is then fed into a fully connected layer with
a single neuron, which produces the output value. The CNN–LSTM model is trained
using a mean squared error loss function. Compared to LSTM, the CNN can extract spatial
information from the input data, such as measured voltage and temperature. On the other
hand, LSTM can capture the temporal dependencies in the training data.

32 
Filter
1x10 

Input training  data
10x10

Sliding window output

C
yc

le
 n

um
be

r

0                     5            

2            

0            

4            

6            

8            

Fully connected
layers

Output
layers

LSTM 
layers

Pooling
layers

Convolutional layers 
with features map

Flatten
layers

Figure 9. CNN–LSTM model.

4.3. Performance Evaluation

The proposed method was evaluated by using two standard metrics: mean absolute
error (MAE) and RMSE. The mathematical formulas of these metrics are given in the
Equations (15) and (16), where yi and ŷi are the actual and predicted values, respectively.

MAE =
1
n

n

∑
i=1

|yi − ŷi|, (15)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2. (16)
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5. Results and Discussion

In this section, the ML-based model for predicting the SOH of the battery with the
proposed pre-processing method is applied to the data set provided by NASA for the
degradation analysis of Li-ion batteries. In the following, we present the simulation
configuration and establish various scenarios for conducting comparative analyses.

5.1. Simulation Setup

The battery SOH estimation model was trained on a GPU and implemented in Python
(V3.9) with TensorFlow and Adam as the optimizer with mini-batch gradient descent. For
quick demonstration purposes, the model was trained for 10 epochs using the 2D sliding
windows with a size of 10 × 10.

5.2. Comparative Analysis

In this paper, B0005, B0006, and B0007 batteries were selected for the simulation
analysis (following the numbering used in the NASA battery data set). From the available
data for each battery, 60, 80, and 100 data points were used for training; 20 data points
were used for validation, and the remaining data were used for testing. To evaluate
the effectiveness of the proposed SOH estimation framework, the following four cases
were investigated:

1. Case 1: with and without data pre-processing;
2. Case 2: with data pre-processing and different sizes of training data;
3. Case 3: with data pre-processing and different sizes of the sliding window;
4. Case 4: with data pre-processing and with dropout.

5.2.1. Case 1: Battery SOH Estimation with and without the Proposed Data
Pre-Processing Method

The performance of the proposed method for SOH estimation was verified using
three Li-ion batteries: the B0005, B0006, and B0007 batteries. The first 100 cycles of each
battery were used as training data, while the following cycles were used for the test data.
Also, 20 cycles of the training data were chosen for validation. In Figure 10, the difference
between the actual and estimated capacities and the error values for the test data are shown.
Figure 10 shows how well the CNN–LSTM model with the proposed pre-processing
method estimates the capacity degradation trends of the selected batteries. According to
the obtained results, the overall estimation error is below 5% for all three batteries. The
capacity regeneration phenomena generate the peak values of the irregularities in real
capacity degradation profiles, where errors of more than 1% are observed. Rest time in
batteries can trigger certain electrochemical processes that partially reverse the degradation
effects, resulting in an increase in battery capacity and influencing the overall degradation
trend. These processes, occurring during periods of rest, can mitigate the detrimental
effects on the battery’s performance and extend its lifespan [54].

In Table 2, RMSE and MAE values for SOH estimation are provided with CNN and
LSTM models with and without the proposed data pre-processing method, considering
the capacity data in each cycle as training data. The results show that the proposed pre-
processing model improves the accuracy of CNN and LSTM models for SOH estimation.

In Figure 11, the training and validation loss per epoch for the CNN-LSTM model
applied to the battery B0007 data set are presented. As evidenced in the figure, both the
training and validation loss values drop below 0.001 after just 4 epochs. Consequently,
guided by this observation, the decision was made to set the number of epochs for simula-
tion in all cases to 10. It is noteworthy that, for all simulations, hyperparameter tuning was
employed on the ML model. This practice was implemented to optimize the performance
of SOH estimation for batteries.
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Table 2. Battery SOH estimation errors in different scenarios.

Battery ID Error Type With Proposed Pre-Processing Without Proposed Pre-Processing

CNN LSTM CNN LSTM

B0005 RMSE 0.010 0.012 0.061 0.084
MAE 0.007 0.008 0.054 0.071

B0006 RMSE 0.013 0.014 0.052 0.093
MAE 0.009 0.009 0.041 0.079

B0007 RMSE 0.009 0.010 0.076 0.088
MAE 0.006 0.006 0.072 0.081

(a) (b)

(c) (d)

(e) (f)

Figure 10. Evaluation of the proposed pre-processing method’s performance in SOH prediction for
the subsequent cycles of battery B0005 (a,b), B0006 (c,d), and B0007 (e,f) using the CNN–LSTM model.

Figure 11. Training and validation loss per epoch for the CNN–LSTM model on the battery B0007
data set.
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5.2.2. Case 2: Battery SOH Estimation with the Proposed Data Pre-Processing Method and
Using Different Sizes of Training Data

In this section, we compare the RMSE values for different sizes of training data to
investigate the effect of the training data size on the performance of the proposed method.
In this analysis, CNN, LSTM, and CNN–LSTM models, which are often utilized in computer
vision and time series data processing, were investigated. Different training data sets with
80, 100, and 120 cycles were used to train the models, and the remaining data were used for
testing. Similar to the previous case, 20 cycles of each training set were continually chosen
for validation. The RMSE values of the three selected models on the B0005, B0006, and
B0007 data sets are shown in Table 3. As can be seen, by decreasing the number of training
data from 120 to 80, the performance of all models is gradually degraded, while all error
values are less than 0.014. The CNN-LSTM model has the best accuracy.

Table 3. RMSE of the prediction results using different sizes of training data.

Battery ID Training Data Model

(cycle) CNN LSTM CNN-LSTM

1–80 0.014 0.016 0.014
B0005 1–100 0.011 0.012 0.011

1–120 0.010 0.011 0.010
1–80 0.021 0.023 0.021

B0006 1–100 0.014 0.013 0.012
1–120 0.013 0.013 0.014
1–80 0.016 0.015 0.014

B0007 1–100 0.009 0.010 0.008
1–120 0.008 0.010 0.007

5.2.3. Case 3: Battery SOH Estimation with the Proposed Data Pre-Processing Method and
Using Different Sliding Window Sizes

Table 4 shows the RMSE for the three selected battery data sets and fixed window sizes
of 5, 10, and 20. It can be observed that small window sizes of 5 and 10 yield the minimum
RMSE values. For the CNN model, the minimum RMSE is obtained for a window size of 5,
whereas the LSTM and CNN–LSTM models produce the minimum error with a window
size of 10. In general, smaller window sizes show better results. However, by decreasing the
size of the sliding window, the number of variables is increased. Therefore, the window size
of 10 is the best size for the proposed pre-processing method for battery SOH prediction,
which was obtained by trial and error. As a result of increasing the dimension of the
window size to more than 20, the dimension of the input data for ML and the error of
prediction would also be increased. Therefore, values of more than 20 were not considered
for analysis in this paper.

Table 4. RMSE of the prediction results using different sliding windows.

Battery ID Sliding Window
Model

CNN LSTM CNN-LSTM

5 × 5 0.009 0.012 0.010
B0005 10 × 10 0.010 0.012 0.010

20 × 20 0.011 0.017 0.012
5 × 5 0.012 0.014 0.012

B0006 10 × 10 0.014 0.013 0.012
20 × 20 0.014 0.014 0.014

5 × 5 0.010 0.009 0.008
B0007 10 × 10 0.009 0.010 0.009

20 × 20 0.011 0.009 0.010
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5.2.4. Case 4: Battery SOH Estimation with the Proposed Data Pre-Processing Method and
Using Data Dropout

In this case, the focus is on battery SOH prediction using different models with dropout.
To improve the accuracy and reduce the risk of overfitting, dropout was applied as a
regularization technique to the estimation models. Dropout was performed by randomly
choosing nodes to be dropped out with a given probability at each weight-updating
iteration. The performance of the models was evaluated by calculating the RMSE values.
Table 5 shows that dropout improves performance in the LSTM and CNN-LSTM models
but increases error values in the CNN model when reducing training size. The best results
are highlighted in the table. Overall, the proposed data pre-processing technique and
dropout incorporation contributed to accurate SOH estimation, benefiting battery health
monitoring and predictive maintenance practitioners. As mentioned before, the focus of
this paper is on predicting the battery voltage in the next cycle and calculating the SOH
of the battery. However, for an effective RUL estimation, longer time-frame estimations
are needed. Extending the proposed approach for longer-term predictions of the SOH
of Li-ion batteries by incorporating additional factors to enhance the accuracy of RUL
estimation will be considered by the authors in their future works. This may involve
utilizing more advanced ML algorithms and considering a broader range of features to
capture the complex degradation patterns exhibited by Li-ion batteries over time.

Table 5. RMSE of the prediction results with and without dropout.

Battery ID Dropout Model

CNN LSTM CNN-LSTM

B0005 NO 0.011 0.012 0.011
YES 0.019 0.012 0.10

B0006 NO 0.014 0.013 0.014
YES 0.013 0.012 0.013

B0007 NO 0.009 0.010 0.009
YES 0.010 0.009 0.008

6. Battery DT with Online Learning

The conventional methods of battery SOH estimation involve building a model from
sensor data and other sources and applying that model to estimate the behavior of the
battery. However, this method is not completely capable of capturing the complicated
and dynamic behavior of batteries in real-world applications and their aging mechanisms
that are necessary for developing the battery DT. In this regard, adopting online learning
methods is crucial. Online learning is a method that uses ML algorithms to continuously
update and improve the accuracy of the prediction model. By embedding online learning
into the SOH estimation model, the model is continuously updated with new data as it
becomes available, enabling it to improve over time. In this way, the real-time data stream
is continuously analyzed and the model parameters are updated in real-time employing
ML techniques, which provides a more accurate representation of the behavior of the
battery. The estimation of battery SOH with online learning is shown in Figure 12. These
models can recognize and respond to changes in the behavior of batteries over time, which
is especially crucial for battery usage in mobile applications, for instance in electric vehicles,
where the battery undergoes a wide range of operating conditions and usage patterns.
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Figure 12. Battery SOH estimation with online learning.

The ability to continually learn, adjust over time, and avoid catastrophic forgetting
are among the important challenges of online learning. The learning model must balance
stability (the ability to keep previous information) with plasticity (the flexibility to adjust
to new information) over time. When learning a new activity, excessive plasticity might
lead to the forgetting of previously learned information. Moreover, learning sequential
tasks may become more challenging due to excessive stability [55]. Li et al. [56] presented
a combined CNN and transfer learning model to extract features automatically and fine-
tune a pre-trained model for online battery SOH estimation. Yan et al. [57] suggested an
XGBoost-based online platform for online battery health diagnosis. Data aggregation and
feature extraction for real-time battery data during charging are performed using dynamic
time warping for clustering measured data, and a SOH prediction model is created by
using the XGBoost method.

Incorporating online learning mechanisms into the battery SOH estimation model
facilitates developing a battery DT that mirrors the true condition of the battery over its
lifetime, which is the scope of the future research of the authors. The proposed data pre-
processing method in this paper, which can automatically extract features from raw data, is
the first step toward developing battery DT.

7. Conclusions

In this paper, a novel data pre-processing method for the SOH estimation of Li-
ion batteries was proposed. The only data that re required for SOH estimation are the
discharging voltage data of the battery. In the proposed pre-processing method, the 1D
discharge voltage data are used to create the 2D training data set. By using the 2D voltage
data as training data in the DL model for battery SOH estimation, voltage features are
automatically extracted in the training process. Three battery data sets were utilized
to evaluate the performance of the proposed model and examine the impact of various
factors, such as the size of the training data and the sliding window, on the SOH estimation
accuracy. Further, the impact of applying the data dropout technique to the estimation
method was investigated. According to the results, the proposed CNN–LSTM model
provides the highest accuracy, where the maximum RMSE values of this model are lower
than 1.5% for all scenarios. Moreover, the RMSE values could drop to 1% by selecting
an appropriate sliding window, including dropout in the ML models, and increasing the
amount of training data.

Compared to conventional approaches, which rely on battery capacity or manually
extracted features from voltage and current curves, the proposed model automatically
extracts features from 10 voltage curves simultaneously. It effectively monitors changes
in voltage curves to predict battery SOH with a notably small RMSE value. In the future,
developing battery DT by employing a hybrid model to integrate the proposed data-driven
models with a model-based method for battery SOH estimation and extending the proposed
method to incorporate additional factors by capturing complex degradation patterns and
including longer-term SOH predictions to enhance the accuracy of RUL estimation will be
considered by the authors. To do so, advanced online learning techniques will be deployed
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to continuously update the prediction model using a real-time data stream and preserve
the accuracy of the prediction method over the lifetime of the battery.
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Abbreviations
The following abbreviations are used in this paper:

NASA National Aeronautics and Space Administration
Li-ion Lithium-ion
BMS Battery management system
SOH State-of-health
SOC State-of-charge
RUL Remaining useful life
EOL End-of-life
DT Digital twin
RBF Radial basis function
MC Monte Carlo
DTV Differential thermal voltammetry
CC Constant current
CV Constant voltage
1D One-dimensional
2D Two-dimensional
ML Machine learning
DL Deep learning
NN Neural network
FNN Feed-forward neural network
DNN Deep neural network
CNN Convolutional neural network
TCNN Temporal convolutional neural network
RNN Recurrent neural network
LSTM Long short-term memory
GRU Gated recurrent unit
DBN Deep belief network
RMSE Root-mean-squared error
MAE Mean absolute error
MAPE Mean absolute percentage error
PSO Particle swarm optimization
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