
Citation: Domenech i Vila, M.;

Gnatyshak, D.; Tormos, A.; Gimenez-

Abalos, V.; Alvarez-Napagao, S.

Explaining the Behaviour of

Reinforcement Learning Agents in a

Multi-Agent Cooperative

Environment Using Policy Graphs.

Electronics 2024, 13, 573. https://

doi.org/10.3390/electronics13030573

Academic Editor: Cheng He

Received: 21 December 2023

Revised: 27 January 2024

Accepted: 29 January 2024

Published: 31 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Explaining the Behaviour of Reinforcement Learning Agents in a
Multi-Agent Cooperative Environment Using Policy Graphs †

Marc Domenech i Vila 1, Dmitry Gnatyshak 2 , Adrian Tormos 2,∗ , Victor Gimenez-Abalos 2

and Sergio Alvarez-Napagao 1,2

1 Department of Computer Science (CS), Universitat Politècnica de Catalunya—BarcelonaTech (UPC),
08034 Barcelona, Spain; marc.domenech.vila@estudiantat.upc.edu (M.D.i.V.); sergio.alvarez@bsc.es (S.A.-N.)

2 Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain; dmitry.gnatyshak@bsc.es (D.G.);
victor.gimenez@bsc.es (V.G.-A.)

* Correspondence: adrian.tormos@bsc.es
† This paper is an extended version of our paper published at the 24th International Conference of the Catalan

Association for Artificial Intelligence (CCIA), held in Sitges, Spain, from 19th to 21th October 2022.

Abstract: The adoption of algorithms based on Artificial Intelligence (AI) has been rapidly increasing
during the last few years. However, some aspects of AI techniques are under heavy scrutiny. For
instance, in many use cases, it is not clear whether the decisions of an algorithm are well informed
and conforming to human understanding. Having ways to address these concerns is crucial in many
domains, especially whenever humans and intelligent (physical or virtual) agents must cooperate
in a shared environment. In this paper, we apply an explainability method based on the creation
of a Policy Graph (PG) based on discrete predicates that represent and explain a trained agent’s
behaviour in a multi-agent cooperative environment. We show that from these policy graphs, policies
for surrogate interpretable agents can be automatically generated. These policies can be used to
measure the reliability of the explanations enabled by the PGs through a fair behavioural comparison
between the original opaque agent and the surrogate one. The contributions of this paper represent
the first use case of policy graphs in the context of explaining agent behaviour in cooperative multi-
agent scenarios and present experimental results that sets this kind of scenario apart from previous
implementations in single-agent scenarios: when requiring cooperative behaviour, predicates that
allow representing observations about the other agents are crucial to replicate the opaque agent’s
behaviour and increase the reliability of explanations.

Keywords: explainable AI; reinforcement learning; policy graphs; multi-agent reinforcement learning;
cooperative environments

1. Introduction and Motivation

Over the last decade, methods based on machine learning have achieved remarkable
performance in many seemingly complex tasks such as image processing and generation,
speech recognition or natural language processing. It is reasonable to assume that the
range of potential applications will keep growing in the forthcoming years. However, there
are still many concerns about the transparency, understandability and trustworthiness of
systems built using these methods, especially when they are based on so-called opaque
models [1]. For example, there is still a need for proper explanations of the behaviour
of agents where their behaviour could be a risk for their real-world applicability and
regulation in domains such as autonomous driving, robots, chatbots, personal assistants, or
recommendation, planning or tutoring systems [2,3].

Since AI has an increasing impact on people’s everyday lives, it becomes urgent to
keep progressing in the field of Explainable Artificial Intelligence (XAI) [4]. In fact, there
are already regulations in place that require AI model creators to enable mechanisms that
can produce explanations for them, such as the European Union’s General Data Protection

Electronics 2024, 13, 573. https://doi.org/10.3390/electronics13030573 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13030573
https://doi.org/10.3390/electronics13030573
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6779-6283
https://orcid.org/0000-0003-1658-9393
https://orcid.org/0000-0003-4514-6145
https://orcid.org/0000-0001-9946-9703
https://doi.org/10.3390/electronics13030573
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13030573?type=check_update&version=2

Electronics 2024, 13, 573 2 of 19

Regulation (GDPR) that went into effect on 25 May 2018 [5]. This law creates a “Right
to Explanation” whereby a user can ask for the explanation of an algorithmic decision
that was made about them. Therefore, explainability is not only desirable but is also a
frequent requirement and, in cases where personal data are involved, it is mandatory.
Furthermore, the European AI Act [6] prescribes that AI systems presenting risks, such
as those that interact with humans and therefore may impact safety, must be transparent.
Cooperation between humans and AIs will gradually become more common [7], and thus
it is crucial to be able to explain the behaviour of cooperative agents so that their actions
are understandable and can be trusted by humans. However, in many cases, agents trained
to operate and cooperate in physical or virtual environments use Reinforcement Learning
(RL) complex models such as deep neural networks that are opaque by nature. Due to this
need for being able to make such systems more transparent, explainability in RL (XRL) is
starting to gain momentum as a distinct field of explainability.

This paper aims to contribute to XRL by building upon the line of research opened
in [8,9], which has consisted of producing explanations from predicate-based Policy Graphs
(PGs) generated from the observation of RL-trained agents in single-agent environments.
This paper is an extension of the conference paper [10] (Vila et al., ”Testing Reinforcement
Learning Explainability Methods in a Multi-agent Cooperative Environment.” Published
in: Artificial Intelligence Research and Development 355 A. Cortés et al. (Eds.) © 2022 The
authors and IOS Press. This article is published online with Open Access by IOS Press
and distributed under the terms of the Creative Commons Attribution Non-Commercial
License 4.0 (CC BY-NC 4.0). doi:10.3233/ FAIA220358), in which we present the first use
case of the same methodology to generate explanations for agents trained with Multi-
Agent Reinforcement Learning (MARL) methods in a cooperative environment. The
contributions of this paper are focused on analysing what kind of explanations can be
produced and whether there can be explanations about the relationship between the agents,
i.e., about cooperation.

Currently, there are several approaches to explain agents trained with reinforcement
learning, which are mainly from a single-agent perspective. In this work, we briefly
overview some of them in Section 2 and we introduce the approach followed in our use case,
which is based on the creation of policy graphs. We briefly summarise our initial results of
applying such an approach to a single-agent environment in Section 2.1. In Section 3, we
introduce a multi-agent cooperative environment, which we use in Section 4 to apply our
explainability method, giving some insights about the required methodology to generate
explanations in a new domain. In Section 5, we introduce three algorithms that query policy
graphs. In Section 6, we build new agents using the graph as a policy to compare them
with the originals in order to have a measure of reliability for the explanations. Finally, we
end with a summary of the main conclusions and contributions from the work in Section 7.

2. Background

The area of explainability in reinforcement learning is still relatively new, especially
when dealing with policies as opaque models. In this section, we will provide a brief
overview of some state-of-the-art XRL methods and discuss, in more depth, the method
chosen for our work. A more detailed study of the explainability methods in RL can be
found in [11]: XRL methods can be classified by their time horizon of explanation (re-
active/proactive), scope of explanation (global/local), timing of explanation (post hoc
/intrinsic), type of the environment (deterministic/stochastic), type of policy (determinis-
tic/stochastic) and their agent cardinality (single-agent/multi-agent system).

Reactive explanations are those that are focused on the immediate moment. A family
of reactive methods is policy simplification, which finds solutions based on tree structures.
In these, the agent answers the questions from the root to the bottom of the tree in order to
decide which action to execute. For instance, Coppens et al. [12] use Soft Decision Trees
(SFTs), which are structures that work similarly to binary trees but where each decision
node works as a single perceptron that returns, for a given input x, the probability of

Electronics 2024, 13, 573 3 of 19

going right or left. This allows the model to learn a hierarchy of filters in its decision
nodes. Another family is reward decomposition, which tries to decompose the reward into
meaningful components. In [13], Juozapaitis et al. decompose the Q-function into reward
types to try to explain why an action is preferred over another. With this, they can know
whether the agent is choosing an action to be closer to the objective or to avoid penalties.
Another approach is feature contribution and visual methods, like LIME [14] or SHAP [15],
which try to find which of the model features are the most relevant in order to make
decisions. On the other hand, Greydanus et al. [16] differentiate between gradient-based
and perturbation-based saliency methods. The former try to answer the question “Which
features are the most relevant to decide the output?” while the latter are based on the idea
of perturbing the input of the model in order to analyse how its predictions changes.

Proactive models are those that focus on longer-term consequences. One possible
approach is to analyse the relationships between variables. This family of techniques give
explanations that are very close to humans because we see the world through a causal
lens [17]. According to [18], the causal model tries to describe the world using random
variables. Each of these variables has a causal influence on the others. This influence is
modelled through a set of structural equations. Madumal et al. [19] generate explanations of
behaviour based on a counterfactual analysis of the structural causal model that is learned
during RL. Another approach tries to break down one task into multiple subtasks in order
to represent different abstraction levels [20]. Therefore, each task can only be carried out if
its predecessor tasks have been finished.

According to [21], in order to achieve interoperability, it is important that the tasks are
described by humans beforehand. For instance, Kulkarni et al. [20] define two different
policies in hierarchical RL, local and global policies. The first one uses atomic actions in
order to achieve the subobjectives, while the second one uses the local policies in order to
achieve the final goal.

In addition, there is another approach that combines relational learning or inductive
logic programming with RL. The idea behind these methods [22] is to represent states,
actions and policies using first-order (or relational) language. Thanks to this, it is easier
to generalise over goals, states and actions, exploiting knowledge learnt during an earlier
learning phase.

Finally, another approach consists of building a Markov Decision Process and fol-
lowing the graph from the input state to the main reward state [19]. This allows asking
simple questions about the chosen actions. As an optional step, we can simplify the state
representation (discretising it if needed). This step becomes crucial when we are talking
about more complex environments [8]. In this work, we will use this last approach: we will
use a method that consists of building a policy graph by mapping the original state to a set
of predicates (discretisation step) and then repeatedly running the agent policy, recording
its interactions with the environment. This graph of states and actions can then be used
for answering simple questions about the agent’s execution, which is shown at the end
of Section 4. This is a post hoc and proactive method, with a global scope of explanation,
which works with both stochastic environments and policies and has, until the use case
presented in this paper, only been tested in single-agent environments (Table 1).

Thus, a policy graph is built by sampling the behaviour of a trained agent in the
environment in the form of a labelled directed graph PG = ⟨V, E, A⟩ where each node
vi ∈ V represents a discretised state si, and each edge e = (vi, a, vj) ∈ E represents the
transition (si, a, sj), where a ∈ A is an action from the available actions of the environment.

Note that for the sake of brevity, hereinafter, we equate discretised states and their node
counterparts in a policy graph: si = vi ∧V ⊆ S, where S is the set of all discretised states.

Electronics 2024, 13, 573 4 of 19

Table 1. Summarised comparison of XRL methods with policy graphs according to the taxonomy
presented in Krajna et al. [11] (i.e., respectively, time horizon, scope, timing, types of environment
and policy and agent cardinality). A more complete description of each method can be found in the
cited paper. Env. stands for type of environment (stochastic/deterministic), while P-H stands for
post hoc and Intr. stands for intrinsic.

Method Horiz. Scope Timing Env. Policy Agents Description

Coppens et al. [12] Reac. Global P-H Stoch. Stoch. Single Binary decision trees, value
heatmap images

Juozapaitis et al. [13] Reac. Local P-H Stoch. Deter. Single Decomposed reward dia-
grams and images

Greydanus et al. [16] Reac. Global P-H Deter. Deter. Multi- Attention saliency maps
Madumal et al. [19] Proac. Local P-H Stoch. Stoch. Multi- Counterfactual text explana-

tions
Kulkarni et al. [20] Proac. Local Intr. Stoch. Stoch. Multi- Attention saliency maps
Zambaldi et al. [22] Proac. Local Intr. Stoch. Stoch. Multi- Counterfactual text explana-

tions

Policy graphs Proac. Global P-H Stoch. Stoch. Sing./Mult. Behaviour graphs, text expla-
nations, transparent agent ver-
sion

There may exist more than one transition between the same pairs of nodes as long
as the labels are different, as performing different actions in a certain state may still
lead to the same resulting state. Conversely, there may exist more than one transition
between a particular state and many different states labelled with the same action, since
applying an action on the environment may have a stochastic effect (e.g., the action could
occasionally fail).

Each node v ∈ V stores the well-formed formula in propositional logic that represents
its state and its probability P(v). Each edge e = (vi, a, vj) stores the action a that causes the
transition it represents, and its probability P(vj, a|vi), such that:

∀v ∈ V, ∃ e = (v, a, v′) ∈ E⇒ ∑
(v,ai ,vj)∈E

P(vj, ai|v) = 1 (1)

Essentially, for every node in the policy graph, either the sum of probabilities for every
edge originating from the node is exactly 1, or the node has no such edges.

2.1. Explaining the Cartpole Scenario

Before detailing the use of policy graphs for explaining agents’ behaviour in a multi-
agent cooperative setting, it may be worth describing first how this methodology can be
applied to a single-agent setting.

In [9], we use Cartpole as the scenario for this work. Cartpole is an environment for
reinforcement learning provided by the OpenAI Gym library (https://gym.openai.com,
accessed on 4 December 2023), in which a pole is attached to a cart through an unactuated
joint, and both move along a friction-less track, as depicted in Figure 1. The agent controls
the cart by moving it left or right, and the challenge is to prevent the pole from falling over
due to gravity. To represent the state of the system, the agent has access to observations
containing four variables: cart position, cart velocity, pole angle, and pole angular velocity.
A fall is determined when the pole angle exceeds 12 degrees from the vertical or when the
cart moves out of bounds.

It was possible to generate valid and accurate explanations for this environment by
using the following set of predicates as the discretiser for the policy graphs:

• pole_ f alling(X), where X ∈ {le f t, right}.
• pole_stabilising(X), where X ∈ {le f t, right}.
• pole_standing_up().
• cart_moving(X), where X ∈ {le f t, right}.
• cart_pos(X), where X ∈ { f ar_le f t, f ar_right, le f t, right}.

https://gym.openai.com

Electronics 2024, 13, 573 5 of 19

• cart_near_middle().
• stuck(X), where X ∈ {le f t, right}.

This set of predicates, combined with the algorithms introduced in [8], allow for
generating explanations for the behaviour of any agent operating in the Cartpole environ-
ment. This explanations can be validated via qualitative methods, e.g., by human expert
validation. In order to validate these explanations from a quantitative perspective, our
previous work [9] presented a novel technique based on the creation of a new agent policy
inferred from the structure of the policy graph, trying to imitate the behaviour developed
by the original trained agent’s policy.

Figure 1. Cartpole environment.

One concern related to this proposal is that the policy graph is based on a simplification
of the states and the actions (using predicates), and therefore such a policy could also be
an oversimplification of a policy that is backed by a complex, opaque model. For this
reason, our aim was to confirm whether the behaviour of the two policies shows a similar
performance and, therefore, that the critical decisions that influence performance are
comparable. If that is the case, the explanations generated would be able to reflect the
trained agent in terms of human interpretation.

Figure 2 provides a histogram illustrating the final steps achieved by various poli-
cies. These final steps could be a consequence of either reaching success (200 steps) or
encountering failure. Among these policies, the ones involving random agents (HRD 5.54%
success rate and RND 0%) are severely outmatched by those considering either the original
agent (DQN 78.65%), the policy graph (PGR 78.16%), or their hybrid (HEX 72.95%), the
three of them having comparable success rates. Interestingly, the success rate of the PGR
agent displays significant deviations in the initial steps, particularly around steps 25 to
50, as evidenced by non-marginal frequencies in the histogram. These deviations can be
attributed to the previously mentioned state simplification and discretisation, affecting
the agent’s ability to stabilise in challenging scenarios, such as when the pole is far from
the center. In contrast, DQN and HEX, the latter being 50% based on PGR, showcase
remarkably similar histograms, indicating that the PGR policy has a stable behaviour after
50 steps, aligning well with the original behaviour.

Additionally, we conducted a correlation analysis (Spearman) involving three domain-
specific metrics: average cart movement, average pole velocity, and average pole rotation (as
shown in Figure 3). The most significant correlations regarding cart movement are observed
between DQN and HEX (0.60, p < 0.001) and between PGR and HEX (0.53, p < 0.001), which
is logical since HEX is a combination of both policies. The correlation between DQN and
PGR (0.26, p < 0.001) is statistically significant but relatively low. However, when examining
the impact of actions on the pole, including velocity and rotation, higher correlations are
identified: DQN and PGR (0.55, p < 0.001), DQN and HEX (0.72, p < 0.001), and PGR and
HEX (0.67, p < 0.001).

Our analysis suggested that the behaviours of the two agents yield similar outcomes,
both in terms of performance and their influence on the pole’s behaviour, in an environment
where there is only one agent and therefore there are no actions from other agents to take
into account. For further details on the methodology and the results of the quantitative
analysis for the Cartpole environment, please refer to [9]. From now on, in this paper, we
focus on the application of policy graphs to a multi-agent scenario, in which we analyse

Electronics 2024, 13, 573 6 of 19

the feasibility of using policy graphs to explain the behaviour of agents in environments
where the actions of other agents are relevant for the performance.

Figure 2. Histogram of frequencies indicating up to which step each policy was able to keep the pole
standing up. Policies are in this order (left to right, top to bottom): DQN (all actions are chosen by the
original policy), PGR (all actions are chosen by the policy graph), HEX (in each step, the action is
chosen at random between the original policy and the policy graph), HRD (in each step, the action
is chosen at random between the original policy and purely random), and RND (in each step, the
action is chosen at random from all valid actions). A successful policy reaches step 200. Please note
that the random agent (RND) cannot keep the pole straight and almost never reaches step 50, while
the agents trained using reinforcement learning (DQN) and the simplified agent (PGR) or combined
(HEX, which is 50% DQN and 50% PGR) almost always succeed (they reach step 200), especially
when avoiding failing during the first steps.

Figure 3. Cross-correlations between cart movement, pole velocity and pole rotation, averaged
by step.

3. Overcooked-AI: A Multi-Agent Cooperative Environment

In this paper, we have used the PantheonRL [23] package for training and testing
an agent in Overcooked-AI [24]. Overcooked-AI is a benchmark environment for fully
cooperative human–AI task performance, which is based on the popular video game
Overcooked (http://www.ghosttowngames.com/overcooked, accessed on 15 November
2023). The goal of the game is to deliver soups as fast as possible. Each soup requires
placing up to three ingredients in a pot, waiting for the soup to cook, and then having
an agent pick up the soup and deliver it. The agents should split up tasks on the fly and
coordinate effectively in order to achieve high rewards.

The environment has a sparse reward function. In the steps where certain tasks of
interest are performed, the following rewards are given: 3 points if an agent places an onion
in a pot or if it takes a dish, 5 points if it takes a soup and 20 points if the soup is placed in a
delivery area. The same reward is delivered to both agents without regard to which agent
performed the task itself.

http://www.ghosttowngames.com/overcooked

Electronics 2024, 13, 573 7 of 19

Here, in this work, we have worked with five different layouts: simple, unident_s,
random0, random1 and random3 (Figure 4).

Figure 4. Overcooked layouts: simple (top left), unident_s, (top right), random1 (bottom left), random0
(bottom center), and random3 (bottom right).

At each timestep, the environment returns a list with the objects not owned by the
agent present in the layout and, for each player, the position, orientation, and object that it is
holding and its information. We can also obtain the location of the basic objects (dispensers,
etc.) at the start of the game.

For example, the agent would receive the following data from the situation depicted
in Figure 5:

• Player 1: Position (5, 1)—Facing (1, 0)—Holding Soup;
• Player 2: Position (1, 3)—Facing (−1, 0)—Holding Onion;
• Not owned objects: Soup at (4, 0)—with 1 onion and 0 cooking time.

The environment layout can have a strong influence on the degree of cooperation and
the strategy agents must follow in order to win the game or to have an optimal behaviour.
For instance, unident_s has enough elements at each side of the kitchen for each agent to
serve soups by themselves without the need of the other, so cooperation is not mandatory
for winning, but it is desirable for optimality. On the other hand, random0 has different
elements at each side of the layout division, so cooperation is mandatory for winning.
random1 and random3 require that agents are capable of not blocking each other.

The aim of our work is not to solve the Overcooked game but rather to analyse the
potential of explainability in this cooperative setting. Therefore, we do not really care about
what method is used to train our agent. However, it is important that the agent performs
reasonably well in order to verify that we are explaining an agent with a reasonable policy.
Thus, we train our agents using Proximal Policy Optimisation (PPO) [25] because it has
achieved great results in Overcooked previously [24]. We use the Stable Baselines 3 [26]
Python package to train all agents. Indeed, if we obtain good results with PPO, we should
also obtain good results with other methods since our explainability method is independent
from the training algorithms used. In our case, we have trained five different agents (one
for each layout) for 1M total timesteps and with an episode length of 400 steps. Training
results can be found in Table 2.

Electronics 2024, 13, 573 8 of 19

Figure 5. Overcooked-AI game dynamics.

Table 2. Performance metrics of the trained agent pairs.

Layout Mean Reward Std.

simple 387.87 25.33
unident_s 757.71 53.03
random0 395.01 54.43
random1 266.01 48.11
random3 62.5 5.00

4. Building a Policy Graph for the Trained Agent

We have created a total of 10 predicates to represent each state. The first two predicates
are held and held_partner, which have five possible values depending on which object
the agent and its partner, respectively, are holding: O(nion), T(omato), D(ish), S(ervice) or
* for nothing.

The third predicate is pot_state, which has four possible values depending on the state
of each pot:

- “O f ” (Off), when [pot.onions = 0].
- “Fi” (Finished), when [pot.onions = 3∧ pot.timer ≥ 20].
- “Co” (Cooking), when [pot.onions = 3∧ pot.timer < 20].
- “Wa” (Waiting), when [pot.onions < 3].

To relate the actions of the agent with the relative position of the objects in the environ-
ment, we introduce six more predicates: onion_pos(X), tomato_pos(X), dish_pos(X), pot_pos(X)
, service_pos(X) and soup_pos(X). All of them can have the same six possible values de-
pending on the next action to perform to reach the corresponding object as quickly as
possible: S(tay), R(ight), L(eft), T(op), B(ottom) or I(nteract). The last predicate is partner_zone,
which is intended to represent agents’ cooperation along with held_partner. It has eight
possible values depending on which cardinal point the partner is located at (e.g., “NE” for
“northeast”).

As mentioned in Section 2, the aim of the policy graph algorithm is to apply the
following method: to record all the interactions of the original trained agent by executing it
in a large set of random environments and to build a graph relating predicate-based states
seen in the environment with the actions executed by the agents after each of those states.

Electronics 2024, 13, 573 9 of 19

An example can be found in Figure 6. In this graph, the state on the left side rep-
resents the state {held(Dish), held_partner(Onion), pot_state(Finished), onion_pos(Interact),
toma-to_pos(Stay), dish_pos(Stay), pot_pos(Top), service_pos(Right), soup_pos(Right), partner-
_zone(South)}. The state on the right side represents the state {held(Dish), held_partner(Onion),
pot_state(Finished), onion_pos(Left), tomato_pos(Stay), dish_pos(Stay), pot_pos(Left), service-
_pos(Right), soup_pos(Top), partner_zone(South West)}. This policy graph shows that from
the left state, there is a 20% probability for the agent to interact with the object in front of
them, which in this case is the onion (due to onion_pos having value Interact). In that case,
the state does not change due to the action not being effective: there are infinite onions
available, so it is still possible to interact with them, but the agent is already holding a dish,
so there is no real effect. There is an 80% probability for the agent to move right, which will
cause a change of some values in the state: it is not possible to interact with the onions in
the new location, as the onions are now to the left of the agent; the closest soup is now to
the top instead of to the right, and the partner is to the southwest of the agent instead of to
the south.

Figure 6. Extract of two states from a stochastic policy graph generated from Overcooked.

Our work has followed two distinct approaches for building this graph:

• Greedy Policy Graph: The output of the algorithm is a directed graph. For each state,
the agent takes the most probable action. Therefore, not all the agent interactions are
present in the graph—only the most probable action from each node. The determinism
of this agent could be an interesting approach from a explainability perspective, as it is
intuitively more interpretable to analyse a single action than a probability distribution.

• Stochastic Policy Graph: The output of the algorithm is a multi-directed graph. For
each state, the agent records the action probability for all actions. As such, each state
has multiple possible actions, each with its associated probability, as well as a different
probability distributions for future states, one for each action. This representation is
much more representative of the original agent, since the original agent may have
been stochastic, or its behaviour may not be fully translated to the ’most probable
action’ whenever the discretiser does not capture all information of the original state.

From the policy graphs we have built, we can create surrogate agents that base their
behaviour on sampling them: at each step, these agents receive the current state as an
observation from the environment and decide their next action by querying their policy
graph for the most probable action on the current state. This results in a transparent agent
whose behaviour at any step can be directly examined via querying its policy graph.

There is a consideration to be made, though. With our proposed discretisation, there
exist a total of 37,324,800 potential states, which means it is highly unlikely that the policy
graph-building algorithm will have observed state transitions involving all of them. As a
consequence, we introduce a state similarity metric diff : S× S 7−→ R to deal with previously
unknown states, such that two states si, sj are similar if diff (si, sj) ≤ ε, where ε ∈ R is a
defined threshold. In this work, we define diff as the amount of different predicate values be-
tween them (for example, given states si = {held(Onion), pot_state(Cooking), onion_pos(South)}

Electronics 2024, 13, 573 10 of 19

and sj = {held(Onion), pot_state(Cooking), onion_pos(North)}, then diff (si, sj) = 1), and set
ε to 1.

Let PG = ⟨V, E, A⟩ be a policy graph. Given a certain discretised state s, we can
distinguish three cases:

1. s ∈ V: The surrogate agent picks an action using weights from the probability
distribution of s in the PG.

2. s /∈ V ∧ ∃s′ ∈ V, diff (s, s′) ≤ 1: The agent picks an action using weights from the
probability distribution of sj in the PG.

3. s /∈ V ∧ ∄s′ ∈ V, diff (s, s′) ≤ 1: The agent picks a random action with uniform
distribution.

Using these surrogate agents, we will analyse under which condition each of these
approaches offers better explainability in Section 6.

5. Explainability Algorithm

The following questions can be asked of a policy graph, which are a starting point to
obtaining explanations on agent behaviour:

1. What will you do when you are in state region X? (e.g., all states where pot_
state(Finished))

2. When do you perform action a?
3. Why did you not perform action a in state s?

Each of these questions can be answered with custom algorithms that leverage the
probability distributions learnt by the policy graph. For our work, we borrow from and
evolve upon the original conceptualisation found in [8] with some changes described in
the following subsections. In Section 5.4, we open a discussion regarding the validity and
the limitations of this approach.

5.1. What Will You Do When You Are in State Region X?

The answer to this question consists of aggregating the probabilities of possible actions
in the policy graph from all the input states that the user wants to check. Let PG = ⟨V, E, A⟩
be the computed policy graph, X ∈ S be the target state region, and dist: P(S)× S 7−→ R
be a measure of distance between a discretised state and a state region in S. (This distance
function can depend heavily on the environment and on the predicate set chosen. An
in-depth analysis of possible functions is out of the scope of this paper, but it will be part
of future work. For the sake of proof-of-concept, the distance function we have chosen
for the work presented in this paper consists of: let s ∈ S and X = {s1, ...} ⊆ S, we
define dist(X, s) = minsi∈X diff (si, s), where diff is the function defined in Section 4. For
example, this measure for the states in Figure 6 would be dist({sle f t}, sright) = 4 as only
four predicates change value between them.) Very similarly to the possible courses of
action of a surrogate agent defined in Section 4, there are three possible cases regarding the
information available about the state region X.

1. |X ∩V| > 0: The policy graph generation algorithm has seen one or more states s ∈ X
during training, and it is likely that we can extract the probability of choosing among
each of the accessible actions from them (this is only likely since a state s may have
been visited very few times, and the estimation of probability may be little informed,
in which case we would consider the other options in the list).

2. X ∩V = ∅, but one or more similar states are found (∃s ∈ V : dist(X, s) < ε, ε ∈ R):
the policy graph has never seen any state in X, so we rely on a measure of similarity
to another state to extrapolate (as in case 1).

3. X ∩V = ∅ and no similar state is found: Returns a uniform probability distribution
over all the actions.

A formal version of this procedure is shown in Algorithm 1.

Electronics 2024, 13, 573 11 of 19

Algorithm 1 What will you do when you are in state region X?
Input: Policy Graph PG = ⟨V, E, A⟩, Action Set A, Set of States X, Distance Threshold ε
Output: Explanation of policy behaviour in X per action

X′ ← X
if X ∩V = ∅ then

X′ ← {v ∈ V | dist(X, v) = min
v′∈V

dist(X, v′)} ▷ The set of states in V closest to X

end if
if dist(X, X′) > ε then

P← Uni f orm(A);
else

for all a ∈ A do
P[a]← ∑s∈X′ P(a|s)P(s)

∑s∈X′ P(s)
end for

end if
return P

For example, for the state region {{held(Service), pot_state(Waiting), onion_pos(Top),
tomato_pos(Stay), dish_pos(Stay), pot_pos(Left), service_pos(Interact), soup_pos(Left)}} (see
Figure 7), the most probable action is to interact since the state shows us that the agent holds
a soup and it is in front of the service.

* What will I do when I am in state X?

Possible predicates:

+ held None | O | T | D | S
+ pot_state_0 Of | Fi | Co | Wa
+ onion_pos S | R | L | T | B | I
+ tomato_pos S | R | L | T | B | I
+ dish_pos S | R | L | T | B | I
+ pot_pos_0 S | R | L | T | B | I
+ service_pos S | R | L | T | B | I
+ soup_pos S | R | L | T | B | I

State: S-Wa-T-S-S-L-I-L
I will take one of these actions:

-> Interact Prob: 94.05 %
-> Bottom Prob: 2.31 %
-> Left Prob: 1.82 %
-> Right Prob: 1.33 %
-> Stay Prob: 0.49 %

* What will I do when I am in state X?

Possible predicates:

+ held None | O | T | D | S
+ pot_state_0 Of | Fi | Co | Wa
+ onion_pos S | R | L | T | B | I
+ tomato_pos S | R | L | T | B | I
+ dish_pos S | R | L | T | B | I
+ pot_pos_0 S | R | L | T | B | I
+ service_pos S | R | L | T | B | I
+ soup_pos S | R | L | T | B | I

State: S-Wa-T-S-S-L-I-L
I will take one of these actions:

-> Interact Prob: 100 %

Figure 7. Example output of the algorithm What will I do when I am in state region {s}? from policy
graphs generated for a PPO-trained agent. On the left, the result for the stochastic policy graph; on
the right, the result for the greedy policy graph.

5.2. When Do You Perform Action a?

The answer to such a question can be generated from an extensive list of all states that
perform such an action (i.e., when is it the most likely?), as formalised in Algorithm 2.

For instance, when asking the policy graph of a trained agent for the Interact action, the
list may include the state {held(Nothing), pot_state(Cooking), onion_pos(Left), tomato_pos(Stay),
dish_pos(Interact), pot_pos(Left), service_pos(Right), soup_pos(Top)} (see Figure 8). There are
three main predicates to analyse here: (1) the agent is empty-handed, (2) the pot is cooking,
and (3) we are in an interact position with the dish pile. This results in picking up a plate,
which seems reasonable given a plate is necessary to pick up soup from the pot once it
finishes cooking.

Electronics 2024, 13, 573 12 of 19

Algorithm 2 When do you perform action a?
Input: Policy Graph PG = ⟨V, E, A⟩, Target Action a
Output: Set of target states SPGa where target a is the dominant action, Set of non-target
states SPG∗\a

SPGa ← {}
SPG∗\a ← {}
for all s ∈ V do

a∗ ← arg max
a∈A

P(a|s)

if a∗ = a then
SPGa ← SPGa ∪ s;

else
SPG∗\a ← SPG∗\a ∪ s;

end if
end for
return SPGa , SPG∗\a

* When do you perform action X?

Possible actions:

+ Top
+ Bottom
+ Right
+ Left
+ Stay
+ Interact

When do you perform action: Interact
Most probable action in 159 states:

-> None-Co-B-S-S-L-R-I
-> None-Co-B-S-S-R-R-I
-> None-Co-L-S-B-L-R-T
-> None-Co-L-S-I-L-R-T

* When do you perform action X?

Possible actions:

+ Top
+ Bottom
+ Right
+ Left
+ Stay
+ Interact

When do you perform action: Interact
Most probable action in 157 states:

—> None-Co-L-S-B-L-R-T
—> None-Co-L-S-I-L-R-T
-> None-Co-L-S-R-B-R-T
-> None-Co-L-S-R-I-R-R

Figure 8. Example output of the algorithm When do you perform action a? from policy graphs generated
for a PPO-trained agent. On the left, the result for the stochastic policy graph; on the right, the result
for the greedy policy graph.

An intuitive improvement over this version would be finding which subset of satisfied
predicates are sufficient to cause the action being picked. This would greatly reduce the
complexity of analysis, given that instead of outputting a large number of states, we would
find a small set of partial predicates.

5.3. Why Did You Not Perform Action a in State s?

This question is a non-trivial counterfactual question, regarding a transition: doing
action a in a state s which potentially has never been sampled (hence the value in answering
the question). To do so, Algorithm 3 finds the neighbouring states (i.e., states within a
distance threshold in the metric space proposed in Section 5.1) and lists the difference in
predicate sets between the regions where action a is performed and where it is not. Much
like before, we distinguish between three cases depending on the characteristics of s:

1. s ∈ V: The states within a distance threshold δ to s are gathered and filtered to
those where action a is the most likely (SPGa). The output is the list of differences
∀v ∈ SPGa , preds(s) − preds(v). If SPGa = ∅, no explanation is given, and it is
suggested to increase the threshold.

2. s /∈ V but ∃ s′ ∈ V : dist({s}, s′) < ε, ε ∈ R: the state s′ substitutes s in the algorithm
above.

3. s /∈ V and no similar state is found: no explanation is given due to lack of information.

Electronics 2024, 13, 573 13 of 19

Algorithm 3 Why did you not perform action a in state sp?
Input: Policy Graph G = V, E, Target Action a, Previous State sp, Distance Threshold Dconst
Output: Explanation of difference between current state and state region where at is
performed, explanation of where at is performed locally.

Sπa ← {}
Sπ∗\a ← {}
for all s ∈ {v ∈ V | dist({v}, sp) ≤ ε} do

a∗ ← most_ f requent_action_executed_ f rom(s);
if a∗ == a then

Sπa ← Sπa ∪ s;
else

Sπ∗\a ← Sπ∗\a ∪ s;
end if

end for
expected_region← describe(Sπa , Sπ∗\a , C);
current_region← describe({sp}, Sπa , C);
return di f f (expected_region, current_region), expected_region;

As an example, consider the answer to “why the agent did not take the top action
in state {held(Dish), pot_state(Cooking), onion_pos(Left), tomato_pos(Stay), dish_pos(Interact),
pot_pos(Top), service_pos(Bottom), soup_pos(Left)}?”, as seen in Figure 9. This state is not part
of the policy graph, whereas the one where dish_pos(Stay) indeed is (the difference being
whether the dish pile is in the agent’s interact position (s) or south (s′). The predominant
action in state s′ is going to the left. This algorithm’s output is the list of nearby states
where the chosen action is top. For example, {held(Dish), pot_state(Cooking), onion_pos(Left),
tomato_pos(Stay), dish_pos(Stay), pot_pos(Right), service_pos(Right), soup_pos(Top)}, where
the nearest soup was on top. Seeing the difference, a human interpreter may understand
that the agent has taken the action which brings him closer to the soup. The output of the
algorithm itself is arguably not an explanation, but it gives information which could be
useful in providing one.

* Why did not you perform X in Y state?

State: D-Co-L-S-S-T-B-L
I would have chosen: Actions.Left
I would choose Top if:
+ D-Co-L-S-S-R-R-T

pot_pos_0 = T -> pot_pos_0 = R
service_pos = B -> service_pos = R
soup_pos = L -> soup_pos = T

* Why did not you perform X in Y state?

State: D-Co-L-S-S-T-B-L
I would have chosen: Actions.Left
I would choose Top if:
+ D-Co-L-S-S-R-R-T

dish_pos = I -> dish_pos = R
pot_pos_0 = T -> pot_pos_0 = R
service_pos = B -> service_pos = R
soup_pos = L -> soup_pos: T

Figure 9. Example output of the algorithm Why did you not perform action a in state s? from policy
graphs generated for a PPO-trained agent. On the left, the result for the stochastic policy graph; on
the right, the result for the greedy policy graph.

5.4. Can We Rely on These Explanations?

As we mentioned in Section 1, one of the objectives of this project is to test if we
can obtain valid explanations from an agent behaviour using the explainability method
used in [9] in a multi-agent cooperative environment. In this section, we have seen some
examples of the explanations given by our policy graphs.

We would like to emphasise the fact that not all the explanations given by the policy
graph are so easy to interpret or understand at first sight. For instance, in Figure 9, we
have seen that we asked the policy graph why the agent did not perform the Top action in
the state {held(Dish), pot_state(Cooking), onion_pos(Left), tomato_pos(Stay), dish_pos(Interact),
pot_pos(Top), service_pos(Bottom), soup_pos(Left)}. In this case, the algorithm answered that
they would have chosen to go to the left, but the reason behind this decision is not so clear
here, at least at first sight. We could elaborate hypotheses about the strategy that each agent

Electronics 2024, 13, 573 14 of 19

was playing and maybe they could understand their decision. There is also the possibility
that in this state, the agent is not choosing the more appropriate action. Although analysing
these aspects in more depth is crucial for the objective of achieving better explainability, it
is out of the scope of this paper, so we leave it for future work.

The policy graphs derived in the previous sections enable the generation of natural
language explanations. In [8], the explanations are validated by comparing the sentences
generated by the algorithm against sentences written by human experts. While this may be
a valid qualitative approach for validation, it relies on expert availability and on the nature
of the specific domain.

Even though sometimes the explanations given by the method are not as illustrative
as we intended, at least we have an explanation. Namely, although at first glance we have
not been able to draw too many conclusions, this method is explaining to us what has to
happen for the agent to take said action. Therefore, it is one more tool to study and analyse
the behaviour of these types of AI models. For all the reasons mentioned above, we can say
we have met the goal of extracting useful explanations from the policy graph.

6. Validating the Policy Graph

To ensure that the policy graphs provide true explanations, we generate a policy
graph for each Overcooked layout based on the trajectories of 1500 episodes on different
seeds, and we build surrogate agents from them as explained in Section 4. In order
to test these new surrogate agents, we run them through the environment for a total
of 500 different fixed seeds and track the obtained rewards, the amount of previously
unknown states encountered, the amount of served soups per episode and the mean
log-likelihood −l = −∑ log P(s′, a|s) of the original’s trajectories for each policy graph.

In order to gauge the effect of cooperative predicates, we build four policy graphs
per Overcooked layout, which are increasingly more expressive in relation to the state and
actions of the agent’s partner. For each of the four policy graphs, we use a different subset
of the 10 predicates defined in Section 4. We give these subsets of predicates the names D11
to D14 (Table 3).

Table 3. Sets of predicates used to generate policy graphs. Note that held_partner and partner_zone are
the only cooperative predicates in the sets.

Single-Agent Coop.

he
ld

po
t_

st
at

e

ob
je

ct
_p

os

he
ld

_p
ar

tn
er

pa
rt

ne
r_

zo
ne

D11 X X X
D12 X X X X
D13 X X X X
D14 X X X X X

As we saw in Section 4, we are testing two different policy graph generation algorithms.
Therefore, we have built two surrogate agents for each layout. We call an agent Greedy if its
policy is generated from a greedy policy graph; analogously, we call an agent Stochastic if
its policy is generated from a stochastic policy graph.

All experiment runs on the Overcooked environment have been performed using Python 3.7,
PantheonRL v0.0.1 [23] andOvercooked-AI v0.0.1 (https://github.com/HumanCompatibleAI/
overcooked_ai, accessed on 15 November 2023). All PPO agents have been trained with
Stable Baselines 3 v1.7.0 [26], while the policy graphs have been generated with NetworkX
v2.6.3 (https://networkx.org/, accessed on 15 November 2023).

https://github.com/HumanCompatibleAI/overcooked_ai
https://github.com/HumanCompatibleAI/overcooked_ai
https://networkx.org/

Electronics 2024, 13, 573 15 of 19

1. S ∈ PG: Picks an action using weights from the probability distribution in the PG.
2. S /∈ PG, but a similar state is found: Same as case 1 but using the similar state.
3. S /∈ PG and a similar state is not found: Pick a random action.

Figure 10 shows the rewards obtained by the different surrogate agents. We can
see that in the simple and unident_s scenarios, the greedy surrogate agents manage to
consistently outperform the original ones while the stochastic ones do not. We can also see
how in random1, the greedy agents are not able to function properly while the stochastic
agents almost score as well as the originals. Note how the addition of the partner_zone
predicate to an agent clearly improves its median score or makes it perform better more
consistently in several cases. Examples include the greedy agents for simple, random3 and
random0 and the stochastic agents for simple, random1 and random3. It also can be seen that
although they may improve performance, in most layouts, it is not necessary to introduce
cooperative predicates to explain the surrogate agents’ behaviour. In the random0 scenario,
though, the agents need the predicate partner_zone to obtain good results.

0 200 400
Obtained reward

Orig.

G11
G12
G13
G14

S11
S12
S13
S14

simple

0 200
Obtained reward

random1

25 50 75
Obtained reward

random3

250 500 750
Obtained reward

unident_s

0 200 400
Obtained reward

random0

Figure 10. Obtained rewards by the original and surrogate agents in all layouts. Orig. stands for the
original agent, and G and S stand for the greedy and stochastic surrogate agents. G11 to G14 and S11
to D14, respectively, refer to the subsets of predicates D11 to D14.

Regarding the encounter of previously unknown states (Table 4), we can see that most
of the greedy surrogate agents achieve a very small amount of new states in relation to
their policy graph’s size (i.e., already seen states) and spend a very little amount of steps
in them in relation with the total evaluation time. An exception is random_3, for which it
appears that there still was a notable amount of states to explore when building the policy
graph. On the other hand, all the stochastic surrogate agents can consistently arrive at
unexplored states to a higher degree than their greedy counterparts. This is to be expected,
as the stochastic nature of the former inherently promotes exploration.

Also in Table 4, we can observe that the episode trajectories achieved by the original
agents have a better mean log-likelihood with the D11 policy graphs than the others.
This stems from the fact that the policy graphs built with D11 have a simpler world
representation than those built with D12–D14, as D11 is the smallest subset of predicates in
use. As a result, these policy graphs have less entropy.

To summarise, the stochastic policy graphs provide stable surrogate agents that mirror
the original agent’s behaviour consistently. However, greedy policy graphs are a double-
edged sword: their surrogate agents can act like distilled versions of the original’s behaviour
that remove noise, or they can stop functioning because their deterministic nature did
not capture fundamental parts of the original’s behaviour. Thus, stochastic policy graphs
are the more reliable choice from an XRL point of view and should be the one used for
producing explanations.

We have also seen that although there are scenarios where it is not necessary to intro-
duce cooperative predicates to explain the agent’s behaviour, there are others—particularly
those that promote the need for cooperation—where this information is crucial.

Electronics 2024, 13, 573 16 of 19

Table 4. Surrogate agent statistics. |PG| represents the size of the agent’s policy graph. NS means
amount of new states encountered, %|PG| represents the amount of new states as a proportion of the
size of the agent’s policy graph, and %steps indicates the percentage of steps during the evaluation
runs that the agent spent in new state. −l is the negative log-likelihood. Note that a previously
unknown state transition would make the log-likelihood go to Infinity, so instead we penalise it by
minPG log P(s′, a|s).

Greedy Stochastic
−l |PG| NS %|PG| %steps NS %|PG| %steps

si
m

pl
e D11 880.1 475 0 0.0% 0.0% 70 14.7% 1.3%

D12 996.2 884 2 0.2% 0.0% 75 8.5% 0.6%
D13 1036.2 1045 5 0.5% 0.0% 94 9.0% 0.5%
D14 1042.0 1734 5 0.3% 0.0% 135 7.8% 0.3%

ra
nd

om
_1 D11 696.1 2663 2 0.1% 0.0% 197 7.4% 1.6%

D12 731.4 5016 0 0.0% 0.0% 625 12.5% 3.2%
D13 828.2 5256 0 0.0% 0.0% 530 10.1% 2.3%
D14 827.8 8566 29 0.3% 0.3% 1260 14.7% 3.2%

ra
nd

om
_3 D11 760.5 2195 31 1.4% 3.2% 177 8.1% 1.2%

D12 787.1 3613 54 1.5% 1.4% 419 11.6% 1.4%
D13 859.3 3536 92 2.6% 4.3% 595 16.8% 1.6%
D14 878.6 5436 161 3.0% 2.1% 827 15.2% 1.3%

un
id

en
t_

s D11 559.5 202 0 0.0% 0.0% 12 5.9% 0.2%
D12 673.8 464 0 0.0% 0.0% 49 10.6% 0.1%
D13 743.0 422 1 0.2% 0.0% 19 4.5% 0.0%
D14 777.4 900 5 0.6% 0.0% 70 7.8% 0.1%

ra
nd

om
0 D11 650.5 1793 3 0.2% 0.3% 133 7.4% 1.6%

D12 693.6 3089 37 1.2% 30.6% 268 8.7% 2.1%
D13 710.9 2696 6 0.2% 0.0% 181 6.7% 1.2%
D14 745.5 4392 36 0.8% 0.3% 285 6.5% 1.7%

7. Conclusions

Explainability in Artificial Intelligence is a research area that has been rapidly growing
in recent years due to the need to understand and justify the decisions made by AIs,
especially in the field of RL. All the research made in this area can be key not only to study
the quality of an agent’s decision but also to help people rely on AI, especially in situations
where humans and machines have to cooperate, and it is becoming necessary to be able to
give explanations about their decisions. There are already some proposals in the literature
to provide them, and it is important to test their effectiveness in practice.

In this paper, we have presented the procedure and the experimental results of the
first use case of an explainability method, based on the construction of a policy graph by
discretising the state representation into predicates, into a cooperative MARL environment
(Overcooked). We have proposed two different algorithms to generate the policy graph,
and we have used them to generate explanations that, following [8], can be transformed
into human language expressions. In principle, the quality of these explanations can be
qualitatively validated by human experts with domain-specific knowledge. Our contribu-
tion to this respect is a quantitative validation of the generated policy graphs by applying a
method previously employed into a single-agent environment (Cartpole) [9], automatically
generating policies based on these explanations in order to build agents that represent
their original behaviour. Finally, we have analysed the behaviour of agents following these
new policies in terms of their explainability capabilities, depending on the environmen-
tal conditions, and we have shown that relevant predicates for cooperation become also
important for the explanations when the environmental conditions influence the need for
such cooperation.

The contributions presented in this paper are part of ongoing research, by testing
among different environments, types of agent policy, and explainability methods. Therefore,

Electronics 2024, 13, 573 17 of 19

several important points can be explored to complement and advance our work. For
example, policy graphs are rarely complete, as seen in Section 6. It would be very interesting
to be able to produce a domain-agnostic distance function that enables a reliable detection
of similar states for different environments.

There should also be a more general and comprehensive analysis of the question-
answering capabilities of policy graphs, as this can help with quantifying the understand-
ability of the explanations produced. One way can be via the exploration and creation of
new algorithms, adding to the ones explored in this paper, in order to attend to other modal-
ities that the receivers of explanations might find important. Additionally, a more thorough
study of when and why the policy graphs adjust better to the original agent, regardless of
the specific domain—in terms of, for instance, whether the policy is greedy or stochastic, or
what the relationship between each subset of predicates and the performance is.

Finally, other environments should be explored. Specifically, Overcooked-AI requires
cooperation in some layouts but this cooperation is not explicitly reflected in the policy but
emerging from the behaviour. It would be interesting to explore an application of policy
graphs in an environment where there are explicit mechanisms such as communication or
cooperative planning. In competitive or mixed-motive environments, such as StarCraft
II [27], Neural MMO [28], Google Research Football (https://github.com/google-research/
football, accessed on 5 December 2023), or Multi-Agent Particle [29], there also exists
potential in using policy graphs to create a model of the behaviour of opponent agents
based on observations. The resulting graph could be leveraged by an agent using Graph
Neural Networks (GNNs) [30] to change its own behaviour with the purpose of increasing
performance against specific strategies previously encountered.

Author Contributions: Conceptualisation, V.G.-A., A.T., D.G. and S.A.-N.; methodology, M.D.i.V.,
A.T. and S.A.-N.; software, M.D.i.V. and A.T.; validation, M.D.i.V., A.T. and V.G.-A.; formal analysis,
M.D.i.V. and V.G.-A.; investigation, M.D.i.V., D.G. and V.G.-A.; writing—original draft preparation,
M.D.i.V.; writing—review and editing, A.T., V.G.-A. and S.A.-N.; supervision, D.G. and S.A.-N.;
project administration, S.A.-N.; funding acquisition, S.A.-N. All authors have read and agreed to the
published version of the manuscript.

Funding: This work has been partially supported by the H2020 knowlEdge European project (Grant
agreement ID: 957331).

Data Availability Statement: Data and code can be found at the public repository: https://github.
com/MarcDV1999/overcooked-explainability (accessed on 4 December 2023).

Acknowledgments: The authors want to thank Pablo A. Martin-Torres and Dario Garcia-Gasulla for
their feedback and comments that helped improve the final version of the paper.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

XAI Explainable Artificial Intelligence
GDPR General Data Protection Regulation
RL Reinforcement Learning
XRL Explainable Reinforcement Learning
PG Policy Graph
MARL Multi-Agent Reinforcement Learning
SFT Soft Decision Tree
LIME Local Interpretable Model-agnostic Explanations
SHAP SHapley Additive exPlanations
PPO Proximal Policy Optimisation
TL Transferred Learning
STD Standard Deviation
NS New States

https://github.com/google-research/football
https://github.com/google-research/football
https://github.com/MarcDV1999/overcooked-explainability
https://github.com/MarcDV1999/overcooked-explainability

Electronics 2024, 13, 573 18 of 19

References
1. Li, B.O.; Qi, P.; Liu, B.O.; Di, S.; Liu, J.; Pei, J.; Yi, J.; Zhou, B. Trustworthy AI: From Principles to Practices ACM Comput. Surv.

2021, 55, 1–46. [CrossRef]
2. Omeiza, D.; Webb, H.; Jirotka, M.; Kunze, L. Explanations in Autonomous Driving: A Survey. IEEE Trans. Intell. Transp. Syst.

2021, 23, 10142–10162. [CrossRef]
3. Rosenfeld, A.; Richardson, A. Explainability in human—Agent systems. Auton. Agents-Multi-Agent Syst. 2019, 33, 673–705.

[CrossRef]
4. Longo, L.; Goebel, R.; Lecue, F.; Kieseberg, P.; Holzinger, A. Explainable artificial intelligence: Concepts, applications, research

challenges and visions. In Proceedings of the International Cross-Domain Conference for Machine Learning and Knowledge
Extraction, Dublin, Ireland, 25–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–16.

5. Goodman, B.; Flaxman, S. European Union regulations on algorithmic decision-making and a “right to explanation”. AI Mag.
2017, 38, 50–57. [CrossRef]

6. Madiega, T. Artificial intelligence act. Eur. Parliam. Eur. Parliam. Res. Serv. 2021.
7. Dafoe, A.; Hughes, E.; Bachrach, Y.; Collins, T.; McKee, K.R.; Leibo, J.Z.; Larson, K.; Graepel, T. Open Problems in Cooperative AI.

arXiv 2020, arXiv: 2012.08630.
8. Hayes, B.; Shah, J.A. Improving robot controller transparency through autonomous policy explanation. In Proceedings of the

2017 12th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Vienna, Austria, 6–9 March 2017; IEEE:
Piscataway, NJ, USA, 2017; pp. 303–312.

9. Climent, A.; Gnatyshak, D.; Alvarez-Napagao, S. Applying and Verifying an Explainability Method Based on Policy Graphs in
the Context of Reinforcement Learning. In Artificial Intelligence Research and Development; IOS Press: Amsterdam, The Netherlands,
2021; pp. 455–464.

10. Vila, M.; Gnatyshak, D.; Tormos, A.; Alvarez-Napagao, S. Testing Reinforcement Learning Explainability Methods in a Multi-agent
Cooperative Environment. Artif. Intell. Res. Dev. 2022, 356, 355–364.

11. Krajna, A.; Brcic, M.; Lipic, T.; Doncevic, J. Explainability in reinforcement learning: Perspective and position. arXiv 2022,
arXiv:2203.11547 .

12. Coppens, Y.; Efthymiadis, K.; Lenaerts, T.; Nowé, A.; Miller, T.; Weber, R.; Magazzeni, D. Distilling deep reinforcement learning
policies in soft decision trees. In Proceedings of the IJCAI 2019 Workshop on Explainable Artificial Intelligence, Cotai, Macao, 11
August 2019; pp. 1–6.

13. Juozapaitis, Z.; Koul, A.; Fern, A.; Erwig, M.; Doshi-Velez, F. Explainable reinforcement learning via reward decomposition. In
Proceedings of the IJCAI/ECAI Workshop on Explainable Artificial Intelligence, Cotai, Macao, 11 August 2019.

14. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17
August 2016; pp. 1135–1144.

15. Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing
Systems 30; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates,
Inc.: New York, NY, USA, 2017; pp. 4765–4774.

16. Greydanus, S.; Koul, A.; Dodge, J.; Fern, A. Visualizing and understanding atari agents. In Proceedings of the International
conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 1792–1801.

17. Sloman, S. Causal Models: How People Think about the World and Its Alternatives; Oxford University Press: Oxford, UK, 2005.
18. Halpern, J.Y.; Pearl, J. Causes and Explanations: A Structural-Model Approach—Part 1: Causes. Br. J. Philos. Sci. 2005, 56, 846–887.

[CrossRef]
19. Madumal, P.; Miller, T.; Sonenberg, L.; Vetere, F. Explainable reinforcement learning through a causal lens. In Proceedings of the

AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 2493–2500.
20. Kulkarni, T.D.; Narasimhan, K.; Saeedi, A.; Tenenbaum, J. Hierarchical deep reinforcement learning: Integrating temporal

abstraction and intrinsic motivation. Adv. Neural Inf. Process. Syst. 2016, 29, 3682–3690.
21. Shu, T.; Xiong, C.; Socher, R. Hierarchical and interpretable skill acquisition in multi-task reinforcement learning. arXiv 2017,

arXiv:1712.07294.
22. Zambaldi, V.; Raposo, D.; Santoro, A.; Bapst, V.; Li, Y.; Babuschkin, I.; Tuyls, K.; Reichert, D.; Lillicrap, T.; Lockhart, E.; et al.

Relational Deep Reinforcement Learning. arXiv 2018, arXiv:1806.01830.
23. Sarkar, B.; Talati, A.; Shih, A.; Sadigh, D. PantheonRL: A MARL Library for Dynamic Training Interactions. arXiv 2021,

arXiv:2112.07013.
24. Carroll, M.; Shah, R.; Ho, M.K.; Griffiths, T.; Seshia, S.; Abbeel, P.; Dragan, A. On the utility of learning about humans for

human-ai coordination. Adv. Neural Inf. Process. Syst. 2019, 32, 5174–5185.
25. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,

arXiv:1707.06347.
26. Raffin, A.; Hill, A.; Gleave, A.; Kanervisto, A.; Ernestus, M.; Dormann, N. Stable-Baselines3: Reliable Reinforcement Learning

Implementations. J. Mach. Learn. Res. 2021, 22, 12348–12355.
27. Vinyals, O.; Ewalds, T.; Bartunov, S.; Georgiev, P.; Vezhnevets, A.; Yeo, M.; Makhzani, A.; Küttler, H.; Agapiou, J.; Schrittwieser, J.;

et al. StarCraft II: A New Challenge for Reinforcement Learning. arXiv 2017, arXiv:1708.04782.

http://doi.org/10.1145/3379443
http://dx.doi.org/10.1109/TITS.2021.3122865
http://dx.doi.org/10.1007/s10458-019-09408-y
http://dx.doi.org/10.1609/aimag.v38i3.2741
http://dx.doi.org/10.1093/bjps/axi147

Electronics 2024, 13, 573 19 of 19

28. Suarez, J.; Du, Y.; Isola, P.; Mordatch, I. Neural MMO: A Massively Multiagent Game Environment for Training and Evaluating
Intelligent Agents. arXiv 2019, arXiv:1903.00784.

29. Lowe, R.; Tamar, A.; Harb, J.; Pieter Abbeel, O.; Mordatch, I. Multi-agent actor-critic for mixed cooperative-competitive
environments. Adv. Neural Inf. Process. Syst. 2017, 30, 6382–6393.

30. Munikoti, S.; Agarwal, D.; Das, L.; Halappanavar, M.; Natarajan, B. Challenges and Opportunities in Deep Reinforcement
Learning with Graph Neural Networks: A Comprehensive Review of Algorithms and Applications. IEEE Trans. Neural Netw.
Learn. Syst. 2023, 1–21. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TNNLS.2023.3283523
http://www.ncbi.nlm.nih.gov/pubmed/37363844

	Introduction and Motivation
	Background
	Explaining the Cartpole Scenario

	Overcooked-AI: A Multi-Agent Cooperative Environment
	Building a Policy Graph for the Trained Agent
	Explainability Algorithm
	What Will You Do When You Are in State Region X?
	When Do You Perform Action a?
	Why Did You Not Perform Action a in State s?
	Can We Rely on These Explanations?

	Validating the Policy Graph
	Conclusions
	References

