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Abstract: Autonomous unmanned aerial vehicle (UAV) technology is a promising technology for
minimizing human involvement in dangerous activities like urban search and rescue missions
(USAR), both in indoor and outdoor. Automated navigation from outdoor to indoor environments
is not trivial, as it encompasses the ability of a UAV to automatically map and locate the openings
in a damaged building. This study focuses on developing a deep learning model for the detection
of damaged building openings in real time. A novel damaged building-opening dataset containing
images and mask annotations, as well as a comparison between single and multi-task learning-based
detectors are given. The deep learning-based detector used in this study is based on YOLOv5. First,
this study compared the different versions of YOLOv5 (i.e., small, medium, and large) capacity to
perform damaged building-opening detections. Second, a multitask learning YOLOv5 was trained
on the same dataset and compared with the single-task detector. The multitask learning (MTL) was
developed based on the YOLOv5 object detection architecture, adding a segmentation branch jointly
with the detection head. This study found that the MTL-based YOLOv5 can improve detection
performance by combining detection and segmentation losses. The YOLOv5s-MTL trained on the
damaged building-opening dataset obtained 0.648 mAP, an increase of 0.167 from the single-task-
based network, while its inference speed was 73 frames per second on the tested platform.

Keywords: damaged building opening; multitask learning; YOLOv5; object detection; image
segmentation

1. Introduction

Search and rescue is one of the first, important and time-critical tasks of an emergency
response [1]. In urban disasters like earthquakes, it aims to save people trapped in rubble
and isolated due to collapsed buildings. However, most routines in urban search and rescue
(USAR), such as inspecting affected buildings and continuing to search for victims, are
still done manually by the disaster response team. This effort is not only time consuming
and less effective, but also dangerous for first responders (FR) obliged to enter unknown
and risky environments. For this reason, it is necessary to apply relevant technologies for
post-disaster scenarios [2], limiting human involvement and reducing the risks within a
search and rescue mission.

In this regard, the use of automated devices such as unmanned aerial vehicles (UAVs),
is often adopted to limit the involvement of FR in USAR operations [3–5]. The develop-
ment of semi-autonomous UAV systems has been already widely explored as a disaster
management and response tool [1,6,7].

Most autonomous UAVs are normally operated exclusively outdoors, while their
use inside buildings is less common. In any case, the capability to seamlessly navigate
from an outdoor environment to the interior of a building is largely unexplored. Besides
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localization problems (i.e., moving from a GNSS to GNSS-denied environment), the first
challenge in entering a collapsed building lies in the identification of a building opening
(e.g., open doors). In a disaster scenario, this task is further complicated by partially
collapsed elements and the presence of “unconventional” openings in the scene (e.g., holes
in facades). A solution able to reliably map the openings in a damaged building is therefore
needed to allow UAVs to enter without the need to be manually teleoperated by a pilot.

This paper aims to shed some light on this problem by proposing an automated open-
ing detection algorithm to guide the seamless entrance of UAVs into damaged buildings.
In this context, openings are damaged walls and holes, in addition to conventional opened
windows and doors. If sufficiently large, all these kinds of openings can be a UAV access
point into a building. To the best of our knowledge, no deep learning model has been devel-
oped specifically for this task and, in addition, no real-time implementations are available
to allow UAV navigation. Specifically, in this study a real-time object detection algorithm
was implemented to detect potential entrances on images of buildings affected by disasters,
using a dedicated convolutional neural network (CNN). In particular, a multitask learning-
based network was implemented by combining object detection and segmentation tasks.
The underlying idea was to utilize the segmentation task to improve detection performance
by classifying the pixels of an opening space. Such multiobjective optimization effectively
enhances the robustness of the features learned by the network [8], and thus often help
improve performance on the tasks being jointly learned. This algorithm was compared to
traditional object detection algorithms to assess the performance in realistic conditions.

The main contributions of this research are (1) the preparation and annotation of a
collapsed building opening dataset; (2) the development of a real-time object detection
model to detect openings on images of disaster-affected buildings using state-of-the-art
object detection; and (3) an innovative algorithm combining object detection and segmen-
tation based on multitask learning networks to detect openings in damaged buildings.
The datasets and the pretrained models are available for the scientific community, as it
is the authors’ belief that the results of this study could be used in different search and
rescue missions.

2. Related Work

UAV has been widely applied to replace human involvement in urban search and
rescue (USAR) [9–11]. The capability of an autonomous UAV to enter a building for a
USAR mission is crucial to exploring an environment, giving useful information to prevent
risks for rescuers. However, the identification of the openings of a collapsed building is
not always an easy task. Thus, an automated solution to map the openings in a damaged
building is necessary. UAVs can be equipped with various sensors and detection approaches
to navigate the system in the process of entering a damaged building. The sections below
briefly discuss some related works, dividing them into two categories according to the
sensors used in navigation (i.e., active and passive sensors).

2.1. UAV with Active Sensors for Building Opening Detection

Active sensors, such as light detection and ranging (LiDAR), are commonly used for
UAV navigation [12,13]. LiDAR measurements facilitate UAV navigation by producing high
frequency laser pulses to measure distances, and generating precise three-dimensional maps
of a surrounding environment [14]. This capacity to swiftly capture detailed topographical
data allows UAVs to navigate through complex terrains, avoid obstacles, and execute
intricate missions with remarkable precision.

The integration of global navigation satellite systems (GNSS), inertial navigation
system (INS), and LiDAR was developed to facilitate accurate UAV navigation [15]. This
technology is shown to be able to improve navigation performance by reducing RMSE for
horizontal and vertical directions. LiDAR point clouds enable navigation systems to detect
and avoid obstacles for UAVs [13]. In indoor environments scenarios, LiDAR sensors were
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utilized by Petrlik et al. [16] for UAVs stabilization, navigation, and localization. LiDAR
localization shows robust performance in poorly illuminated indoor environments.

The combination of a depth camera, LiDAR, and a priori information [17] has been
the state-of-the-art for autonomous UAVs outdoor–indoor transition. This technology is
applied in firefighting scenarios to enable UAVs to recognize and estimate a window’s
location, orientation, and edges to enter a building autonomously. Their approach needs at
least one combination of depth camera plus LiDAR, or LiDAR with a priori information, to
support the automatic navigation for UAVs. In some cases, a UAV equipped with a depth
camera and LiDAR is unavailable due to the cost and size of the needed platform. Thus,
the possibility of only using an RGB camera (passive sensor) for UAV navigation will be
studied in this research.

2.2. UAV with Passive Sensors for Building Opening Detection

Passive sensors such as cameras are widely used in UAV technology. Several ap-
proaches have already been developed to use cameras as the main information source for
autonomous UAV navigation [18–20]. Most of these approaches implement deep learning
algorithms mimicking human vision [21], such as object detection tasks. The main idea of
the object detection algorithm is to develop a computational model to present information
about where and what objects are [22]. An object detection model needs to be able to define
the location of an object, and which category the object falls into (classification). Thus,
an object detection workflow can be divided into three main stages, i.e., region selection,
feature extraction, and object classification [23].

Previous work in opening detection presented three stages to detect and classify door
openings using RGB and depth information [24]. That algorithm was used to classify a door
into different opening classes, i.e., open, semi-open, and closed, successfully classifying
doors in real time on a limited powered device used for indoor navigation purposes to
navigate between rooms. The network developed in [24] was based on a sequential method
that combined object detection with a classification network to detect and segment doors.
The object detection allowed the cropping of parts of the initial images, that were then
used as input to classify open, semi-open, or closed doors. The BiSeNet [25] was used
to segment the door, and AlexNet to classify the open status of the doors. Despite good
results, this approach was not additionally trained to detect door openings in damaged
building scenarios, showing poor performance in the unideal condition of doors in dam-
aged building scenarios. Also, compared to the current state of the art in real-time object
detection networks, the inference time of the door detection and classification network is
significantly higher because of the sequential approach.

Besides this work, no single study which has developed real-time opening detection
in a damaged building scenario exists, although there have been several works of research
in the field of autonomous UAVs for search and rescue missions. The work presented
here tries to overcome the above-mentioned problems by proposing a detection algorithm
specifically conceived and trained for detecting opening spaces in images of damaged
buildings, working in real-time on low-powered devices.

3. Methodology

This study proposes a combination of object detection and image segmentation in a
multitask learning setup, to improve the performance of a real-time damaged building-
opening detection model combining convolutional neural networks for object detection and
image segmentation. The idea was to use the segmentation task to enhance the performance
of the detection model. Hard parameter sharing among tasks was employed in improving
the architecture of the damaged building-opening detection model. This means that the
multitask model consisted of a shared backbone followed by two task-specific heads, i.e.,
detection and segmentation heads. This sharing method is beneficial for regularization and
reduces the risk of overfitting [26], especially with relatively small datasets.
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While the object detection task tries to define the presence of objects and its posi-
tion [22] in the image, image segmentation deals with pixel-based classification, dividing
the scene into multiple segments [27,28]. For this study, YOLOv5 [29] was adopted as the
starting point for the multitask network implementation. You only look once (YOLO) [30]
is a well-known one-stage detector network that can perform real-time object detection.
Although more recent implementations of this algorithm were available, the authors opted
to use v5, as the results in terms of accuracy and processing time were extremely close,
and the implementation of the multitask approach was easier to implement. To assess
the improvement given by a multitask approach, two types of damaged building opening
detection algorithms were compared in this study: the single-task object detection, and
multitask learning model, described in the following sections.

3.1. YOLOv5 Single-Task Object Detection

Conventional object detection networks are based on a single-task approach. Thus,
it was necessary also to train the single-task model to have a benchmark comparison for
the proposed model approach (multitask learning). YOLOv5 is a one-stage detector that
is currently one of the well-performing real-time object detection models. This network
is pretrained on the COCO dataset with a fastest detection speed of up to 140 frames per
second [31]. This model architecture consists of three main layer blocks: the backbone,
neck, and head, as shown in Figure 1.
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PANet [29].

The backbone used in YOLOv5 version 6.0/6.1 is a new CSP-Darknet53, which is based
on the cross stage partial network (CSPNet) [32] and Darknet53 [30]. The combination of
CSP-Darknet53 is performed by reducing and replacing the convolutional residual blocks
of Darknet53 with BottleneckCSP modules. This backbone is shown as the optimal network
for a detector by providing a large receptive field size and parameter number [33].

YOLOv5 uses SPPF and the new CSP-PAN as a neck to combine different scales of
features extracted from different levels of the backbone. SPPF is a modified version of spatial
pyramid pooling or SPP [34], with fewer floating-point operations (FLOPs). The CSP-PAN
network is used to aggregate the features. The detection head produces object detections
from these multi-level aggregated features. Such extraction of multi-level features are
usually done to effectively have large receptive fields in the backbone network [35], which
is crucial for feature extraction in vision tasks dealing with high resolution images. The
complete overview of YOLOv5 architecture is shown in Figure 1, and a corresponding
pseudocode is presented in Algorithm 1.
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Algorithm 1: Single-task Learning Based Detector

Input: I = Images of damaged buildings
fb(ω) = network backbone
fn(ω) = network neck
fd(ω) = network detection head
Output: B = Bounding boxes of detected openings
C = Confidence scores of the detected openings

1 Load model weights ω

2 Run forward pass fd(ω)(f n(ω)

(
fb(ω)(I)

)
)

3 Extract features using network backbone Hσ = fb(ω)(I) at different scales σ

4 Aggregate the extracted features using network neck H = fn(ω)(Hσ)

5 Extract bounding boxes and confidence scores using detection head B, C = fd(ω)(H)

3.2. YOLOv5 Multitask Learning

A multitask learning-based object detector, called YOLOv5-MTL, was developed based
on the YOLOv5 object detection architecture, by adding a segmentation branch jointly
with the detection head. The architecture of YOLOv5-MTL is based on hard parameter
sharing by utilizing one backbone with two heads (detection and segmentation). Multitask
learning (MTL) is a machine learning paradigm that trains a model to perform multiple
tasks simultaneously [36]. MTL can potentially improve the network’s performance for
related tasks by sharing complementary features and acting as a regularizer for each task at
hand [37].

The hard parameter-sharing technique can also benefit the model by reducing the risk
of overfitting [26]. Hard parameter sharing in the MTL network divides the parameter
into shared and task-specific parameters. These task-specific parameters are optimized
separately for each task but use a cumulative loss.

The main architecture of YOLOv5-MTL is based on the YOLOv5 detection network
with added functionality for image segmentation. The idea of adding the segmentation
branch to the last output from the CSP-PANet, as shown in Figure 2 and in the pseudocode
described in Algorithm 2, is inspired by Mask R-CNN [38], which is proven as the optimal
multitask architecture for object detection and image segmentation.

Algorithm 2: Multitask Learning-Based Detector

Input: I = Images of damaged buildings
fb(ω) = network backbone
fn(ω) = network neck
fd(ω) = network detection head
fs(ω) = network segmentation head
Output: B = Bounding boxes of detected openings
C = Confidence scores of the detected openings
M = Segmentation masks of detected openings

1 Load model weights ω

2 Run forward pass fd(ω)( f n(ω)

(
fb(ω)(I)

)
), fs(ω)( f n(ω)

(
fb(ω)(I)

)
)

3 Extract features using network backbone Hσ = fb(ω)(I) at different scales σ

4 Aggregate the extracted features using network neck H = fn(ω)(Hσ)

5a Extract bounding boxes and confidence scores using detection head B, C = fd(ω)(H)

5b Extract segmentation masks using segmentation head M = fs(ω)(H)

The backbone used in this network is the same as in YOLOv5, which is the new
CSP-DarkNet53. This backbone has shown good performance in the features extraction
process to provide information for the object detection algorithm. The extracted features
from different levels of backbones were combined using SPPF and New CSP-PAN as the
Neck network. YOLOv5-MTL was then modified by adding the ability to do instance
segmentation. In particular, ProtoNet [39], a fully connected neural network, was added
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along with the YOLOv5 object detection head. ProtoNet is constructed by a three-layer
network of 2D convolutions with sigmoid linear unit (SiLU) [40] activation functions to
produce prototype masks. This prototype generation branch was attached to a backbone
layer to predict a set of prototype masks for the whole image scene, and to define the final
instance segmentation head along with the final 2D convolutional layers.
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As can be seen in Figure 2, ProtoNet is linked to deeper backbone features and can
produce better robustness of the mask, and good performance on smaller objects [39]. This
design can benefit a damaged building opening network to detect small openings.

The idea of developing a multitask learning-based detection model in this study is to
improve the performance of the detection task by simultaneously performing a segmenta-
tion task. The losses of each task were combined to represent the model loss. The combined
loss was calculated based on objectness loss, class probability loss, bounding box regression
loss, and mask loss. The object and bounding box losses were responsible for showing the
bounding box score prediction and coordinates, respectively. The class probability loss
was used to obtain the object classification score, and the mask loss was responsible for the
segmentation mask prediction. Regression loss for bounding box coordinates’ prediction
was calculated based on a mean intersection over union (IoU) ranging from 0–1. Object and
class losses were calculated using the binary cross-entropy with the logits (BCEWithLogits)
function available in most deep learning software libraries [41]. The BCEWithLogits loss
function can be described as follows:

l(x, y) = L = {l1, . . . , lN}T , ln = −ωn[yn · log σ(xn) + (1 − yn)· log(1 − σ(xn))], (1)

where x is the input, y is the target, ω is the weight, N represents the batch size, and n is
the sample number in the batch. BCEWithLogits Loss combines a sigmoid layer with BCE
loss in one class to obtain more numerical stability than separating the sigmoid layer. This
loss function resulted in a class probability prediction ranging from 0 to 1. Based on this
prediction, the model will calculate the difference between the prediction and the ground
truth, resulting in a loss value.

4. Dataset

This study used the RGB image dataset containing a scene of a damaged building
obtained from previous work by [42] as the primary data to train the object detection
model. The dataset contains images of earthquake events in Indonesia and Nepal with
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different scenes, such as damaged buildings, roads, bridges, and other collapsed structures.
The 2579 images provided in this dataset were acquired from crowdsourcing through
Twitter and Getty Images platforms. All images from Twitter are subject to the policy of
free use for non-commercial usage, and the images from Getty Images are only used for
training purposes. Most of these images were collected from terrestrial perspectives that
are sufficiently similar to UAV data when flying at low altitude, capturing images at an
oblique or near-horizontal angles, and in proximity of damaged buildings.

Not all images in this dataset [42] could be used for this study because we only
focused on openings in damaged buildings. Thus, images with scenes of openings in
damaged buildings needed to be selected. A total of 738 images were selected and divided
into training, validation, and testing datasets, with a composition 70%, 20%, and 10%,
respectively. The size of the images was 640 × 407 pixels; these were then converted into
640 × 640 pixels to obtain the square dimension of input images needed for model training
purposes. The size conversion was done without affecting the aspect ratio by implementing
image fits with black edges. This method resizes the image to the desired dimension
without changing the image’s aspect ratio, by filling the empty pixels with black color.

As part of the contribution of this study, the damaged building-opening dataset
was developed from an available open-source image dataset. The dataset development
consisted of image collection, selection, and annotation processes. Figure 3 shows some
example images and their corresponding opening labels (in red polygon masks). The
annotation masks and corresponding annotated images have been made publicly available
by the authors (see our Data Availability Statement).
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5. Results

This study was comprised of four main phases: firstly, a dataset was developed
for detecting damaged building openings by curating and annotating images from an
open-source dataset. Next, a single-task detection network was used to evaluate its ability
in identifying these openings. Then, the multitask learning network was tested by inte-
grating a segmentation task into the detection network architecture, aiming to enhance
detection performance. Finally, the performance of both the single-task and multitask
detection networks were compared in terms of accuracy and speed, utilizing YOLOv5 as
the foundational network for this study.

Single and multitask learning object detection models were trained with the same
settings to obtain comparable detection model performances. The hyperparameter values
were chosen based on the standard YOLOv5 detection model training method. The model
training specifications included a batch size of 16 and were run through 100 epochs. For
optimization, stochastic gradient descent (SGD) was used. The chosen loss function was
binary cross-entropy with logits loss, with the learning rate set at 0.01. This training was
conducted on a Google Colab instance equipped with a 12 GB NVIDIA Tesla T4 GPU.

The trained network was evaluated by calculating several metrics on the test dataset.
These evaluation metrics are measured to obtain the model’s performance scores in per-
forming the object detection or image segmentation task. Precision measures the model’s
performance in obtaining true positives from all positive predictions. In comparison, recall
measures how good the model is at obtaining true positives from all the ground truth posi-
tives. The mAP is the average precision over classes. This average precision (AP) is given
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by the area under the precision-recall curve for the detectors [43]. The Precision-recall (PR)
curve is a plotted graph that shows the recall change for a given precision and vice versa.

In the object detection domain, intersection over union (IoU) is a metric to measure the
amount of predicted bounding box that overlaps with the on-the-ground reality bounding
box, divided by the total area of both bounding boxes. This IoU was used to calculate
the mAP as a threshold value. For instance, an IoU of 0.5 was used in mAP50 (i.e., the
detection was classified as true positive if it had an IoU above 0.5). This study used mAP50
to evaluate the performance of the damaged building opening detection mode.

Three versions of YOLOv5 were trained on the dataset to provide better options for
the damaged building-opening detection model. Small, medium, and large versions of
YOLOv5 were trained and evaluated on the damaged building-opening dataset. This
study aimed to examine how the size of the architecture, determined by various network
hyperparameters, affects the inference speed which is crucial for real-time applications.

5.1. Opening Detection with YOLOv5

The YOLOv5 models trained on the damaged building-opening dataset were evaluated
on test data which were not used in the training process. The models were tested on the
Google Colab platform with NVIDIA Tesla T4 GPU. Table 1 shows the models’ performance
evaluated by calculating precision, recall, mean average precision (mAP), and inference
speed in frames per second.

Table 1. Performance comparison of YOLOv5 detection models trained on the damaged building-
opening dataset.

Model Precision Recall mAP50 Speed (FPS)

YOLOv5s 0.609 0.477 0.481 107

YOLOv5m 0.656 0.450 0.501 52

YOLOv5l 0.616 0.455 0.490 32

The small, medium, and large versions of YOLOv5 showed slightly similar per-
formance results in terms of precision, recall, and mAP. YOLOv5s had a smaller mAP
compared to the other two but had the fastest inference speed. This result showed that the
small version of the model was more efficient in terms of processing time. Interestingly,
YOLOv5s had the highest recall but lowest precision among the three YOLOv5 models,
indicating a slight increase in the number of true positives in exchange for detecting more
false positive openings. Figure 4 shows some examples of detection results from YOLOv5s
on the test images. From the visual interpretation of images in Figure 4, we can see that
this model successfully detected several types of openings. Open doors, windows, and
collapsed walls were detected in the scene. This result shows that the YOLOv5 model can
detect damaged building openings by providing relevant training data.
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However, inference results on the test dataset also showed several detection errors. On
the left images in Figure 5, some openings are not detected as an opening (false negative).
Furthermore, some nonbuilding openings were detected as openings (false positive), as
shown in the middle and right images in Figure 5. Similar visual characteristics of some
non-opening and real opening objects led to this wrong detection result. The main challenge
in detecting damaged building openings is the complexity of the opening’s form, size, and
shape. As there are no unique characteristics in the size and form of the openings, the
opening pattern could be detected by better understanding the spatial context relative to
other objects like walls and related objects like windows and doors.
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In that regard, a better understanding of the neighborhood scene would be needed,
and image segmentation could provide support in contextualizing a larger part of the
scene [44]. The idea of multitask learning by combining object detection and segmentation
was therefore proposed to obtain better damaged building-opening detection.

5.2. Opening Detection with YOLOv5 MTL

After knowing the performance of the damaged building-opening detection model
trained on YOLOv5 single-task object detection networks, this study examined the applica-
tion of YOLOv5-MTL for this detection purpose. The multitask learning version of YOLOv5
was trained using the same training validation test dataset and training configuration as in
YOLOv5 single-task, and was evaluated using the same metrics to evaluate the detection
and segmentation performance.

Table 2 shows the performances of the YOLOv5-MTL with three different architecture
versions. The large version of YOLOv5-MTL showed better mAP for detection and segmen-
tation than the small and medium models. In terms of inference speed, the small version
of the model was more than two times faster than the medium and large versions. This
condition shows that the larger model size will result in more model parameters and more
time for image inference.

Table 2. Performance comparison of YOLOv5 MTL models trained on damaged building-opening
dataset.

Model
Detection Segmentation

Speed (FPS)
P R mAP50 P R mAP50

YOLOv5s-MTL 0.747 0.577 0.648 0.675 0.539 0.585 73

YOLOv5m-MTL 0.753 0.606 0.664 0.671 0.540 0.577 30

YOLOv5l-MTL 0.799 0.629 0.698 0.732 0.556 0.611 27



Electronics 2024, 13, 558 10 of 17

YOLOv5l-MTL was not able to perform real-time inference (<30FPS), while the
medium version barely met the real-time requirement. The complexity of the model
influenced these inference speed performances. The difference between the mAP of
the small and medium models was only about 0.02. Thus, considering the inference
speed, the YOLOv5s-MTL model could be considered the most balanced option for a
damaged building-opening detection model. Unlike the single-task detection networks, the
YOLOv5s-MTL provided both bounding boxes and segmentation masks in correspondence
with openings. The prediction output provided information about the class name, class
probability, bounding box, and masks, as shown in Figure 6. As in the detection output
of a single-task detector (Figure 4), the MTL version of YOLOv5 can correctly detect the
openings with additional information, i.e., a segmentation mask.
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of damaged building openings.

Collapsed walls or roofs were detected and segmented quite well by this model. As
shown in Figure 6, different sizes and forms of openings due to collapsed walls and roofs
were able to be detected and segmented by this YOLOv5s-MTL model. Open doors and
windows were also detected and segmented. The predicted mask on the test images showed
that the model correctly delineated the opening space area. Qualitatively, the multitask
learning YOLOv5 model also showed better detection results compared to the single-task
detector based on visual interpretation.

5.3. Single and MTL Model Performance Comparison

In the previous sections, single and multitask learning-based detection networks
were trained on the damaged building-opening dataset. This section will compare both
learning approaches and evaluate each task’s benefits and drawbacks for the damaged
building-opening detection scenario. The model performance comparison is discussed
as follows.
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The detection performances of single-task (YOLOv5s) and multitask (YOLOv5s-
MTL) are listed in Table 3. YOLOv5s-MTL showed improvement in precision, re-
call, and mean-average precision. While the single task YOLOv5s outperformed in
terms of inference speed, the YOLOv5s-MTL still satisfied the FPS requirement for
real-time application.

Table 3. YOLOv5 vs YOLOv5-MTL detection performance comparison.

Model Precision Recall mAP50 Speed (FPS)

YOLOv5s 0.609 0.477 0.481 107

YOLOv5s-MTL 0.747 (+0.138) 0.577 (+0.1) 0.648 (+0.167) 73 (−34)

The results showed that adding the segmentation head on the network can improve
detection accuracy but decrease inference speed. The idea of combining detection and
segmentation loss was proven to be able to improve the model’s mAP by 0.167. Multi-
task learning tends to have a slower inference speed than single-task models due to a
larger number of parameters. However, the inference speed of YOLOv5s-MTL can still be
categorized as real-time (>30 FPS).

Figure 7 compares the on-the-ground reality image, detection output from the YOLOv5s
model, and output from YOLOv5s-MTL, respectively. This figure shows that multitask
learning improved the model’s accuracy. The openings not fully detected by the single-
task model were comprehensively detected and segmented by the multitask learning
based network.
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In terms of precision, YOLOv5s-MTL was better than YOLOv5s. From Figure 8, it can
be observed that multitask learning had fewer false positive detections than single-task
networks. The detection errors are highlighted in orange circles. Overall, the multitask
model had fewer errors than the single task. Although the multitask model prediction
results also showed some detection errors, these results indicate that the better contextual-
ization given by the image segmentation helped the detection task to reduce uncertainties
in identifying openings.

Based on visual interpretation of the detection results, the YOLOv5s-MTL showed
improvement by decreasing the false positives and false negatives in the single-task de-
tectors. This MTL network alleviated the background classification mechanism problems
in the single-task model (Figure 8). The segmentation mask provided fitted boundaries
that separated objects and backgrounds. To decrease false positive detections, the image
segmentation task helped the model to contextualize better.
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5.4. Performance Comparison with SOTA Detection Model

As part of the experiments, this study trained the recent versions of the YOLO model
and compared its performance with the proposed YOLOv5 multitask learning model. These
experiments were conducted on a damaged building-opening dataset and models were
trained for 100 epochs with early stopping.

As shown in Table 4, YOLOv5s-MTL outperformed the other models in terms of
precision, recall, and mAP50. It had the highest values for all three metrics, indicating better
overall detection performance. Newer versions of the YOLO model, specifically YOLOv7
and YOLOv8, do not guarantee a consistent increase in detection performance compared
to their predecessor, YOLOv5. YOLOv7, despite being a newer version, exhibited slightly
lower precision and mAP50 values than YOLOv5s-MTL, implying that the advancements
in the model architecture may not necessarily translate into across-the-board improvements.
Similarly, YOLOv8s, another newer iteration, showcased a decent precision but fell short in
terms of recall and mAP50 compared to YOLOv5s (both the single and multitask learning
models). This discrepancy suggests that the pursuit of higher model versions does not
automatically ensure enhanced detection capabilities, and the performance gains may vary
or even diminish in certain aspects.

Table 4. Detection performance comparison with current state-of-the-art real-time object detection
models.

Model Precision Recall mAP50

YOLOv5s 0.609 0.477 0.481

YOLOv5s-MTL 0.747 0.577 0.648

YOLOv7 0.564 0.510 0.510

YOLOv8s 0.595 0.444 0.469

YOLOv8s-MTL 0.553 0.467 0.478
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6. Discussion
6.1. Damaged Building-Opening Dataset Development

This study developed a dataset of images and corresponding annotations for a dam-
aged building-opening detection model encompassing open doors/windows, collapsed
walls, and damaged roofs. To simplify the detection model, all opening types were cat-
egorized into one class, (i.e., openings), as in a real-life application scenario there is no
need to classify the opening types. This simplifies problems in the case of a single-class
detection scenario.

The developed dataset was sufficient for training a damaged building-opening detec-
tion model. However, some aspects were not covered: (i) the ground sampling distance
(GSD) of the images in this dataset was not uniform. A known image GSD can guarantee
to link an area in an image to a certain size in the object space, supporting the model’s
performance in detecting various sizes of openings; the images used in this study were ob-
tained from open data sources and captured from different cameras with different settings.
(ii) There is no publicly available open data source for damaged building-facade scenes
captured using UAV. Therefore, the images used in this dataset were filtered to select the
most relevant images representing a point of view similar to actual scenes of damaged
buildings captured by a UAV. In addition, the different openings were not balanced, privi-
leging conventional openings (e.g., windows and doors) over damage-induced openings
(e.g., holes in the façade).

6.2. Damaged Building Opening Detection

The study found that a single-task YOLOv5 object detection network trained on
a damaged building-opening dataset can perform the detection quite well. From the
experiments training on three different versions of YOLOv5, we found that the models’
performances can vary although the larger version of YOLOv5 did not deliver much higher
accuracy. We can see from the performance of the YOLOv5l (large) that it was similar
to the medium version (YOLOv5m): intuitively, a larger model would be expected to
obtain better accuracy, but the reduced training size probably had negative impacts on
the more complex networks. The mAP50 of YOLOv5m was slightly better than YOLOv5l,
with a 0.011 difference: this could be because of the effect on the number of convolutional
kernels in YOLOv5l; too many convolution kernels on the network can sometimes result in
overfitting. In the small version of YOLOv5, the bounding box score prediction already
showed subtle signs of overfitting; this became worse in deeper networks, as in the large
version of YOLOv5. For this reason, we needed to find the best-fitting model architecture
that had a better performance metric, but still satisfied the FPS requirement for real-time
applications. The findings showed that increasing the model complexity does not guarantee
improvement in the model performance. In this case, we found that the medium version
of YOLOv5 was the optimal model configuration for a single-task damaged building-
opening detector.

Despite the good performance in detecting the opening spaces of a damaged building,
several errors could still be found in the detections. As illustrated in Figure 5, false negatives
and false positives still appeared in the detection results. False negatives were probably
due to the background classification mechanism. False positives are not desirable for
damaged building opening detection: if the model detects a non-opening as an opening,
there will be a failure to enter a damaged building. Thus, it becomes crucial to minimize
false positive detections.

The multitask learning detection model partially overcame this problem by outper-
forming the single-task-based model with the same training. From these results, it can
be noticed that the more complex the model is in YOLOv5-MTL, the more the model’s
accuracy increases, showing fewer overfitting problems: YOLOv5l-MTL showed higher
mAP50 than two other smaller model versions.

The multitask learning model had, however, a slower inference time than the single-
task detectors. This happened because working with two tasks will increase the model’s
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complexity, thus requiring more processing time. YOLOv5s-MTL performed the fastest
inference time, with 73 FPS tested on an NVIDIA Tesla T4 GPU, while the YOLOv5l-
MTL gave the best accuracy, but the inference time of this model was slow, with only
27 FPS. This means that the large version of YOLOv5-MTL cannot perform real-time
inference (<30 FPS) in current settings. Conversely, YOLOv5m-MTL barely met the real-
time inference requirements with 30 FPS. The drop in inference speed, when switching
from a small version of single-task YOLOv5 to a multitask one, was lower compared to
increasing the size of the base network to the medium version (i.e., from YOLOv5s-MTL
to YOLOv5m), while the corresponding increase in accuracy was significantly higher (i.e.,
0.167 for YOLOv5s-MTL and only 0.02 for YOLOv5m). In that regard, YOLOv5s-MTL
seems to be the best balance between performance and inference speed. In general, the
multitask learning model performed better than the single-task detector while still having
real-time inference.

The YOLOv5 algorithm has shown good performances on edge devices, as stated
by the wider scientific literature. In this paper, we assessed the drop in the FPS from the
conventional algorithm to the YOLOv5-MTL algorithm. Our tests showed that the FPS
reduction is relatively limited (despite the increased number of parameters) and it is still
usable on state-of-the-art edge devices for real-time processing.

Large language models and large visual models, as well as visual question and
answering (VQA) algorithms [45,46], will drastically change the use of UAVs for un-
derstanding scenes in real-time: the “conversion” of object search and detection on
images into textual messages will allow for a more direct interaction between UAVs
and their operators in the field. Future research will be undertaken to explore these
innovative solutions.

7. Conclusions and Future Developments

The main goal of this study was to develop a deep learning detection model for real-
time damaged building-opening detection. Open doors or windows, damaged walls, and
collapsed roofs are defined as damaged building openings. To train the detection model, a
damaged building-opening dataset was developed. The process of dataset development
consisted of image selection, annotation, pre-processing, and augmentations.

The conventional YOLOv5, and a multitask version combining object detection and
segmentation tasks, were trained and evaluated on the damaged building-opening dataset.
In particular, three different versions of the algorithms, i.e., small, medium, and large,
were compared as detector models for damaged building openings. This study found that
false positives and false negatives can be reduced by implementing the multitask learning
method. The proposed multitask learning model sacrificed the processing time slightly
but achieved better accuracy. Compared to the single-task detector, the YOLOv5-MTL
improved the model’s mAP50 by about 0.167. The multitask approach required a higher
number of parameters and longer processing time compared to the conventional YOLO
implementation. The FPS reduction is, however, limited and it still allows its deployment
on edge devices.

Overall, this study contributes to developing a novel dataset, and sheds some
light on deep learning-based detectors for damaged building-opening detection. It also
demonstrates that a multitask learning method can improve detection accuracy. Lastly, it
broadens our knowledge in developing a real-time deep learning-based detection-model
algorithm. With more rapid development of UAV applications in terms of systems and
data acquisitions, there is potential to improve practices in disaster response applications.
Several possible improvements can be considered for future research development,
such as training dataset improvement, and assessment of the introduction of a depth
estimation head in the multitask learning approach for a damaged building-opening
detection model.
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