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Abstract: In microwave electronics, the power gains of a linear two-port are customarily defined
as the ratio of an output port and input port power, where such powers are intended either as
operational or as available. Two input and two output powers are thus introduced, with four possible
combinations of output/input power ratios, but only three are practically exploited, the well-known
operational power gain, available power gain, and transducer power gain. In the present paper,
we provide a comprehensive review of gain definitions (including the less commonly exploited
added-power gains) and finally consider the missing fourth element (defined as the ratio of the
output available power and of the input operational power), derive a few mathematical properties of
it, both in the general and in the unilateral case, and ultimately justify the reason why this fourth gain
G4 which, following the suggestion of an anonymous reviewer, we will call apparent power gain,
Gapp, has little interest in the optimization of the power transfer between the generator and the load.
Nevertheless, the definition and analysis of Gapp, besides being formally useful to complete the gain
family, may yield a deeper insight into the very nature of power transfer optimization in a loaded
two-port.

Keywords: circuit stability; input and output stability; linear circuits; scattering parameters; stability;
stability criteria; two-port circuits

1. Introduction: Reviewing Two-Port Gains

Consider a two-port of scattering matrix S, obtained through circuit analysis, CAD
simulation, or experimental characterization [1], connected at port 1 (the input port) to a
generator of internal reflectance ΓG and loaded at port 2 (the output port) by a reflectance ΓL;
see Figure 1. All textbooks on microwave electronics agree on defining four active powers
(or power spectral densities), two relevant to the input port and two to the output port, albeit
with slightly different names, see, e.g., [2] (Section 3.2), [3] (Section 10.5), [4] (Section 6.3),
as follows:

• The input power Pin, i.e., the actual power input to the network;
• The input available power Pav,in, i.e., the available power of the input generator;
• The power actually delivered to the load, PL;
• The output available power Pav,L, i.e., the available power from port 2.

The available power of a generator is defined as the maximum power that the generator
can deliver when it is connected to a conjugately matched load.

A power gain between port 2 and port 1 can be in principle defined as the ratio of any
of the output powers vs. any of the input powers. According to the Friis definition [5],
“The gain of the network is defined as the ratio of the available signal power at the output
terminals of the network to the available signal power at the output terminals of the
signal generator”, i.e., G = Pav,L/Pav,in (This definition is consistent with the fact that in
noise analysis all powers considered are available powers). Two years later, Roberts [6]
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wrote: “We shall use the symbol for gain proposed by Friis, but shall modify his definition
slightly. The gain is defined here as the ratio of the power delivered to the load impedance
connected at the output terminals to the power available from the generator connected at
the input terminals”, i.e., G = PL/Pav,in (In fact, Friis [5] already noticed that his definition
was “an unusual definition of gain since the gain of an amplifier is generally defined
as the ratio of its output and input powers”). Finally, in 1954, Mason [7] mentioned a
“source-to-load power gain” to be interpreted probably as G = PL/Pin; later, in 1959,
Venkateswaran and Boothroyd explicitly introduced this term as the “operating power
gain” [8]. Currently, the three gains introduced are denoted by different symbols, as follows
(see, e.g., [2] (Section 3.2), [3] (Section 10.5), [4] (Section 6.3)):

Gop =
PL
Pin

the operational (operative, operating) power gain

Gav =
Pav,L

Pav,in
the available power gain

Gt =
PL

Pav,in
the transducer (power) gain

For the sake of completeness, we recall here the expression of the gains as a func-
tion of the two-port scattering parameters and of the load and generator reflectances,
see, e.g., [4] (Sections 6.3.2, 6.3.3, 6.3.4). (Other expressions, probably more elegant, can be
derived in terms of impedance, admittance, or hybrid parameters):

Gop(ΓL) = |S21|2
1 − |ΓL|2

|1 − S22ΓL|2 − |S11 − ∆SΓL|2

Gav(ΓG) = |S21|2
1 − |ΓG|2

|1 − S11ΓG|2 − |S22 − ∆SΓG|2

Gt(ΓL, ΓG) = |S21|2×

×

(
1 − |ΓL|2

)(
1 − |ΓG|2

)
|(1 − S11ΓG)(1 − S22ΓL)− S12S21ΓGΓL|2

where ∆S = S11S22 − S12S21 is the determinant of the scattering matrix.

Figure 1. Two-port with scattering matrix S loaded at the input by a generator of reflectance ΓG and
at the output by a load of reflectance ΓL. The input and output reflectances of the loaded two-port are
denoted by Γin and Γout, respectively. Input and output total active powers at the input and output
are also indicated.

If the two-port is unconditionally stable, the power transfer between generator and
load can be maximized by simultaneous conjugate matching at the input and output ports,
such as the input (output) two-port reflectance Γιn (Γout) equaling the complex conjugate of
the generator (load) reflectance, Γ∗

G (Γ∗
L). This corresponds to a maximum gain value that is

obviously the same for all gains, since maximum power transfer implies that Pin = Pav,in
and that PL = Pav,L; for historical reasons, the maximum gain is often referred to as max-
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imum available gain or MAG. However, notice that since the transducer gain depends
on both the load and the generator reflectances, its maximization directly yields maxi-
mum power transfer between generator and load. Conversely, input (output) conjugate
matching is additionally required to obtain the maximum power transfer when Gop is
maximized vs. ΓL (Gav vs. ΓG). On the other hand, if the two-port is not unconditionally
stable, simultaneous conjugate matching cannot be implemented, although a lower bound
exists to the input and output mismatch depending on the Rollet stability factor K [9], as
recently demonstrated by the present authors in [10].

For the sake of completeness, we also report the gains in the so-called unilateral case,
i.e., for a device with S12 = 0. The past popularity of the unilateral approach to amplifier
design is motivated by a number of facts. First, most active devices are almost unilateral
(i.e., S12 is small in magnitude). Second, unilateral design is easy and could be carried out
by hand before the advent of CAD tools. Finally, devices could be made unilateral (at least
in theory) by proper circuit design, see e.g., [7]. For these reasons, gains are sometimes
defined with reference to a device that is or is made unilateral, with the notation Gu

op, Gu
av,

Gu
t . The MAG of a unilateral device is denoted as MUG, and the unilateral operational,

available, and transducer power gains read:

Gu
op(ΓL) = |S21|2

1 − |ΓL|2(
1 − |S11|2

)
|1 − S22ΓL|2

Gu
av(ΓG) = |S21|2

1 − |ΓG|2(
1 − |S22|2

)
|1 − S11ΓG|2

Gu
t (ΓL, ΓG) = |S21|2

(
1 − |ΓL|2

)(
1 − |ΓG|2

)
|(1 − S11ΓG)(1 − S22ΓL)|2

A further possibility in defining two-port gain involves the concept of added power,
i.e., the difference between the power delivered to the load and the input power, PL − Pin. In
large-signal operation, the added-power concept is the basis for the power-added efficiency
parameter (see, e.g., [4] (Section 8.2.4)). A definition and optimization of the two-port gain
based on the added power has been proposed in the past by Kotzebue [11–13] and recently
exploited in [14]. To introduce the subject, let us consider as a possible gain parameter,
Gadd (additional power gain), the ratio between the added power and the input power:

Gadd =
PL − Pin

Pin
=

PL
Pin

− 1 = Gop − 1 (1)

Alternative mathematical definitions of the additional power gain could involve the
available input or load powers instead of the operational powers, or a combination of
them. Those definitions however have never been proposed so far and seem to be of
little use since the only physically meaningful definition is the one in (1). Optimization
of Gadd is apparently straightforward since simultaneous conjugate matching results in
Gop = MAG. The maximum value of Gadd will be therefore MAG− 1. Interestingly enough,
the so-called maximally efficient gain defined in [12,13] does not correspond to MAG − 1,
nor to simultaneous conjugate matching. Let us try to summarize the optimization concept
proposed in the above papers. In [13], a two-port loading condition is investigated leading
to the optimization of PL − Pin with constant square magnitude of the input voltage,
i.e., defining:

PL − Pin = g|V1|2

The maximum of g, here called gME (where the subscript stands for maximally efficient,
see [12]), is defined in [13] (Equation (6)) in terms of the two-port admittance parameters.
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This maximum is achieved with the two-port load defined in [13] (Equation (7)); the
generator is power-matched. The equations are reported here for completeness:

gME =
|Y21|2 + |Y12|2 + 2Re(Y21Y12)− 4Re(Y11)Re(Y22)

4Re(Y22)
(2)

YL,opt =
2Y21Re(Y22)

Y21 + Y∗
12

− Y22 (3)

YG,opt = Y∗
in (4)

The parameter g (and its maximum gME) clearly is a transconductance rather than
a power gain, and the input power Pin will depend not only on |V1|2, but also on the
input reflectance or immitance of the two-port. In [12], the optimum parameter gME is
reformulated, albeit in a slightly different form, as the “maximally efficient gain”, GME,
defined, somewhat obscurely, as “the power gain which maximizes the 2-port added power
for a given value of the input port independent variable”. The parameter is defined as:

GME =
|Y21|2 − |Y12|2

4Re(Y11)Re(Y22)− 2Re(Y21Y12)− 2|Y12|2
(5)

with the optimum load and generator admittance defined again as in (3) and (4). The same
equations are reported in [14] (Equations (1)–(3)), correcting a sign misprint
in [12] (Equation (3)). The maximally efficient gain can also be reformulated in terms
of S-parameters as:

GME =
|S21/S12|2 − 1

2(K|S21/S12| − 1)

(see [12] (Equation (4))) where K is the Rollet stability factor. It is important to stress that
the maximally efficient gain GME does not actually correspond to the maximum additional
power gain Gadd,max = MAG − 1, but rather to the operational power gain Gop evaluated
in the optimum load condition (3).

The relationship between the parameters gME (2) and GME (5) can be easily derived
taking into account that Pin = |V1|2Re(Yin), where Yin is the two-port input admittance. We
therefore have:

(PL − Pin)max = gME|V1|2 =
gME

Re(Yin)
Pin

i.e., (
PL − Pin

Pin

)
max

=

(
PL
Pin

)
max

− 1 = GME − 1 =
gME

Re(Yin)
→ GME =

gME

Re(Yin)
+ 1.

A number of advantages related to the choice of this optimization paradigm are
reported in [11–13] (this choice would be a batter compromise in terms of the amplifier
large-signal saturation behavior) and in [14] (where the technique is exploited to optimize
gain-boosted amplifiers working close to the maximum oscillation frequency). Furthermore,
application of the maximally efficient gain concept to high-power oscillator design was
first proposed in [15]. (In [15], the GME concept is formulated as “the power gain which
maximizes the two-port added power”, and expressions are provided for the optimum
load and generator reflectances).

2. Is a Fourth Gain Missing?

A fourth possibility for defining a gain indeed exists, as follows:

Gapp =
Pav,L

Pin
(6)
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In this section, we intend to explore the properties of the apparent power gain Gapp,
anticipating that this parameter has some interesting mathematical properties but is of little
use in circuit design, since, as the name itself suggests, it does not generally correspond to
a physically realizable circuit configuration, as discussed in detail in Section 3. First of all,
we point out that the apparent gain is not independent from the other ones; indeed:

Gapp =
Pav,L

Pin
=

Pav,L

Pin

Pav,in

Pav,in

PL
PL

= (7)

=
Pav,L

Pav,in

PL
Pin

Pav,in

PL
=

GavGop

Gt
,

or:
GappGt = GavGop

Moreover, since:
Pav,in ≥ Pin, Pav,L ≥ PL

this implies the following inequalities:

PL
Pin

≥ PL
Pav,in

→ Gop ≥ Gt

Pav,L

Pav,in
≥ PL

Pav,in
→ Gav ≥ Gt

Pav,L

Pin
≥ PL

Pin
→ Gapp ≥ Gop

Pav,L

Pin
≥ Pav,L

Pav,in
→ Gapp ≥ Gav

i.e.,
Gapp ≥

{
Gav, Gop

}
≥ Gt.

The only condition corresponding to the equal sign is when Gapp = Gt = Gav =
Gop = MAG.

In general, Gapp can be, according to the loading conditions, larger or smaller than
MAG. The reason for this behavior is that the output available power becomes the output
power in case of output matching, but setting the load reflectance accordingly changes
in turn the input power. In other words, the apparent gain does not refer to a physically
realizable circuit configuration unless conjugate matching is imposed at both ports.

A schematic illustration of this is depicted in Figure 2, where the maximization of
power transfer between the generator G and the load L through reactive matching sections
placed at the two-port input and output, respectively, is depicted as a block scheme.
Simultaneous conjugate matching implies that the generator available power is the two-
port input power and that the power delivered to the load is the two-port output available
power. As shown by the grey shadowed box in Figure 2a, this directly corresponds to
the maximization of the transducer gain. Maximizing the operational gain (see the grey
shadowed box in Figure 2b) is a necessary but not sufficient condition for maximum power
transfer since it does not automatically include the input conjugate matching. The same
remark applies to the maximization of the available power gain (see the grey shadowed
box in Figure 2c); this time, the output conjugate matching is not included and has to be
separately implemented in order to maximize the power transfer. Finally, as shown in
Figure 2d, regardless of which condition we may impose on the apparent gain, this does not
imply either the input or the output conjugate matching. However, if the input and output
reactive matching sections are designed so as to obtain input and output simultaneous
conjugate matching (that is, the necessary and sufficient condition for maximum power
transfer), the value of the apparent gain will consistently correspond to the MAG.
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Figure 2. Block scheme of the power transfer in a loaded two-port. The input and output reactive
matching sections are meant to provide simultaneous input/output conjugate matching, thus allow-
ing for maximum power transfer between the generator and the load. In case (a), the maximization
of the transducer gain is enough to allow for maximum power transfer, since it includes input and
output matching. In cases (b,c), optimization of the operational or available power gain is a necessary
condition for maximum power transfer, but not a sufficient one since, additionally, the input or
output conjugate matching has to be implemented to this aim. Case (d), concerning Gapp, suggests
that this parameter is somewhat irrelevant to power transfer maximization, since the implementation
of the input and output conjugate matchings is anyway required. See however the text for further
comments on how Gapp can be exploited in the implementation of simultaneous conjugate matchings.

We further observe that, from this scheme, it appears that an alternative to maximize
the input–output power transfer by maximizing Gt is to optimize Gav and Gop together,
e.g., to optimize their product GavGop, or a monotonically increasing function of it.

As expected, Gapp depends on both the load and the generator reflectances. Its explicit
expression is:

Gapp(ΓL, ΓG) =
|S21|2

|1 − S22ΓL|2 − |S11 − ∆SΓL|2
×

× |1 − S11ΓG − S22ΓL + ∆SΓGΓL|2

|1 − S11ΓG|2 − |S22 − ∆SΓG|2

Taking into account that:

Γin(ΓL) =
S11 − ∆SΓL
1 − S22ΓL

Γout(ΓG) =
S22 − ∆SΓG
1 − S11ΓG
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we can also write:

Gapp =
|S21|2(

1 − |Γin(ΓL)|2
)(

1 − |Γout(ΓG)|2
)×

×
∣∣∣∣1 − S12S21ΓGΓL

(1 − S11ΓG)(1 − S22ΓL)

∣∣∣∣2 ≈

≈ |S21|2(
1 − |Γin(ΓL)|2

)(
1 − |Γout(ΓG)|2

) (8)

Equation (8) is a partial unilateral approximation of Gapp, i.e., the term |·|2 has been
approximated to unity while the input and output reflectances have been computed with the
actual value of S12. For potentially unstable devices, Gapp diverges when |Γin(ΓL)| → 1 or
|Γout(ΓG)| → 1, which defines again the customary load/generator stability circles. Finally,
a somewhat surprising result is obtained for a completely unilateral device (S12 = 0). In
such a case, Γin = S11 and Γout = S22, and therefore:

Gu
app =

|S21|2(
1 − |S11|2

)(
1 − |S22|2

) ≡ MUG (9)

In other words, for a unilateral device Gapp is constant, independent on the load
conditions, and equal to the maximum unilateral gain. A consequence of (9) is that, for a
unilateral device, the following equality holds independent of ΓG and ΓL:

Gu
avGu

op

Gu
t

= MUG.

3. Examples and Discussion

In this section, we further explore the properties of Gapp on the basis of a case study. A first
issue to be discussed is whether this parameter may be of any use in the numerical optimization
of the narrowband two-port gain through proper input and output matching sections.

Let us suppose first that the input matching section is designed so as to obtain
Gav = MAG; in this case:

Gapp = MAG · Pav,in

Pin
≥ MAG;

thus, optimization of Gapp with goal Gapp = MAG would lead to simultaneous conjugate
matching at the two ports. In practice, this would correspond to an optimization pro-
cess with two simultaneous goals, maximum Gav and minimum Gapp (or Gapp = MAG).
As a dual case, suppose that the output matching section is designed so as to obtain
Gop = MAG; in this case:

Gapp = MAG · Pav,L

PL
≥ MAG;

thus, optimization of Gapp with goal Gapp = MAG would lead to simultaneous conjugate
matching at the two ports. This would again correspond to an optimization process with
two simultaneous goals, maximum Gop and minimum Gapp (or Gapp = MAG).

On the other hand, optimizing Gapp only with goal Gapp = MAG does not lead to a
unique solution for the input and output reflectances which, moreover, do not necessarily
correspond to the optimum ones. This non-uniqueness is readily suggested by the following
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example. Suppose ΓL = 0 ̸= ΓL,op where ΓL,op is the load reflectance corresponding to
simultaneous conjugate matching; we have, imposing Gapp = MAG:

Gapp(0, ΓG) =
|S21|2(

1 − |S11|2
)(

1 − |Γout(ΓG)|2
) ≡

=
Gop(0)

1 − |Γout(ΓG)|2
= MAG

This condition implies:

|Γout(ΓG)| =

√
1 −

Gop(0)
MAG

= const. (10)

Since the transformation ΓG → Γout is a bilinear transformation (see e.g., [2]) that
maps circles into circles, the circles |Γout(ΓG)| = const. generally correspond to a circle
(or circle arc) in ΓG plane, i.e., many ΓG values satisfy the constraint in (10). This circle
degenerates into a point only if ΓL = ΓL,op; for example, if ΓL,op = 0 we obtain from (10)
that |Γout(ΓG)| = 0 → Γout(ΓG) = 0 = Γ∗

L,op, implying a single value of ΓG = ΓG,op. A
similar situation holds for any given generator or load different from the optimum one.

From the very definition of Gapp reported in (6), we also see that the cases of a reactive
load or generator reflectance do not lead to any particularly significant behavior of this
parameter, since Pav,L is unaffected by the load termination and Pin is regular also in
the presence of a generator with reactive reflectance. In general, for an unconditionally
stable two-port, Gapp will span between a minimum (generally nonzero) and maximum
value, as suggested by the following numerical example. Assume the following constant
scattering matrix:

S11 = 0.61 exp(j 0.916 67π)

S21 = 3.72 exp(j 0.327 78π)

S12 = 0.05 exp(j 0.233 33π)

S22 = 0.45 exp(−j 0.266 67π)

The stability parameters are K = 1.1752 and |∆S| = 0.1086; the two-port is therefore
unconditionally stable with optimum load and source reflectances:

ΓL,op = 0.7495 exp(j 0.2920π)

ΓG,op = 0.8179 exp(j 1.0963π)

and maximum available gain MAG = 41.5032. As a first example, we set ΓL = ΓL,op and
scan the ΓG plane (considering passive loads only), then we plot the surface Gapp(|ΓG|, ϕG/π)
where ϕG is the phase of ΓG. The result is shown in Figure 3; Gapp clearly exhibits a unique
minimum in the ΓG plane corresponding to the MAG. Dually, we set ΓG = ΓG,op and scan the
ΓL plane (considering passive loads only), then we plot the surface Gapp(|ΓL|, ϕL/π) where
ϕL is the phase of ΓL. The result is shown in Figure 4; again, a unique minimum exists in
correspondence with ΓL,op.
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Figure 3. Surface plot of G4 ≡ Gapp as a function of the generator reflectance (magnitude and phase);
the unique minimum is located at ΓG,op and its value corresponds to the two-port MAG.

Figure 4. Surface plot of G4 ≡ Gapp as a function of the load reflectance (magnitude and phase); the
unique minimum is located at ΓL,op and its value corresponds to the two-port MAG.

Exploring the behavior of Gapp in the (ΓL, ΓG) four-dimensional space is more complex.
To provide some hint, we perform a random sampling of the (ΓL, ΓG) space, sort the Gapp
samples in increasing order, and generate a plot of Gapp vs. the sample order together with
a scatter plot of the corresponding values of Gav, Gop, Gt. The Gapp plot together with the
unilateral approximation in (8) is shown in Figure 5. The minimum and maximum Gapp
samples depend of course on the number N of samples considered; with N = 100,000, we
have Gapp,min ≈ 17.1661 and Gapp,max ≈ 189.8973.
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Figure 5. Plot of G4 ≡ Gapp samples in increasing order and of the unilateral approximation
in (8) vs. sample order (20,000 samples wereused here).

Finally, Figure 6 reports a scatter plot of Gav, Gop, Gt (the samples have been ordered
with increasing value of Gapp). We remark again that Gapp can be lower or larger than the
MAG and that close to the MAG value the samples of Gav, Gop, and Gt exhibit a dense
clustering, thus confirming that the condition Gapp = MAG does not necessarily correspond
to simultaneous conjugate matching. From the scatter plot, it appears that the maximum
and minimum of Gapp are associated with load and generator reflectances for which Gav,
Gop, and Gt vanish, i.e., with reactive reflectances. A Monte Carlo analysis carried out on
N =100,000 samples indeed suggests that Gapp,min is associated with the load and generator
impedances with both being reactive, while Gapp,max is associated with just one reactive
termination; however, reactivity alone does not necessarily imply extremum values, since
the phase of the reactive termination also has to be properly chosen.

The maximum ratio Pav,L/Pav,in can be derived numerically by maximizing the nu-
merator and minimizing the denominator. We have:

Pav,L = Gav(ΓG)Pav,in =

=
|S21|2

(
1 − |ΓG|2

)
|1 − S11ΓG|2 − |S22 − ∆SΓG|2

× |b0|2

1 − |ΓG|2
=

= |S21|2
|b0|2

|1 − S11ΓG|2 − |S22 − ∆SΓG|2

where b0 is the amplitude of the input forward wave generator connected to port 1 of
the two-port. This maximum Pav,L,max is obtained for a specific value of the generator
reflectance, ΓG = ΓG,max, i.e.,:

Pav,L,max = |S21|2
|b0|2

|1 − S11ΓG,max|2 − |S22 − ∆SΓG,max|2

The input power can be now expressed as:

Pin = |b0|2
1 − |Γin(ΓL)|2

|1 − ΓG,maxΓin(ΓL)|2

which is minimum for a certain value of ΓL = ΓL,min, i.e.,:

Pin,min = |b0|2
1 − |Γin(ΓL,min)|2

|1 − ΓG,maxΓin(ΓL,min)|2
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Thus:

Gapp,max =
Pav,L,max

Pin,min
=

=
|S21|2

|1 − S11ΓG,max|2 − |S22 − ∆SΓG,max|2
×

× |1 − ΓG,maxΓin(ΓL,min)|2

1 − |Γin(ΓL,min)|2

Conversely, the minimum ratio Pav,L/Pin can be obtained as:

Gapp,min =
Pav,L,min

Pin,max

Again, the value of Pav,L,min is obtained for a specific value of the generator reflectance,
ΓG = ΓG,min, i.e.,:

Pav,L,min = |S21|2
|b0|2

|1 − S11ΓG,min|2 − |S22 − ∆SΓG,min|2

while Pin is maximum for a certain value of ΓL = ΓL,max, i.e.,:

Pin,max = |b0|2
1 − |Γin(ΓL,max)|2

|1 − ΓG,minΓin(ΓL,max)|2

Thus:

Gapp,min =
Pav,L,min

Pin,max
=

=
|S21|2

|1 − S11ΓG,min|2 − |S22 − ∆SΓG,min|2
×

× |1 − ΓG,minΓin(ΓL,max)|2

1 − |Γin(ΓL,max)|2

With the scattering matrix exploited in the example, we have:

Gapp,max = 212.2846

ΓG,max = −0.9546 − j0.2980 = exp(−j2.8390)

ΓL,min = −0.1267 − j0.9919 = exp(−j1.6979)

and:

Gapp,min = 17.1016

ΓG,min = 0.9547 + j0.2977 = exp(j0.3023)

ΓL,max = −0.1205 − j0.9927 = exp(−j1.6916)

confirming that the terminations corresponding to the maximum and minimum of Gapp are
reactive. The values obtained by direct search compare well with the previous
Monte Carlo analysis.
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Figure 6. Plot of G4 ≡ Gapp vs. the sample order together with a scatter plot of the corresponding values
of Gav, Gop, Gt (top, center, bottom). The Monte Carlo analysis was made with N = 10, 000 samples.
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Finally, it is essential to emphasize the somewhat artificial nature of Gapp through a
few key points. Let us reconsider the maximum value of Gapp and the related maximum
available power, Pav,L,max, that, as shown in the previous example, occurs by connecting
at port 1 a generator with reactive internal impedance. (Notice that while such an ideal
generator introduces no anomaly, its available power tends to infinity). The real issue is
whether Pav,L,max can be actually delivered to a load. The only possible way to do this is
by conjugately matching the two-port at the output. But this obviously corresponds to
the maximum operational gain Gop = MAG (while the available gain and the transducer
gain are zero, since the source available power is infinite). Unfortunately, such an output
matching is inconsistent with the condition leading to Pin,min, which implies a reactive load
at port 2 and therefore zero power on the load. This ultimately stresses that the input and
output loading conditions corresponding to the maximum Gapp are totally inconsistent
with the purpose of maximum power transfer. This would anyway require conjugate
matching at both ports, thus leading to Gop = MAG < Gapp,max. In conclusion, maximizing
Gapp does not align with a generator and load condition compatible with maximum power
transfer (and similar comments may be made about minimizing Gapp). Nevertheless,
understanding the artificial nature of Gapp holds, in our opinion, the merit of providing a
deeper insight into the fundamental nature of power transfer optimization within a loaded
two-port system.

4. Conclusions

In this contribution, we have revisited the well-known topic of power transfer max-
imization in a linear, unconditionally stable two-port through gain optimization. After
reviewing the standard input–output gain definitions (i.e., the well-known operational,
available, and transducer power gains) and those less commonly used in linear design
based on the added-power concept, we have introduced a fourth power gain Gapp, called
the apparent power gain, defined as the ratio between the output available power and the
input power. We have investigated some properties of Gapp in the general and unilateral
case, and shown how this gain can be exploited in the power transfer maximization. The
analysis ultimately suggests that, despite its interesting mathematical properties, Gapp is
indeed of little practical use in power transfer optimization.
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