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Abstract: In recent years, there has been significant progress in human pose estimation, fueled by the
widespread adoption of deep convolutional neural networks. However, despite these advancements,
multi-person 2D pose estimation still remains highly challenging due to factors such as occlusion,
noise, and non-rigid body movements. Currently, most multi-person pose estimation approaches
handle joint localization and association separately. This study proposes a direct regression-based
method to estimate the 2D human pose from a single image. The authors name this network YOLO-
Rlepose. Compared to traditional methods, YOLO-Rlepose leverages Transformer models to better
capture global dependencies between image feature blocks and preserves sufficient spatial informa-
tion for keypoint detection through a multi-head self-attention mechanism. To further improve the
accuracy of the YOLO-Rlepose model, this paper proposes the following enhancements. Firstly, this
study introduces the C3 Module with Swin Transformer (C3STR). This module builds upon the C3
module in You Only Look Once (YOLO) by incorporating a Swin Transformer branch, enhancing
the YOLO-Rlepose model’s ability to capture global information and rich contextual information.
Next, a novel loss function named Rle-Oks loss is proposed. The loss function facilitates the training
process by learning the distributional changes through Residual Log-likelihood Estimation. To assign
different weights based on the importance of different keypoints in the human body, this study
introduces a weight coefficient into the loss function. The experiments proved the efficiency of the
proposed YOLO-Rlepose model. On the COCO dataset, the model outperforms the previous SOTA
method by 2.11% in AP.

Keywords: human pose estimation; deep learning; convolutional neural network; transformer

1. Introduction

The task of multi-person 2D keypoint detection aims to enable computers to under-
stand all instances in an image and simultaneously identify the motion joints of each
individual. Human pose estimation is one of the fundamental tasks in the field of com-
puter vision, with extensive applications in numerous areas, including activity recogni-
tion [1], human–robot interaction [2], pedestrian tracking [3], and the re-identification of
individuals [4].

Due to the various bending, stretching, or twisting movements of joints during human
activities, as shown in Figure 1c,d,f, human joints may also be occluded by other objects,
body parts, or themselves, as shown in Figure 1a,b,e. These factors make it challenging for
pose estimation algorithms to accurately detect the positions and angles of joints. Therefore,
pose estimation algorithms need to accurately capture these non-rigid variations to provide
accurate pose estimation results. As a result, multi-person 2D human pose estimation is a
challenging task.

Human pose estimation algorithms can be classified based on two criteria. The first
criterion is the algorithm’s workflow, which categorizes human pose estimation approaches
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into three types: top-down, bottom-up, and single-stage pose estimation. The second
criterion is the method used for predicting keypoints, which can be divided into regression-
based pose estimation and heatmap-based pose estimation.

(a) (b) (c)

(d) (e) (f)

Figure 1. The challenges in multi-person 2D pose estimation are illustrated using images from the
COCO dataset. (c,d,f) illustrate the joints bending, stretching, and twisting movements caused by
human activities. (a,b,e) illustrate the joints may also be occluded by other objects, body parts,
or themselves.

However, existing human pose estimation approaches still have some drawbacks.
Firstly, top-down algorithms heavily rely on the performance of the human detector for
accurate keypoint detection. If the human detector performs poorly, the accuracy of key-
point detection will also be affected. Additionally, this approach has a high computational
cost [5], especially when there are a large number of human instances in the image, resulting
in longer running times. Secondly, although heatmap-based methods show excellent perfor-
mance, they require significant computational and storage resources, making it challenging
to use them in single-stage approaches at the current stage.

In the task of object detection, the YOLO series [6] plays a significant role as a one-stage
detector. In this study, the authors propose an improved model named YOLO-Rlepose
based on YOLO to address the aforementioned issues. This study utilizes CSP-Darknet53
and PANet [7] as the backbone and neck of YOLO-Rlepose, respectively. In the head part,
YOLO-Rlepose consists of four detection heads, each dedicated to detecting small, medium,
and large objects. Each detection head includes an object box detection head, a keypoint
detection head, and a convolutional layer for computing the loss. Additionally, the authors
replace the original C3 module with an improved C3 module with Swin Transformer
(C3STR) in the neck, enabling the network to better capture global information and rich
contextual information.

This study proposes a regression-based single-stage human pose estimation method.
To reduce the impact of noise on regression-based methods, a new loss function named
Rle-Oks loss is introduced. The loss function simulates the distribution of the output by
exploring maximum-likelihood estimation, thereby improving the accuracy of human pose
regression. The contributions are described as follows:

• This study adds the Swin Transformer to the C3 module and proposes C3STR, enabling
the network to better capture global information.

• This study introduces the Rle-Oks loss and applies it to human pose estimation,
enabling the model to have keypoint weights when calculating the error between
predicted and ground-truth keypoint values.
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• On the COCO dataset, the proposed YOLO-Rlepose achieved 65.01 (AP), outperform-
ing YOLO-Pose (previous SOTA method) by 2.11%.

2. Related Work
2.1. Multi-Person 2D Pose Estimation

The existing approaches to multi-person pose estimation can be broadly categorized
into top-down methods, bottom-up methods, and single-stage human pose estimation
based on their algorithmic workflows.

2.1.1. Top-Down Methods

Top-down methods first use a human detector to determine the bounding boxes of
each human instance in the image and then crop these instances. Next, keypoints are
detected among the obtained multiple-person instances. Representative algorithms of this
kind include Hourglass [8] and CPN [9]. The Hourglass network is a sequential architecture
that utilizes pooling and upsampling operations to capture different spatial relationships
associated with the human body. By processing and integrating features, it aims to generate
accurate predictions. This architecture is referred to as the ’stacked hourglass’ network.
CPN locates simple keypoints through the feature pyramid network GlobalNet and then
integrates all features from GlobalNet using RefineNet to obtain the remaining keypoints.
Generally, top-down methods tend to have slower inference speed during the inference
process due to the need for image cropping before human keypoint detection. Additionally,
the efficiency of the detection of the human body plays a crucial role in the performance of
top-down methods.

2.1.2. Bottom-Up Methods

Bottom-up methods detect the keypoints in the image first and then connect the de-
tected keypoints to form the human skeleton. Currently, most bottom-up methods are
primarily based on the association of detected keypoints belonging to the same individual.
Representative algorithms of this type of approach include Openpose [10] and HigherHR-
Net [11]. Openpose is the first real-time deep-learning-based algorithm for multi-person
2D pose estimation. It can track the facial expressions, torsos, limbs, and even fingers of
individuals, making it suitable for both single-person and multi-person pose estimation
with good robustness. HigherHRNet adopts a novel high-resolution feature pyramid
module to generate high-resolution heatmaps, making the network more efficient. It also
proposes a Multi-Resolution Supervision strategy, which assigns the training objectives
of varying resolutions to their respective feature pyramid levels. Compared to top-down
methods, bottom-up methods usually run faster but have lower performance due to the
difficulty of grouping processing.

2.1.3. Single-Stage Human Pose Estimation

To address the drawbacks of both top-down and bottom-up methods, single-stage
human pose estimation has been proposed. FCPose [5] is a fully convolutional framework
for multi-person pose estimation that employs dynamic instance-aware convolution for
keypoint estimation. This approach allows FCPose to eliminate the need for ROIs and post-
processing after grouping. SPM [12] was proposed as the first single-stage model to improve
the efficiency of multi-person pose estimation. The paper introduces a novel Structured Pose
Representation, SPR, which unifies the position representation of both human instances and
body keypoints, enabling the model to directly predict the poses of multiple individuals in
a single stage. To adapt the network parameters to each instance, InsPose [13] introduces an
instance-aware module. InsPose significantly improves the network’s ability to recognize
various poses. DirectPose [14] employs a novel Keypoint Alignment mechanism that
overcomes the main challenge of the feature misalignment between convolutional features
and predicted features in an end-to-end framework. PointSetNet [15] introduces a new
object representation that can be viewed as an extension and generalization of traditional
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bounding boxes. YOLO-Pose [16] is a novel heatmap-free keypoint detection method
based on the YOLO object detection framework. This method does not require the use of
bottom-up post-processing methods to group the detected keypoints into a skeleton. This
is because each bounding box is associated with a specific pose, which naturally groups
the keypoints. Unlike top-down methods, instance cropping from bounding boxes is not
needed since the poses of all individuals in the image are localized in a single inference.

2.2. Transformer in Vision

Transformers have been widely applied in natural language processing and have
achieved significant progress in machine translation, text classification, and other tasks.
Recently, many papers have attempted to introduce the Transformer architecture into
computer vision tasks.

Early research focused on using Transformers as better decoders. For example, Trans-
Pose [17] introduces a Transformer model for human pose estimation, which directly
processes the features extracted by a convolutional neural network to model global relation-
ships, enabling the model to effectively capture dependencies between predicted keypoints.
TokenPose [18] is a token-based approach to human pose estimation, where each keypoint
is embedded with a token to estimate the position of occluded keypoints and model re-
lationships between different keypoints. These methods are based on heatmaps and use
complex Transformer encoders to enhance the model capacity. To improve the keypoint
detection performance while maintaining high computational efficiency, Poseur [19] was
proposed as a regression-based approach with a lightweight Transformer decoder.

Vision Transformer (ViT) demonstrated that the Transformer architecture can be di-
rectly applied to process images by treating them as a sequence of patches. ViT has achieved
a performance comparable to that of convolutional networks in the field of computer vision.
ViTPose [20] showcases the surprising capability of Vision Transformer in pose estima-
tion, highlighting the simplicity of the model structure, the scalability of model size, the
flexibility of training paradigms, and the portability of knowledge between models.

In computer vision tasks, the scale of input images varies significantly and is not
fixed. To enable models to handle images of different scales more flexibly, the Swin
Transformer [21] adopts a hierarchical structure similar to that of a convolutional neural
network to process images, thereby improving computational efficiency. The hierarchical
structure offers the flexibility to model at multiple scales, and its computational complexity
scales linearly with the image size.

2.3. Heatmap-Based Pose Estimation and Regression-Based Pose Estimation

Currently, keypoint localization tasks can be roughly divided into two categories
based on the method for predicting keypoints: heatmap-based and regression-based.

2.3.1. Heatmap-Based Pose Estimation

TompSon et al. [22] first proposed a 2D pose estimation method based on heatmaps,
which represents the joint positions of the human body by estimating the per-pixel likeli-
hood of each keypoint location. Since then, heatmap-based methods have become dominant
in the field of 2D human pose estimation. To maintain high-resolution feature maps, some
works have attempted to design powerful backbone networks for heatmap supervision.
RSN [23] efficiently aggregates features with the same spatial size, resulting in fine-grained
local representations that preserve rich spatial information at lower levels and achieve
precise keypoint localization. HRNet [24] performs repeated multi-scale fusion, generating
rich high-resolution representations that lead to more accurate keypoint predictions. Some
works [25,26] have also focused on mitigating biases in heatmap data.

2.3.2. Regression-Based Pose Estimation

In the research of 2D human pose estimation, only a few studies have employed
regression-based approaches. Although regression-based methods have faster inference
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speeds, their accuracy is not as good as heatmap-based methods. Therefore, it receives
less attention from researchers. Carreira et al. [27] proposed the Iterative Error Feedback
(IEF) network to improve the performance of regression models. Wei et al. [15] employed
Point-Set Anchors for object detection, instance segmentation, and human pose estimation.
To achieve comparable performance between regression-based methods and heatmap-
based methods in human pose estimation, RLE [28] was proposed as a method that utilizes
maximum-likelihood estimation and flow models for keypoint prediction.

In the field of 3D human pose estimation, Rogez et al. [29] proposed an end-to-
end architecture named LCR-Net, which can detect 2D and 3D poses in natural images.
This network locates individuals by extracting candidate regions. Then, a classification
branch is used to score each proposed pose and independently regress each anchored
pose. Pavllo et al. [30] demonstrated that 3D poses in videos can be effectively estimated
using a fully convolutional model with extended temporal convolutions based on 2D
keypoints. In the field of human pose estimation, Wang et al. [31] proposed an innovative
technique that accurately generates high-quality 3D pose information in outdoor images
without being limited by internal conditions. Zeng et al. [32] introduced a segmentation
and recombination method named SRNet, which can easily adapt to single-image and
temporal models, and it shows significant improvement in predicting rare and unseen
poses. Choi et al. [33] proposed Pose2Mesh, a novel system based on Graph Convolutional
Neural Networks (GraphCNNs), which directly estimates the 3D coordinates of human
mesh vertices from 2D human pose estimation. Fang et al. [34] introduced a pose grammar
to address the problem of 3D human pose estimation, further improving the model’s
generalization ability.

3. Proposed Method

The proposed network architecture in this paper is a hybrid model named YOLO-
Rlepose, which combines both convolutional and Swin Transformer models, primarily
based on CSP-Darknet53. YOLO-Rlepose consists of three main parts. In the first part,
the model utilizes CSP-Darknet53 as the backbone network and incorporates the C3STR
module, which is a fusion with the Swin Transformer, into the backbone network to extract
features more efficiently. The integration of the Swin Transformer helps enhance the feature
extraction process. In the second part, the model employs the PANet structure to further
refine the features. In the third part, keypoint detection heads and object box detection
heads are introduced to predict keypoints and bounding boxes on four different scales of
feature maps.

In addition, this study proposes a novel loss function named Rle-Oks loss. This loss
function can estimate the potential distribution of errors between predicted and ground-
truth keypoint values and facilitate human pose regression.

3.1. YOLO-Pose

Currently, the majority of human pose estimation approaches utilize top-down or
two-stage methods. They first detect the locations of each person in the image and then
perform single-person pose estimation for the detected individuals. The complexity of
this top-down approach increases linearly with the number of individuals in the image.
Due to its complexity and unstable runtime, it is challenging to apply this method to
real-time applications.

YOLO-Pose is a human pose estimation algorithm that employs a similar approach
to bottom-up methods. Unlike most bottom-up human pose estimation algorithms, it
does not use heatmaps. Instead, it associates all keypoints of a person with an anchor.
For a given image, the anchor associated with a person stores not only the bounding box
but also the complete 2D pose keypoints. The size of the detection box is normalized
based on the height and width of the anchor, but the keypoints are not constrained by the
anchor’s dimensions. Therefore, YOLO-Pose can still predict keypoints that are outside the
bounding box, as shown in Figure 2.
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Figure 2. YOLO-Pose accurately predicts occluded keypoints that are located outside the bounding
box in images from the COCO dataset.

The results in Figure 2 demonstrate the output of the human pose estimation model,
including the predicted bounding boxes and the estimated human skeletons. The bounding
boxes not only indicate the position of the human body but also reflect the accuracy of the
algorithm’s predictions. The predicted human skeletons showcase the algorithm’s ability
to recognize keypoints on the human body. By overlaying these two pieces of information,
we can visually assess the performance of the human pose estimation model.

3.2. C3 Module with Swin Transformer

For multi-person human pose estimation in complex scenes, collecting relevant key-
point information from neighboring regions can help alleviate keypoint confusion. How-
ever, convolutional neural networks have limitations in capturing global contextual infor-
mation due to the nature of convolutional operations.

Compared to convolutional operations, the Transformer model leverages multi-head
self-attention mechanism to effectively capture spatial information among keypoints in an
image, resulting in more accurate keypoint detection. Compared to convolutional neural
networks, Transformers exhibit higher robustness to perturbations and displacements.

In existing Transformer-based models, the scale of tokens is fixed, which is not suitable
for the computer vision domain. Moreover, the pixel resolution of images is much larger
than the number of words in text paragraphs. In many visual tasks, such as semantic
segmentation, dense predictions need to be made at the pixel level. Therefore, Transform-
ers struggle to handle high-resolution images. To address this issue, Swin Transformer
introduces hierarchical feature maps.

The Swin Transformer is an approach that replaces the standard multi-head self-
attention module (MSA) with a shifted-window-based module. In the Swin Transformer,
all layers remain unchanged except for the replacement of the MSA module. The structure
of the Swin Transformer is illustrated in Figure 3a.

This study modified the C3 module in the original YOLOv5 architecture using the Swin
Transformer module named C3STR. Compared to the original C3 module, the modified
C3STR module can better capture global information and enrich contextual information.
Figure 3b illustrates the structure of the C3 module.

The C3 module is an important component of the YOLOv5 network, that aims to in-
crease the depth and receptive field of the network, thereby enhancing the feature extraction
capability. The C3 module consists of three basic convolutional blocks and N Bottleneck
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modules. The first convolutional block has a stride of 2, which reduces the size of the
feature map by half, while the second and third convolutional blocks have a stride of 1.
The convolutional blocks in the C3 module utilize 3 × 3 convolutional kernels. Addition-
ally, Batch Normal layers and LeakyReLU activation functions are incorporated between
convolutional blocks to improve the stability and generalization ability of the model.

LN

W-MSA

MLP

LN

LN

SW-MSA

MLP

LN

Conv

Conv

Concat

Conv

×N

Conv

Conv

Swin

Concat

Conv

Conv

N×

LN

W-MSA

MLP

LN

LN

SW-MSA

MLP

LN

(a) Structure of the Swin 

Transformer

(b) Structure of the C3 

module

(c) Structure of the 

C3STR module

Figure 3. (a) W-MSA and SW-MSA are multi-head self-attention modules with regular and shifted-
window configurations, respectively. (b) The left branch of the module consists of a single basic
convolutional module, while the right branch is composed of convolutional layers and multiple
Bottleneck units. The main purpose of this module is to learn residual features. Finally, the outputs
from the two branches of the C3 module are concatenated together. (c) In addition to the C3 module,
the C3STR module incorporates a Swin Transformer branch, which consists of a Swin Transformer
module and three standard convolutional layers.

To enable the C3 module to gather relevant keypoint information from neighboring
regions, this study integrated the Swin Transformer into the C3 module, resulting in the
C3STR module. The structure of the C3STR module is illustrated in Figure 3c.

This module consists of three parallel branches, each playing a different role in fea-
ture extraction.

Firstly, the leftmost branch contains a convolutional module with the SiLU activa-
tion function. This branch focuses on directly processing the input feature map through
convolutional operations to preserve the spatial information integrity.

Secondly, the middle branch has a more complex structure composed of a convolu-
tional module and N Bottleneck modules. Each Bottleneck module employs a residual
connection structure to facilitate the training of deep networks. In this module, the channel
number of the input feature map is halved by a 1 × 1 convolutional kernel to reduce the
parameter count and computational complexity. Subsequently, a 3 × 3 convolutional kernel
is used to expand the channel number, restoring it to the original dimension. This process
ensures that the channel number of the input and output feature maps remains unchanged.

The rightmost branch combines a standard convolutional module with a Swin Trans-
former module. The Swin Transformer utilizes a self-attention mechanism, enabling it
to capture long-range dependencies, which is particularly important for understanding
complex human poses.

Finally, the outputs of these three branches are merged by concatenating their feature
maps along the channel dimension. Then, the concatenated feature map is processed again
by a standard convolutional module to integrate the information from different branches
and output the final feature representation. This design allows the C3STR module to fully
leverage the advantages of different network architectures, thus achieving more accurate
predictions in the task of human pose estimation.

Using the Transformer too early in the network may result in the loss of meaningful
contextual information. Therefore, this study only modified a subset of the C3 modules,
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specifically the ones directly connected to the head. The network architecture is illustrated
in Figure 4.
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Figure 4. YOLO-Rlepose network architecture.

3.3. Rle-Oks Loss

In the field of human pose estimation, heatmap-based methods have dominated the
landscape. These methods generate likelihood heatmaps for each keypoint and locate the
keypoints through argmax and soft-argmax operations. While heatmap-based methods ex-
hibit excellent performance, they come with high computational and storage requirements.

In contrast, regression-based methods for human pose estimation are more efficient but
often exhibit lower performance. During human pose estimation, real-time edge devices
often directly map the input to the output joint coordinates. Regression-based methods are
highly effective in such cases. However, in practical applications, the presence of occlusion,
motion blur, and truncation issues leads to ambiguous ground-truth labels, resulting in
the poor performance of regression-based methods in these scenarios. Heatmap-based
methods leverage likelihood heatmaps to make the network robust to such ambiguities,
but regression-based methods are still susceptible to the influence of these noisy labels.

Therefore, to mitigate the impact of noise on regression-based methods, maximum-
likelihood estimation can be employed to model the distribution of the output, thereby
facilitating human pose regression [28]. The regression paradigm employed to capture the
potential output distribution is referred to as Residual Log-likelihood Estimation (RLE).

A generative model, in simple terms, is a model that generates new samples that follow
the same distribution as the given training data. Assuming the training data follow the
distribution pdata(x), the generated samples follow the distribution pmodel(x), and our goal
is to make these two distributions, pdata(x) and pmodel(x), similar. Therefore, the essence of
a generative model is to fit the given training samples using a known probability model,
which can be represented by a parameterized distribution qθ(x).

Since different regression losses essentially make different assumptions about the
output probability distribution, utilizing a flow-based model [35] to learn the distribution
of errors between predicted and ground-truth keypoint values can help construct a better
regression loss function.

Normalizing flows helps the model learn to construct complex distributions by trans-
forming simple distributions through invertible mappings. Firstly, a flow model ϕ is used
to map a zero-mean initial distribution Z̄ ∼ N(0, I) to a zero-mean deformed distribution
X̄ ∼ Pϕ(X̄). Then, a regression model Θ is used to predict µ̂ and σ̂ to control the location
and scale of the distribution. The final distribution PΘ,ϕ(X | τ) is obtained by shifting
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and rescaling X̄ to X, where X = X̄·σ̂ + µ̂. Therefore, the loss function can be written as
Equation (1) [28]:

L = − log PΘ,ϕ |X=µg

= − log Pϕ(µ̄g)− log
∣∣∣det ∂µ̄g

µg

∣∣∣
= − log Pϕ(µ̄g) + log σ̂.

(1)

Given an input image τ, the regression model predicts a distribution PΘ(X | τ), which
represents the probability of the ground truth occurring at position X. In the equation,
µ̄g =

µg−µ̂
σ̂ and ∂µ̄g/∂µg = 1/σ̂, where µg − µ̂ represents the error between the predicted

value and the ground-truth value, and σ̂ is a constant. With this design, the flow model can
now reveal the deviation between the output and the ground truth.

However, in the problem of human pose estimation, certain keypoints are more crucial
than others. For instance, keypoints on the human body, such as shoulders, knees, and hips,
are more important compared to keypoints on the head. Obviously, the less important
keypoints are penalized more heavily for the same pixel-level error.

OKS (Object Keypoint Similarity) is the most popular evaluation metric for assessing
keypoint detection. This metric is inspired by the IoU (Intersection over Union) metric used
in object detection, with the purpose of measuring the similarity between the ground-truth
and predicted human body keypoints. The OKS can be calculated as Equation (2):

OKS =
∑

Nkpts
i=1 e

−
d2

i
2s2ki

2
δ(vi > 0)

∑
Nkpts
i=1 δ(vi > 0)

. (2)

In this equation, di represents the Euclidean distance between the ground-truth and
detected keypoints, and δ is the visibility flag for the ground-truth keypoints. s∗ki is the
standard deviation of the Gaussian distribution; here, s is the scale parameter of the target,
which represents the size or dimension of the target in the image. ki represents the weights
of the individual keypoints of the human body, and Nkpts represents the total number of
keypoints in the human body.

The RLE loss only considers the direct difference between predicted and ground-truth
values, failing to fully account for variations in human target size and the relative impor-
tance of different keypoints. This approach neglects the possibility that the distribution of
keypoint errors may vary with changes in target size and keypoint importance, potentially
resulting in the model’s inability to accurately fit the true data distribution. To address
this issue, this paper proposes a new loss function, named Rle-Oks loss, by referencing
the OKS evaluation metric. This loss function not only considers the direct differences
between keypoints but also normalizes these differences, similar to the OKS evaluation
metric. Specifically, the Rle-Oks loss refers to the OKS evaluation metric and divides each
keypoint error, denoted by µgi − µ̂i, by a normalization factor ϵi determined by the target
size s and keypoint-specific weight ki. This provides a more detailed and fair measurement
of the error. Through this approach, the Rle-Oks loss can more accurately reflect the error
between predicted keypoints and ground-truth keypoints and helps the model better adapt
to targets of different sizes and keypoints of different importance.

In the task of human pose estimation, the prediction error of each target is usually
accumulated from the keypoint errors it consists of. Considering that a target may contain
17 keypoints (e.g., head, neck, shoulders, elbows, wrists, hips, knees, and ankles), this paper
defines the total loss function as the sum of the losses of these 17 keypoints. Therefore,
the Rle-Oks loss function is represented by Equation (3):

L =

Nkpts

∑
i=1

log(σ̂i·ϵi)− log Pϕ(µ̄gi ·ϵi). (3)
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where ϵi =
1

2ski
, µ̄gi =

µgi−µ̂i
σ̂i

, and σ̂i is a constant.
At the beginning stage of training, the flow-based model may struggle to learn the

correct distribution of errors, leading to increased difficulty in training the regression model
and potentially decreasing the model’s performance. To address this issue, the target
probability distribution formula can be written as Equation (4):

log Pϕ(X̄) = log Q(X̄) + log Gϕ(X̄) + log s. (4)

where the first term Q(X̄) represents a simple distribution (such as a Gaussian or Laplace
distribution), Gϕ(X̄) is the distribution that the flow model needs to learn, and the third
term is a constant. Through this transformation, it can be observed that the dependence
of the regression model on the flow model is greatly reduced, as the learned results of the
flow model are only used to complement the simple distribution.

The presence of occlusions poses a challenge for keypoint detection tasks, as occlusions
can prevent algorithms from accurately identifying the position and pose of the target.
Therefore, the Rle-Oks loss takes into account the occlusions of keypoints, which can
improve the accuracy and robustness of keypoint detection.

4. Experiments

The proposed model was evaluated on the COCO dataset. The COCO dataset consists
of over 200,000 images with a total of 250,000 human instances, each annotated with
17 keypoints. The training set contains 57,000 images, while the validation and test sets
contain 5000 and 20,000 images, respectively. The proposed model was trained on the
training set, and the performance was evaluated on the test set. To evaluate the performance,
this study uses the Average Precision (AP) based on the Object Keypoint Similarity (OKS)
as the main evaluation metric on the COCO dataset. The experimental results are reported
as the Average Precision (AP), Average Recall score (AR), and other metrics, such as AP50,
AP75, and APL at different thresholds and target sizes.

In the field of human pose estimation, Average Precision (AP) is a crucial performance
evaluation metric. The calculation of AP involves a threshold value, denoted by t, which is
used to determine whether a keypoint detection is considered correct. Specifically, OKS
is employed to measure the similarity between the predicted keypoints and the ground-
truth keypoints. For a given threshold value t, if the OKS of a predicted keypoint is
greater than t, it is regarded as a successful detection. Conversely, if the OKS is less than t,
the detection is considered unsuccessful, indicating potential false positives, false negatives,
or other errors. For each threshold value t, we count the number of detections with an
OKS greater than the threshold and compare it to the total number of detections, resulting
in a ratio. This ratio represents the proportion of correctly detected keypoints by the
model at the current threshold, with a higher value indicating better detection performance.
AP provides a comprehensive measure by aggregating the performance evaluations at
different thresholds.

During the training process, to ensure the consistency of the input images, we first
resized them to the desired size while maintaining a fixed aspect ratio. To maintain the
consistency of the aspect ratio, we performed padding operations at the bottom of the
image. This ensures that each sample has the same size and aspect ratio when performing
pose estimation on the input images. The SGD optimizer with a cosine scheduler was used
in training.

4.1. Implementation Details

YOLO-Rlepose was implemented with the help of PyTorch 1.11. All models were
trained and tested on NVIDIA GeForce RTX 2080 Ti. The device is a graphics card intro-
duced by NVIDIA, located in Santa Clara, California, United States. During the training
phase, partially pre-trained models from YOLO-Pose were utilized to accelerate the training
progress. Since YOLO-Rlepose shares a significant portion of the backbone and some parts



Electronics 2024, 13, 563 11 of 16

of the head with YOLO-Pose, many weights can be transferred, which significantly saves
training time.

During the training phase, both the regression model and the flow model are optimized
simultaneously. The initial density distribution of the flow model is set to a Laplace
distribution. During inference, there is no need to run the flow model, allowing the loss
function to be flexibly applied to various regression algorithms without increasing the
testing time. Since the flow model is lightweight, it has a minimal impact on the training
speed. Due to the generality of this loss function, it can also be applied to other versions
of YOLO.

4.2. Results on COCO Test Set

Table 1 compares the proposed model with other methods based on Higher, HR-
Net, and EfficientHRNet. The proposed model demonstrates competitive performance in
terms of AP values compared to existing methods. The achievements in AP values are
particularly significant.

Table 1. Comparison with bottom-up methods on the COCO dataset.

Method Backbone Size AP AP50 AP75 APL AR

Openpose [10] − − 61.8 84.9 67.5 68.2 66.5
Hourglass [8] Hourglass 512 56.6 81.8 61.8 67.0 −
PersonLab [36] ResNet-152 1401 66.5 88.0 72.6 72.3 71.0
PiPaf [37] − − 66.7 − − 72.9 −
HRHet [24] HRNet-W32 512 64.1 86.3 70.4 73.9 −
EfficientHRNet-H0 [38] EfficientNetB0 [39] 512 64.0 − − − −
EfficientHRNet-H0

† [38] EfficientNetB0 [39] 512 67.1 − − − −
HigherHRNet [11] HRNet-W32 512 66.4 87.5 72.8 74.2 −
HigherHRNet [11] HRNet-W48 640 68.4 88.2 75.1 74.2 −
HigherHRNet † [11] HRNet-W48 640 70.5 89.3 77.2 75.8 −
DEKR [40] HRNet-W32 512 67.3 87.9 74.1 76.1 72.4
DEKR [40] HRNet-W48 640 70.0 89.4 77.3 76.9 75.4
YOLOv5s6-Pose [16] Darknet-csp-d53-s 960 62.9 87.7 69.4 71.8 69.8
YOLOv5m6-Pose [16] Darknet-csp-d53-m 960 66.6 89.8 73.8 75.2 73.4
YOLOv5l6-Pose [16] Darknet-csp-d53-l 960 68.5 90.3 74.8 76.5 75.0
YOLOv5s6-Rlepose Darknet-csp-d53-s 960 65.0 87.8 71.2 71.7 71.5
YOLOv5m6-Rlepose Darknet-csp-d53-m 960 67.6 89.2 74.5 73.8 74.0

† Indicates multi-scale testing.

One of the reasons why the proposed model performs well in terms of AP values is
the adoption of a novel loss function and network module, which enables the network
to better understand the spatial relationships between keypoints. Through this approach,
the model gains a better understanding of the structure and relationships of human poses.

Furthermore, the proposed model exhibits superiority in predicting keypoints that are
partially occluded. As shown in Figure 5, the model accurately predicts partially occluded
keypoints, which is crucial for practical applications where occlusions may occur.

Experiments indicate that the proposed model is competitive in keypoint detection tasks
and achieves notable results in terms of AP values and predicting keypoints in occluded body
parts. The authors believe that the proposed model can play an important role in various
practical applications, such as human action analysis and human–computer interaction.
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Figure 5. YOLO-Rlepose accurately predicts partially occluded keypoints in images from the
COCO dataset.

4.3. Comparison of Rle-Oks Loss with Rle Loss and OKS Loss

One of the main contributions of this model is the Rle-Oks loss. The advantage of the
Rle-Oks loss lies in its consideration of both the spatial relationships between keypoints
and the weights between keypoints. In contrast, the traditional OKS loss only considers the
distance between keypoints, while the Rle-Oks loss fails to take into account the visibility
of keypoints and their weights. Therefore, the Rle-Oks loss can more accurately reflect the
error in keypoint localization and better capture the distribution of real errors.

In the experiments, the authors compared the performance of OKS loss, Rle loss,
and Rle-Oks loss in the yolov5s6-rlepose model. The results in Table 2 clearly show
that the Rle-Oks loss, with the inclusion of keypoint weighting coefficients, exhibited
better performance. This indicates that the Rle-Oks loss can more accurately estimate the
localization error of keypoints and provide more precise loss feedback, thereby facilitating
model training and optimization.

The experiments demonstrate that the Rle-Oks loss is an effective loss function that
can model the error distribution better and provide more accurate loss estimation. Using
the Rle-Oks loss in keypoint localization tasks can lead to improved performance, thereby
enhancing the accuracy and stability of the model.

Table 2. Comparison of different loss functions. It can be observed that the Rle-Oks loss performs the
best in terms of AP.

Method Loss Size AP AP50 AP75

YOLOv5s6-Rlepose OKS 960 62.9 87.7 69.4
YOLOv5s6-Rlepose Rle Loss 960 55.24 83.26 60.93
YOLOv5s6-Rlepose Rle-Oks Loss 960 64.02 87.47 70.96

4.4. Ablation Experiments

In this section, the impact of different components on the network performance is
evaluated, as shown in Table 3. This study is based on the baseline model YOLOv5s6-Pose,
where YOLOv5s6-Rlepose was incorporated as the backbone network, and the C3STR
module was integrated into the original network. Additionally, the original loss function
was replaced with the Rle-Oks loss.

To assess the influence of different components on the network performance, we
conducted a series of experiments. Firstly, we compared the performance of the baseline
model YOLOv5s6-Pose with the modified YOLOv5s6-Rlepose, which includes the Rle loss,
on the COCO dataset. The results showed that the modified model did not perform well in
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the human pose estimation task, indicating that the inclusion of the Rle-Oks loss did not
yield desirable prediction results.

Next, this study further investigated the impact of the Rle-Oks loss on the network
performance. The experimental results demonstrated that the network using the Rle-Oks
loss achieved improvements in AP and AP75, confirming the effectiveness of the Rle-Oks
loss in human pose estimation tasks.

Furthermore, the effects of the combination of the Rle-Oks loss and the C3STR module
were studied on the experimental results. The results showed that the simultaneous use
of the Rle-Oks loss and the C3STR module exhibited better robustness and accuracy in
the human pose estimation task. Compared to the baseline model YOLOv5s6-Pose on the
COCO dataset, the AP value achieved the greatest improvement, with a gain of 2.11%.

The experimental results demonstrate significant performance improvements in the
human pose estimation task by incorporating the C3STR module and the Rle-Oks loss to
enhance the baseline model. These findings indicate the crucial roles played by the C3STR
module and the Rle-Oks loss in human pose estimation tasks.

Table 3. Ablation experiments on the COCO dataset.

Method AP AP50 AP75 AR

YOLOv5s6-Pose 62.9 87.7 69.4 71.8
YOLOv5s6-Rlepose (Rle Loss) 60.66 85.61 66.68 67.27
YOLOv5s6-Rlepose (Rle-Oks Loss) 64.02 87.47 70.96 70.40
YOLOv5s6-Rlepose (Rle-Oks Loss+C3STR) 65.01 87.84 71.20 71.54

Figure 6 presents the results of the ablation experiments, as recorded in Table 3. In this
experiment, the proposed YOLO-Rlepose model achieved a performance improvement of
2.11% compared to the YOLO-Pose model. Although this improvement may not be very
apparent in the visual results, a careful zoom-in analysis reveals an enhancement in the
accuracy of keypoint predictions.

(a) YOLOv5s6-Pose (b) YOLOv5s6-Rlepose

(Rle Loss)
(c) YOLOv5s6-Rlepose

(Rle-Oks Loss)

(d) YOLOv5s6-Rlepose

(Rle-Oks Loss+C3STR)

Figure 6. Comparison of results from ablation experiments. The red border indicates the enlarged
section.

Although the model in this study has achieved improvements in accuracy, it must be
noted that this performance enhancement comes at the cost of increased computational
complexity. The detailed numbers are given in Table 4.

It should be clarified that the loss function only affects the model during the training
process. During this stage, the loss function evaluates the difference between the ground-
truth values and the predicted values of the model and adjusts the model’s parameters
through backpropagation to minimize this difference. Once the model training is completed,
the loss function no longer plays a role. Therefore, the Rle-Oks loss does not impact the
computational complexity during the inference stage.
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Table 4. Comparing the parameter and computation complexities of various experiments.

Method #Param.(M) GFLOPs

YOLOv5s6-Pose 15.09 20.2
YOLOv5s6-Rlepose (Rle Loss) 15.09 20.2
YOLOv5s6-Rlepose (Rle-Oks Loss) 15.09 20.2
YOLOv5s6-Rlepose (Rle-Oks Loss+C3STR) 16.0 23.7

5. Conclusions

This study incorporated several state-of-the-art techniques, such as the Swin Trans-
former and an improved flow-based loss function, into YOLOv5 to create an effective
human keypoint detector named YOLO-Rlepose. The results of our approach on the COCO
dataset are shown in Figure 7. The detector excels at detecting keypoints for small objects.
The introduction of the C3STR module allows for the better capture of global information
and richer contextual information, thereby effectively improving the model’s keypoint
detection capability. Additionally, the adoption of Rle-Oks loss reduces the impact of noise
on regression-based methods, resulting in the more accurate detection of keypoints by
the network. The experiments demonstrate that YOLO-Rlepose achieves favorable perfor-
mance on the COCO dataset. The authors hope that this report can assist developers and
researchers in gaining better insights into and experiences in the analysis and processing of
human pose estimation.

Figure 7. Results of human pose estimation by YOLO-Rlepose on the COCO dataset. The method
demonstrates excellent keypoint detection performance for small objects.
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