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Abstract: Discrete-time architectures offer a distinct advantage over their continuous counterparts, as
they can be seamlessly implemented on embedded hardware without the necessity for discretization
processes. Yet, because of the difficulty of ensuring Lyapunov difference expressions, their designs,
which are based on quadratic Lyapunov-based frameworks, are highly complex. As a result, various
existing continuous-time results using adaptive control methods to deal with system uncertainties
and coupled dynamics in agents of a multiagent system cannot be directly applied to the discrete-
time context. Furthermore, compared to their continuous-time equivalent, discrete-time information
exchange based on periodic time intervals is more practical in the control of multiagent systems.
Motivated by these standpoints, in this paper, we first introduce a discrete-time adaptive control archi-
tecture designed for uncertain scalar multiagent systems without coupled dynamics as a preliminary
result. We then introduce another discrete-time adaptive control approach for uncertain multiagent
systems in the presence of coupled dynamics. Our approach incorporates observer dynamics to
manage unmeasurable coupled dynamics, along with a user-assigned Laplacian matrix to induce
cooperative behaviors among multiple agents. Our solution includes Lyapunov analysis with loga-
rithmic and quadratic Lyapunov functions for guaranteeing asymptotic stability with both controllers.
To demonstrate the effectiveness of the proposed control architectures, we provide an illustrative
example. The illustrative numerical example shows that the standard discrete-time adaptive control
in the absence of observer dynamics cannot guarantee the reference state vector tracking, while the
proposed discrete-time adaptive control can ensure the tracking objective.

Keywords: discrete-time; adaptive control; coupled dynamics; Lyapunov-based approach

1. Introduction
1.1. Literature Review

The exploration of multiagent systems has seen a growing interest due to their effec-
tive and adaptable solutions for tackling intricate real-world tasks. Over the past decade,
they have left a significant mark on a diverse range of fields, including scientific, civilian,
and military applications, such as environmental monitoring, exploration, in/on-space as-
sembly, maintenance and manufacturing, traffic management, and payload and passenger
transportation. A key attribute of multiagent systems is their capacity to collaboratively
execute missions by operating in specified formations. In the existing literature, the pri-
mary focus of general research lies in the development of control algorithms that enable
operations with local interactions [1–4]. The presence of uncertainties, such as unknown
coefficients from modeling, disturbances, and unknown friction effects, along with coupled
dynamics in rigid systems with flexible components or slung load dynamics, can negatively
impact the performance and stability of sole agents and the overall multiagent system.
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Furthermore, autonomous underwater vehicles with interaction forces and coupled dy-
namics (physical links between the vehicles), swarm robotics with a slung load or flexible
wing dynamics, and robotic manipulation systems collaborate to objects while account-
ing for uncertain and coupled dynamics arising from interactions with the objects and
other robots, and autonomous vehicle platooning with coupled dynamics due to physical
interactions with another vehicle (i.e., in-flight refueling) are some additional examples
of applications for the proposed adaptive control architectures for uncertain multiagent
systems in the presence of coupled dynamics. As a result, systems with coupled dynamics
and uncertainty become critical for guaranteeing the entire system’s stability [5–8]. To
address the challenge posed by uncertainty, effective solutions are presented in continuous-
time adaptive and robust control architectures, as discussed in [9–15]. Furthermore, there
exists a predefined convergence time, and predefined performance guarantee research
conducted for multiagent systems (e.g., [16,17]). In their exploration of predefined-time
adaptive neural tracking control for nonlinear multiagent systems, Ref. [16] present a novel
lemma facilitating user-specified convergence times in backstepping frameworks, comple-
mented by an adaptive approach using neural networks and finite time differentiators to
ensure accurate and timely trajectory tracking within the system. Addressing the need for
non-sign-changing tracking errors in consensus tracking missions, Ref. [17] advances the
prescribed performance control method for cooperative unmanned aircraft vehicle systems,
integrating human decision-making and an adaptive fuzzy fault compensation mecha-
nism to enhance collaborative mission success and flight safety in harsh environments.
Subsequently, in [18–20], the focus shifts to the examination of continuous-time adaptive
architectures tailored for managing uncertain multiagent systems characterized by coupled
dynamics, particularly in a leader–follower framework. The continuous adaptive control
formulations introduced in [18–20] are specifically designed to address various challenges
in uncertain multiagent systems with coupled dynamics. Basically, the designs in [18,19]
aim to achieve boundedness of the tracking error when dealing with uncertain multiagent
systems in the presence of coupled dynamics only and coupled and actuator dynamics
together, respectively. The design in [20] aims to achieve asymptotic convergence of the
tracking error when dealing with uncertain multiagent systems in the presence of coupled
dynamics. Furthermore, the results in [18–20] for a leader–follower setting with a classical
command tracking approach (i.e., where all agents converge to the position specified for
the leader agent(s) only).

The majority of networked multiagent control systems currently in use are limited in
their capacity for creating cooperative behaviors, such that they use the classical command
tracking approach. Recognizing the significance of diversifying agent positions in military
and civilian applications, one effective strategy involves assigning user-defined positions
to each agent, thereby facilitating the creation of continuous-time formations. This can
be achieved by manipulating matrices associated with graph theory, employing user-
assigned nullspace, and introducing a novel representation for the Laplacian matrix in
undirected and connected graphs [21–26]. Specifically, in [21,22], a novel Laplacian matrix
is introduced by modifying the degree matrix, while in [23], another novel Laplacian matrix
is introduced by modifying the degree matrix to create complex behaviors, but former
ones’ formulation necessitates precise knowledge of neighboring agent states and none
of the controllers in [21–23] can create a robust result when faced with unknown terms.
Addressing the robustness, the authors of [24–26] proposed a controller featuring a user-
defined Laplacian matrix that is used in [23], offering increased flexibility to agents in the
presence of uncertainties, actuator dynamics, and coupled dynamics, respectively. Note
that all of the controllers are designed in [21–26] are continuous-time algorithms.

Discretizing continuous-time algorithms for application in embedded code may cause
stability margins to be lost, discretization errors, and inadequate handling of rapid dy-
namics or uncertainties due to the inherent sampling nature of discrete-time systems [27].
These factors make it non-trivial to directly apply continuous-time adaptive control strate-
gies to discrete-time contexts, often necessitating a fundamental redesign of control laws
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(i.e., change in Lyapunov analysis) to maintain desired performance and stability char-
acteristics. Furthermore, compared to their continuous-time equivalent, discrete-time
information exchange based on periodic time intervals is practically more practicable in
the control of multiagent systems. Specifically, most modern embedded systems and micro-
controllers inherently operate in discrete time, processing signals and making decisions
at specific intervals. This alignment is crucial for the digital nature of hardware used in
control systems. Moreover, multiagent systems often rely on network communications,
which are typically packet-based and occur at discrete intervals. Discrete-time control
naturally fits this model of communication, where data are exchanged between agents at
regular or event-triggered intervals. In addition, the use of discrete-time control means a
derivative-free update law. Basically, in discrete-time control systems, the control laws are
typically formulated based on difference equations rather than differential equations. This
is partly due to the nature of digital implementation, where information is processed at dis-
crete time intervals. Unlike continuous-time adaptive systems that require the computation
of derivatives (which can be challenging or noisy in practice), discrete-time systems often
use previous and current states to compute the next state. Therefore, they inherently avoid
the need for derivatives in the updated laws, making them derivative-free. Derivative-free
update laws are particularly advantageous in practical applications because they avoid the
noise amplification and complexity associated with derivative computation.

Yet, because of the complexity of the resulting Lyapunov difference expressions,
discrete-time control designs, which are based on Lyapunov-based frameworks, are highly
complex. This issue arises because the controlled physical system’s Lyapunov stability
cannot be guaranteed by the Lyapunov difference expressions since they cannot be made
negative-definite [28–32]. Ensuring that the Lyapunov function consistently decreases
over time steps (or remains negative definite) becomes more complex because the discrete
nature introduces sudden changes rather than smooth transitions, making the analysis
and design of stabilizing controllers more intricate. To ensure asymptotic stability for sole
systems, the authors in [31–36] solve this issue by logarithmic Lyapunov functions in the
Lyapunov analysis. Piecewise linear Lyapunov functions are another alternative that can
offer more flexibility and potentially less complexity in designing discrete-time control
systems since they can be useful in systems that exhibit different behaviors in different
regions of the state space. In the context of the multiagent systems, the authors of [4]
cover optimal discrete-time cooperative control in multiagent systems, the authors of [37]
design adaptive fault-tolerant tracking control for discrete-time multiagent systems via
reinforcement learning algorithm, the authors of [38] propose cooperative adaptive optimal
output regulation of nonlinear discrete-time multiagent systems, and the authors of [39]
study discrete-time control of multiagent systems with a misbehaving agent. Note that
none of the above results are considered a discrete-time setting for an uncertain multiagent
system with coupled dynamics while having the capability of assigning different positions
for each agent to achieve complex tasks.

1.2. Motivation and Contributions

The summary of the literature review is given for the motivation, and then the contri-
butions of this paper are given in this section. The exploration and application of multiagent
systems have increasingly become important points in addressing complex and dynamic
tasks. However, despite their expansive applicability, multiagent systems face significant
challenges that impede their potential due to the presence of uncertainties and coupled
dynamics within these systems. While continuous-time adaptive control architectures have
been extensively studied and developed, they often fail when applied to discrete-time
systems, particularly those embedded in hardware applications with a specific sampling
rate. Discrete-time architectures offer a distinct advantage in their seamless implementation
and avoidance of discretization errors. However, the existing body of research predomi-
nantly focuses on continuous-time systems, leaving a critical gap in discrete-time solutions.
This gap is particularly apparent when addressing the complexity of ensuring Lyapunov
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stability in the discrete domain, a challenge compounded by the complexity of Lyapunov
difference expressions.

The primary contribution of this paper is the introduction of a novel discrete-time
framework for the synthesis and stability verification of discrete-time adaptive control
architectures tailored for uncertain multiagent systems in the presence of coupled dynam-
ics. Specifically:

• Asymptotic stability is ensured for the considered multiagent systems through novel
design and analysis in a discrete-time setting. In particular, a constructed Lyapunov
candidate is used by using both logarithmic and quadratic functions to rigorously
prove the stability of the proposed control strategies. This contributes to the reliability
and predictability of uncertain multiagent systems in executing complex tasks in the
presence of coupled dynamics;

• A novel approach is adopted by integrating a user-assigned Laplacian matrix and
nullspace in the design of the control algorithms. This incorporation significantly
enhances the flexibility in agent positioning and the ability to induce cooperative
behaviors among agents. It allows for a more tailored and efficient multiagent system
configuration, catering to the specific needs and constraints of various applications;

• Discrete observer dynamics is introduced into the control architectures to manage
unmeasurable coupled dynamics in multiagent systems effectively. An extensive
validation of the proposed algorithm is provided by including detailed proofs of all
the results, ensuring a rigorous verification of the theoretical foundations. The observer
dynamics addition allows for more accurate and stable control and tracking, further
enhancing the system’s adaptability and performance in dynamic environments;

• A detailed simulation study is given to demonstrate the effectiveness and practical
applicability of our control strategies. The selected case in the illustrative numerical
example shows that the standard discrete-time adaptive control in the absence of the
observer dynamics cannot guarantee the reference state vector tracking; hence, the
closed-loop dynamical system is not reliable. This result can be expected since there is
no compensation for the coupled dynamics in the control design.

Finally, the preliminary conference version of this paper is considered as [40], where
this paper goes beyond the conference version by providing detailed proofs of all the results
and detailed simulation studies with related discussions.

1.3. Organization

The structure of this paper is as follows. In Section 2, for completeness, the stability
analysis of the discrete-time controller for the uncertain multiagent system in the absence of
coupled dynamics is presented. In Section 3, the stability analysis of the proposed discrete-
time controller for the uncertain dynamical system with coupled dynamics is presented,
which guarantees asymptotic convergence of the tracking error. Section 4 validates the
theoretical contributions with an illustrative numerical example. In Section 5, concluding
remarks are given.

1.4. Notation and Mathematical Preliminaries

A general notation and a graph theoretical notation are used in this paper. We refer
to Table 1 for the general notation used in this paper, and the graph theoretical notation is
given below.

Consider an undirected connected graph G is defined by set of nodes (i.e., VG =
{1, . . . , n}) and set of edges (i.e., EG ⊂ VG × VG). A graph G is then considered as a
connected graph with a path between any pair of distinct nodes, where a path i0i1 . . . iL
is a finite sequence of nodes (i.e., ik−1 ∼ ik, k = 1, . . . , L), and when the nodes i and j are
neighbors (i.e., (i, j) ∈ EG), i ∼ j denotes the neighboring relation. In addition, the degree
matrix is denoted by D(G) ≜ diag(d) ∈ Rn×n with d = [d1, . . . , dn]T with a degree of a
node di being equal to the number of its neighbors, the adjacency matrix is denoted by
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A(G) ∈ Rn×n with [A(G)]ij ≜ 1 if (i, j) ∈ EG and [A(G)]ij ≜ 0 otherwise, and the Laplacian
matrix of a graph G denoted by L(G) ≜ D(G)−A(G), [3,41].

Table 1. Notation.

N set of non-negative integers
R set of real numbers
R+ set of positive real numbers
Rn set of n × 1 real column vectors
Rn×m set of n × m real matrices
Pn set of n × n positive definite real matrices
≜ equality by definition
(·)T transpose of a matrix
(·)−1 inverse of a matrix
tr(·) trace operator
ln(·) natural logarithm
∥ · ∥2 Euclidean norm
λ(A) eigenvalues of the real matrix A ∈ Rn×n

λ(A) maximum eigenvalue of the real matrix A ∈ Rn×n

λ(A) minimum eigenvalue of the real matrix A ∈ Rn×n

In n × n identity matrix
0n n × n zero matrix
diag(·) diagonalized vector

Finally, for the definition of the modified version of the Laplacian matrix that allows for
the assignment of different positions to each node, let ω = [ω1, . . . , ωn]T ∈ Rn be a vector
with entries ωi ∈ R+, i = 1, . . . , n, where ω represents the user-assigned nullspace [23].
Physically, ω can be seen as the range of variations in node positions that do not affect the overall
system performance or collective behavior, like maintaining formation integrity. Next, consider
the modified degree matrix given by D(G, ω) ≜ diag(A(G)ω)(diag(ω))−1 = diag(d̄) ∈ Rn×n

with d̄ = [d̄1, . . . , d̄n]T ∈ Rn. Here, A(G) is the standard adjacency matrix. Then, the
modified Laplacian matrix of a graph G can be represented as L(G, ω) ≜ D(G, ω)−A(G).

Lemma 1. In the context of a leader–follower setting, one can define K = diag([κ1, ..., κn]) ∈
Rn×n with κi ∈ {0, 1} for all i = 1, ..., n, where at least one κi being equal to 1 (for a leader agent
κi = 1, otherwise it is 0). That further yields a modified Laplacian matrix of the leader–follower
setting to allow assigning different positions that is F(G, ω) ≜ L(G, ω) +K.

2. Adaptation for Agent-Based Uncertainty

In this section, a discrete-time adaptive controller is designed, which allows one
to assign different positions for each agent in the presence of agent-based uncertainties
only. To this end, consider the uncertain multiagent system in the absence of the coupled
dynamics consisting of n agents given by

xi(k + 1) = xi(k) + ∆iσi(xi(k)) + ui(k), xi(0) = xi0, i = 1, · · · , n, k ∈ N. (1)

Here, xi(k) ∈ R represents the agent state, ui(k) ∈ R represents the control input of agent
i, ∆i ∈ R represents an unknown weight uncertainty, and σi(xi(k)) is the basis function
of ith agent composed of local Lipschitz functions, where its bound can be represented
as ∥σi(xi(k))∥2 ≤ lci + li∥xi(k)∥2, with lci ∈ R+ and li ∈ R+ as standard in the literature.
Specifically, ∆iσi(xi(k)) represents structured uncertainty that can be both parametric
through the unknown weight and non-parametric through the basis function. Moreover,
σi(x(k)) is a function applied to the state and has a known bound and it is used to model
nonlinearities or other complex behaviors in the agents’ dynamics or interactions with
the environment.

The control objective of this section is ensuring the states of the agents to track states
of the reference model without getting affected by the presence of uncertainties and be able



Electronics 2024, 13, 524 6 of 22

to assign nullspaces to the overall system for creating complex behaviors. Thus, consider
the reference model to track given by

xri (k + 1) = xri (k)− ϵ ∑
i∼j

(ωj

ωi
xri (k)− xrj(k)

)
−ϵκi

(
xri (k)− c(k)

)
, xri (0) = xri0 , k ∈ N, (2)

where xri (k) ∈ R and xrj(k) ∈ R are the ideal reference state of agent i and agent j,
respectively, and c(k) ∈ R is a bounded command available only to leader agent(s) and
c(k) = v(k)ωi with a bounded v(k) ∈ R+. In (2), ϵ < 1

max(di)+1
, where the modified degree

value, d̄i, ensures that the eigenvalues of I − ϵF(G, ω) remains within the unit circle.
To reach the given tracking objective of this section, we propose the below discrete-time

adaptive controller

ui(k) = −ϵ ∑
i∼j

(ωj

ωi
xi(k)− xj(k)

)
−ϵκi

(
xi(k)− c(k)

)
−∆̂i(k)σi(xi(k)), (3)

where ∆̂i(k) ∈ R stands for an estimate of unknown weight uncertainty ∆i (details below).
Note that, mathematically, ωi (i.e., user-assigned nullspace elements) is included in the
reference model and control design that affects the Laplacian matrix of the overall multia-
gent system. This matrix encodes the local interaction rules between robots and allows the
assignment of different positions for each agent.

Then, using the proposed adaptive control law given by (3) in the uncertain multiagent
system given by (1) yields

xi(k + 1) = xi(k)− ϵ ∑
i∼j

(ωj

ωi
xi(k)− xj(k)

)
−ϵκi

(
xi(k)− c(k)

)
−∆̃i(k)σi(xi(k)), k ∈ N. (4)

Here, ∆̃i(k) ≜ ∆̂i(k)− ∆i ∈ R is the weight estimation error.
Next, the tracking error can be defined as ei(k) ≜ xi(k)− xri (k) ∈ R an error between

the agent state and its reference model, where its dynamics can be rewritten as

ei(k + 1) = ei(k)− ϵ ∑
i∼j

(ωj

ωi
ei(k)− ej(k)

)
−ϵκiei(k)− ∆̃i(k)σi(xi(k)), k ∈ N. (5)

Then, the error dynamics can be written in a combined form for an overall multiagent
system as

e(k + 1) = (I − ϵF)e(k)− ∆̃T(k)σ(x(k)). (6)

Here, e(k) = [e1(k), · · · , en(k)]T ∈ Rn, σ(x(k)) = [σ1(x1(k)), · · · , σn(xn(k))]T ∈ Rn, and
∆̃(k) = diag ([∆̃1(k), · · · , ∆̃n(k)]) ∈ Rn. In (6), (I − ϵF) is Schur, it follows from con-
verse Lyapunov theory [42] that there exists a unique P ∈ Pn satisfying the discrete-time
Lyapunov equation given by

0n = (I − ϵF)T P(I − ϵF) + R − P (7)

with R ∈ Pn.
Next, the combined adaptive control inputs with a weight update law can be written as

u(k) = −ϵFx(k) + ϵKc(k)− ∆̂T(k)σ(x(k)) (8)

∆̂(k + 1) = ∆̂(k) +
[ γ

1 + µeT(k)Pe(k)
(
e(k + 1)− (I − ϵF)e(k)

)
σT(x(k))

]T,

∆̂(0) ≜ ∆̂0, k ∈ N. (9)
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Here, u(k) = [u1(k), · · · , un(k)]T ∈ Rn, x(k) = [x1(k), · · · , xn(k)]T ∈ Rn, ∆̂(k)
= diag([∆̂1(k), · · · , ∆̂n(k)]) ∈ Rn, µ ∈ R+ is a design variable, and γ ∈ (0, 1) is a learning
rate. Then, using (9), the weight estimation error dynamics that will be used in the stability
analysis of the next theorem can be obtained as

∆̃(k + 1) = ∆̃(k) +
[ γ

1 + µeT(k)Pe(k)
(
e(k + 1)− (I − ϵF)e(k)

)
σT(x(k))

]T,

∆̃(0) ≜ ∆̂0 − ∆ = ∆̃0, k ∈ N. (10)

Theorem 1. Consider the uncertain multiagent system given by (1) and the agent reference model
given by (2), then the discrete-time adaptive control architecture given by (8) along with the weight
update law given by (9) guarantees the Lyapunov stability of the closed-loop system given by (6)
and (10) (i.e., boundedness of the couple

(
e(k), ∆̃(k)

)
. Moreover, one can conclude the asymptotic

tracking error convergence that is

lim
k→∞

e(k) = 0. (11)

Proof. To show the Lyapunov stability of the closed-loop system given by (6) and (10)
(i.e., boundedness of the

(
e(k), ∆̃(k)

)
, one can consider the Lyapunov function candidate

composed of logarithmic and quadratic functions given by

V
(
e, ∆̃
)

≜ ι−1 ln
(
1 + µeTPe

)︸ ︷︷ ︸
V1

+ α−1tr(∆̃T∆̃)︸ ︷︷ ︸
V2

, (12)

where ι ∈ R+, and α ∈ R+. Note that V(0, 0) = 0 and V(e, ∆̃) > 0 for all (e, ∆̃) ̸= (0, 0).
Then, first, taking the Lyapunov difference of V1(·) and using the error dynamics

given by (6) yields

∆V1 ≜ V1
(
e(k + 1)

)
− V1

(
e(k)

)
= ι−1 ln

(
1 + µeT(k + 1)Pe(k + 1)

)
− ι−1 ln

(
1 + µeT(k)Pe(k)

)
= ι−1 ln

(
1 + µ

[
(I − ϵF)e(k)− ∆̃T(k)σ(x(k))

]TP
[
(I − ϵF)e(k)− ∆̃T(k)σ(x(k))

])
−ι−1 ln

(
1 + µeT(k)Pe(k)

)
. (13)

Note that using natural logarithm property ln a − ln b = ln(a/b) and by adding and

subtracting “ µeT(k)Pe(k)
1+µeT(k)Pe(k)” to the above equality ∆V1 can be rewritten as

∆V1 = ι−1 ln

(
1 + µ

([(I − ϵF)e(k)− ∆̃T(k)σ(x(k))
]TP

[
(I − ϵF)e(k)− ∆̃T(k)σ(x(k))

]
1 + µeT(k)Pe(k)

− eT(k)Pe(k)
1 + µeT(k)Pe(k)

))
. (14)

Then, using the discrete-time Lyapunov equation given by (7) and another natural logarith-
mic operator property given by ln(1 + a) ≤ a when a ≥ −1 [43], an upper bound for (14)
can be obtained as

∆V1 ≤ ι−1µ

1 + µeT(k)Pe(k)

(
− eT(k)Re(k) + σT(x(k))∆̃(k)P∆̃T(k)σ(x(k))

−2σT(x(k))∆̃(k)P(I − ϵF)e(k)
)

. (15)

Second, taking the Lyapunov difference of V2(·) along with the weight uncertainty
error dynamics given by (10) and using (6) in the dynamics yields
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∆V2 ≜ V2
(
∆̃(k + 1)

)
− V2

(
∆̃(k)

)
= α−1tr

(
∆̃T(k + 1)∆̃(k + 1)

)
− α−1tr

(
∆̃T(k)∆̃(k)

)
= α−1tr

((
∆̃T(k) +

γ

1 + µeT(k)Pe(k)
(−∆̃T(k)σ(x(k))σT(x(k)))

)
·
(

∆̃(k) +
γ

1 + µeT(k)Pe(k)
(−σ(x(k))σT(x(k))∆̃(k))

))
− α−1tr

(
∆̃T(k)∆̃(k)

)
. (16)

Using the trace operator property aTb = tr(baT) in (16) and simplifying (16) yields

∆V2 =
α−1γ

1 + µeT(k)Pe(k)
σT(x(k))∆̃(k)

(
−2 +

γσT(x(k))σ(x(k))
1 + µeT(k)Pe(k)

)
∆̃T(k)σ(x(k)), (17)

Note that the bound for ∥ σT(x(k))σ(x(k))
1+µeT(k)Pe(k) ∥2 with ∥σ(x(k))∥2 ≤ lc + l∥x(k)∥2, lc ∈ R+, and

l ∈ R+ yields ∥ σT(x(k))σ(x(k))
1+µeT(k)Pe(k) ∥2 ≤ η (see Appendix A for details), where η ∈ R+. Then

setting γ = ργη−1, ργ ∈ (0, 1), and α−1γ = ι−1µρ1 with ρ1 being a free variable that will be
designed later, an upper bound for (17) can be written as

∆V2 ≤ ι−1µ

1 + µeT(k)Pe(k)

(
σT(x(k))∆̃(k)

(
−2ρ1 + ργρ1

)
∆̃T(k)σ(x(k))

)
. (18)

Next, using (15) and (18) to compute ∆V(·) ≜ ∆V1(·) + ∆V2(·), and defining the
augmented errors as q̃T(k) =

[
eT(k), σT(x(k))∆̃(k)

]
, the Lyapunov difference equation

can be written as

∆V1 + ∆V2 ≤ ι−1µ

1 + µeT(k)Pe(k)

(
− eT(k)Re(k) + σT(x(k))∆̃(k)

[
P − 2ρ1 + ργρ1

]
∆̃T(k)σ(x(k))

−2σT(x(k))∆̃(k)P(I − ϵF)e(k)
)

=
ι−1µ

1 + µeT(k)Pe(k)

(
eT(k)[−R + β(I − ϵF)T P(I − ϵF)]e(k)

+σT(x(k))∆̃(k)
[
P +

1
β

P − 2ρ1 + ργρ1
]
∆̃T(k)σ(x(k))

)

− ι−1µ

1 + µeT(k)Pe(k)
q̃T(k)

[
β(I − ϵF)TP(I − ϵF)

(
P(I − ϵF)

)T

P(I − ϵF) 1
β P

]
︸ ︷︷ ︸

M≥0

q̃(k). (19)

Note that M is a positive semi-definite matrix, and with a small value of β ∈ R+, one can
satisfy −R = −R + β(I − ϵF)T P(I − ϵF) < 0. Then, taking an upper bound of (19) yields

∆V ≤ ι−1µ

1 + µeT(k)Pe(k)

(
− eT(k)Re(k)

−σT(x(k))∆̃(k)
[
ρ1(2 − ργ)− (1 +

1
β
)P
]

︸ ︷︷ ︸
N>0

∆̃T(k)σ(x(k))
)

. (20)

Note that N is positive definite (see Appendix B for details); hence, an upper bound for (20)
can be written as
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∆V ≤
l−1
0 µ

1 + µeT(k)Pe(k)

(
− eT(k)Re(k)

)
, (21)

which proves the boundedness of the
(
e(k), ∆̃(k)

)
. It then follows from Theorem 13.10,

ref. [42] that limk→∞(e(k)) = 0.

3. Adaptation for Both Agent-Based Uncertainty and Coupled Dynamics

In this section, a discrete-time adaptive controller is designed that allows one to assign
different positions for each agent in the presence of agent-based uncertainties and coupled
dynamics. Specifically, consider a multiagent system consisting of n agents given by

xi(k + 1) = xi(k) + ∆iσi(xi(k)) + pui(k) + ui(k), xi(0) = xi0, (22)

ξi(k + 1) = fuiξi(k) + guixi(k), (23)

pui(k) = huiξi(k) i = 1, · · · , n k ∈ N. (24)

Here, pui(k) ∈ R is the output of the coupled dynamics, and it is not available for feed-
back. Physically, such a term results from, for example, flexible appendages in rigid body
structures as in a slung load system and the coupling between rigid body and flexible body
modes as in an agent. In (23), ξi(k) ∈ R is the state of the coupled dynamics, and fui ∈ R,
gui ∈ R, and hui ∈ R are variables related to coupled dynamics, where fui ∈ (−1, 1) that is
standard consideration in the literature [18].

The objective here is to achieve asymptotic convergence of the tracking error in the
presence of not only agent-based uncertainties but also coupled dynamics. To this end,
observer dynamics is used to estimate the state of the unmeasurable coupled dynamics.
Specifically, the adaptive controller is now designed as

ui(k) = −ϵ ∑
i∼j

(ωj

ωi
xi(k)− xj(k)

)
−ϵκi

(
xi(k)− c(k)

)
−∆̂i(k)σi(xi(k))− hui ξ̂i(k), (25)

where ξ̂i(k) ∈ R stands for an estimate of the coupled dynamics of agent i with the
estimation dynamics given by

ξ̂i(k + 1) = fui ξ̂i(k) + guixi(k), ξ̂(0) = ξ̂0, k ∈ N, (26)

p̂ui(k) = hui ξ̂i(k). (27)

Here, p̂ui(k) ∈ R is the estimated output of the coupled dynamics.
Then, using the proposed adaptive control law given by (25) in the uncertain multia-

gent system with coupled dynamics given by (22) yields

xi(k + 1) = xi(k)− ϵ ∑
i∼j

(ωj

ωi
xi(k)− xj(k)

)
−ϵκi

(
xi(k)− c(k)

)
−∆̃i(k)σi(xi(k))− hui ξ̃(k). (28)

Here, ∆̃i(k) ≜ ∆̂i(k)− ∆i ∈ R is the weight estimation error, and ξ̃i(k) ≜ ξ̂i(k)− ξ(k) ∈ R
coupled dynamics estimation error.

Next, the tracking error dynamics can be rewritten as

ei(k + 1) = ei(k)− ϵ ∑
i∼j

(ωj

ωi
ei(k)− ej(k)

)
−ϵκiei(k)− ∆̃i(k)σi(xi(k))− hui ξ̃(k), k ∈ N. (29)

Then, the error dynamics can be written in a combined form for an overall multiagent
system as

e(k + 1) = (I − ϵF)e(k)− ∆̃T(k)σ(x(k))− Hξ̃(k). (30)
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Here, ξ̃(k) = [ξ̃1(k), · · · , ξ̃n(k)]T ≜ ξ̂(k)− ξ(k) ∈ Rn is the coupled dynamics combined
observer error with ξ(k) = [ξ1(k), · · · , ξn(k)]T ∈ Rn and ξ̂(k) = [ξ̂1(k), · · · , ξ̂n(k)]T ∈ Rn.
In addition, in (30), H = diag([hu1, · · · , hun]) ∈ Rn×n.

Next, the combined adaptive control input can be written as

u(k) = −ϵFx(k) + ϵKc(k)− ∆̂T(k)σ(x(k))− Hξ̂(k) (31)

with the same augmented weight update law given in (9) and the below augmented
observer dynamics

ξ̂(k + 1) = Fξ̂(k) + Gx(k), ξ̂(0) = ξ̂0, k ∈ N, (32)

p̂u(k) = Hξ̂(k), (33)

where F = diag([ fu1, · · · , fun]) ∈ Rn×n, G = diag([gu1, · · · , gun]) ∈ Rn×n, and
p̂u(k) = [ p̂u1(k), · · · , p̂un(k)]T ∈ Rn. In (32), F is Schur, it follows from converse Lya-
punov theory [42] that there exists a unique S ∈ Pn satisfying the discrete-time Lyapunov
equation given by

0n = FTSF + RF − S (34)

with RF ∈ Pn.
Finally, weight estimation error dynamics that will be used in the stability analysis of

the next theorem satisfies the dynamics given by

ξ̃(k + 1) = Fξ̃(k), ξ̃(0) = ξ̃0, k ∈ N. (35)

Theorem 2. Consider the uncertain multiagent system given by (22) subject to the unmeasurable
coupled dynamics given by (23) and (24), and the agent reference model given by (2), then the
discrete-time adaptive control architecture given by (31) along with the weight update law given
by (9) and the observer dynamics given by (26) and (27) guarantees the Lyapunov stability of the
closed-loop system given by (30), (10) and (35) (i.e., boundedness of the triple

(
e(k), ∆̃(k), ξ̃(k)

)
.

Moreover, one can conclude the asymptotic tracking error convergence that is

lim
k→∞

e(k) = 0. (36)

Proof. To show the Lyapunov stability of the closed-loop system given by (30), (10) and
(35) (i.e., boundedness of the

(
e(k), ∆̃(k), ξ̃(k)

)
, one can consider the Lyapunov function

candidate composed of logarithmic and quadratic functions given by

V
(
e, ∆̃, ξ̃

)
≜ ι−1 ln

(
1 + µeTPe

)︸ ︷︷ ︸
V1

+ α−1tr(∆̃T∆̃)︸ ︷︷ ︸
V2

+ ν−1ξ̃TSξ̃︸ ︷︷ ︸
V3

, (37)

where ν ∈ R+. Note that V(0, 0, 0) = 0 and V(e, ∆̃, ξ̃) > 0 for all (e, ∆̃, ξ̃) ̸= (0, 0, 0).
Then, first, taking the Lyapunov difference of V1(·) and using the error dynamics

given by (30) yields

∆V1 ≜ V1
(
e(k + 1)

)
− V1

(
e(k)

)
= ι−1 ln

(
1 + µeT(k + 1)Pe(k + 1)

)
− ι−1 ln

(
1 + µeT(k)Pe(k)

)
= ι−1 ln

(
1 + µ

[
(I − ϵF)e(k)− ∆̃T(k)σ(x(k))− Hξ̃(k)

]T
·P
[
(I − ϵF)e(k)− ∆̃T(k)σ(x(k))− Hξ̃(k)

])
− ι−1 ln

(
1 + µeT(k)Pe(k)

)
. (38)
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Note that using the natural logarithm property ln a − ln b = ln(a/b) and by adding and

subtracting “ µeT(k)Pe(k)
1+µeT(k)Pe(k)” to the above equality ∆V1 can be rewritten as

∆V1 = ι−1 ln

(
1 + µ

([
(I − ϵF)e(k)− ∆̃T(k)σ(x(k))− Hξ̃(k)

]T
·
P
[
(I − ϵF)e(k)− ∆̃T(k)σ(x(k))− Hξ̃(k)

]
1 + µeT(k)Pe(k)

− eT(k)Pe(k)
1 + µeT(k)Pe(k)

))
. (39)

using another natural logarithmic operator property ln(1 + a) ≤ a when a ≥ −1 [43], an
upper bound for (39) can be obtained as

∆V1 ≤ ι−1µ

1 + µeT(k)Pe(k)

(
− eT(k)Re(k) + σT(x(k))∆̃(k)P∆̃T(k)σ(x(k)) + ξ̃T(k)HTPHξ̃(k)

−2σT(x(k))∆̃(k)P(I − ϵF)e(k)− 2ξ̃T(k)HTP(I − ϵF)e(k) + 2σT(x(k))∆̃(k)PHξ̃(k)
)

, (40)

where “−R ≜ (I − ϵF)T P(I − ϵF)− P ∈ Rn×n
− ” given by (7) is used.

Second, taking the Lyapunov difference of V2(·) along with the weight uncertainty
error dynamics given by (10) and using (30) in the dynamics yields

∆V2 ≜ V2
(
∆̃(k + 1)

)
− V2

(
∆̃(k)

)
= α−1tr

(
∆̃T(k + 1)∆̃(k + 1)

)
− α−1tr

(
∆̃T(k)∆̃(k)

)
= α−1tr

((
∆̃T(k) +

γ

1 + µeT(k)Pe(k)
(−∆̃T(k)σ(x(k))σT(x(k))− Hξ̃(k)σT(x(k)))

)
·
(

∆̃(k) +
γ

1 + µeT(k)Pe(k)
(−σ(x(k))σT(x(k))∆̃(k)− σ(x(k))ξ̃T(k)HT)

))
−α−1tr

(
∆̃T(k)∆̃(k)

)
. (41)

Then using the trace operator property aTb = tr(baT) and simplifying (41) yields

∆V2 =
α−1γ

1 + µeT(k)Pe(k)
σT(x(k))∆̃(k)

(
−2 +

γσT(x(k))σ(x(k))
1 + µeT(k)Pe(k)

)
∆̃T(k)σ(x(k))

+
α−1γ2σT(x(k))σ(x(k))(

1 + µeT(k)Pe(k)
)2 ξ̃T(k)HTHξ̃(k)

+
α−1γ

1 + µeT(k)Pe(k)
ξ̃T(k)HT

(
−2 + 2

γσT(x(k))σ(x(k))
1 + µeT(k)Pe(k)

)
∆̃T(k)σ(x(k)). (42)

Note that using ∥ σT(x(k))σ(x(k))
1+µeT(k)Pe(k) ∥2 ≤ η, and setting γ = ργη−1 and α−1 = ι−1µρ1γ−1

an upper bound for (42) can be written as

∆V2 ≤ ι−1µ

1 + µeT(k)Pe(k)

(
σT(x(k))∆̃(k)

(
−2ρ1 + ργρ1

)
∆̃T(k)σ(x(k)) + ργ ξ̃T(k)HTHξ̃(k)

)
+

ι−1µ

1 + µeT(k)Pe(k)
ξ̃T(k)HT

(
−2ρ1 + 2γηρ1

)
∆̃T(k)σ(x(k)). (43)

Third, taking the Lyapunov difference of V3(·) and using the error in observer dynam-
ics (35) yields
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∆V3 ≜ V3
(
ξ̃(k + 1)

)
− V3

(
ξ̃(k)

)
= ν−1ξ̃T(k + 1)Sξ̃(k + 1)− ν−1ξ̃T(k)Sξ̃(k)

= ν−1ξ̃T(k)FTSFξ̃(k)− ν−1ξ̃T(k)Sξ̃(k)

= −ν−1ξ̃T(k)(S − FTSF)ξ̃(k)

= −ν−1ξ̃T(k)RF ξ̃(k). (44)

Setting RF = HTRH H with RH ∈ Pn, and ν = ιµ−1ρ−1
2 with ρ2 being a free variable

that will be designed later, an upper bound for (44) can be written as

∆V3 ≤ − ι−1µ

1 + µeT(k)Pe(k)
ξ̃T(k)HTρ2RH Hξ̃(k). (45)

Then, using (40), (43) and (45) to compute ∆V(·) ≜ ∆V1(·) + ∆V2(·) + ∆V3(·), and
defining q̃T

1 (k) =
[
eT(k), σT(x(k))∆̃(k), ξ̃T(k)HT], the combined Lyapunov difference

equation can be written as

∆V1 + ∆V2 + ∆V3

≤ ι−1µ

1 + µeT(k)Pe(k)

(
− eT(k)Re(k) + σT(x(k))∆̃(k)

[
P − 2ρ1 + ργρ1

]
∆̃T(k)σ(x(k))

+ξ̃T(k)HT[P − RHρ2 + ργρ1
]
Hξ̃(k)− 2σT(x(k))∆̃(k)P(I − ϵF)e(k)

)
−2ξ̃T(k)HTP(I − ϵF)e(k) + 2σT(x(k))∆̃(k)

[
P − ρ1

]
Hξ̃(k) + σT(x(k))∆̃(k)

[
2ρ1γη

]
Hξ̃(k)

)
=

ι−1µ

1 + µeT(k)Pe(k)

(
eT(k)[−R + β(I − ϵF)T P(I − ϵF)]e(k)

+σT(x(k))∆̃(k)
[
P +

1
β

P − 2ρ1 + ργρ1
]
∆̃T(k)σ(x(k))

+ξ̃T(k)HT[2P − RHρ2 + ργρ1
]
Hξ̃(k) + σT(x(k))∆̃(k)

[
2ρ1γη

]
Hξ̃(k)

)

− ι−1µ

1 + µeT(k)Pe(k)
q̃T

1 (k)


β(I − ϵF)T P(I − ϵF)

(
P(I − ϵF)

)T (
P(I − ϵF)

)T

P(I − ϵF) 1
β P

(
−P + ρ1

)T

P(I − ϵF) −P + ρ1 P


︸ ︷︷ ︸

F̄≥0

q̃1(k). (46)

Note that setting ρ1 = (1 + 1
β )P ∈ Pn, one can show the F̄ matrix is positive semi-definite

as shown in Appendix C. Then using −R = −R + β(I − ϵF)T P(I − ϵF) < 0, and taking
an upper bound of (46) yields

∆V ≤ ι−1µ

1 + µeT(k)Pe(k)

(
− eT(k)Re(k)− σT(x(k))∆̃(k)

[
(1 +

1
β
)P − (1 +

1
β
)ργP

]
︸ ︷︷ ︸

ρ3

∆̃T(k)σ(x(k))

−ξ̃T(k)HT [− 2P + RHρ2 − ργρ1
]︸ ︷︷ ︸

ρ4

Hξ̃(k) + σT(x(k))∆̃(k)
[
2ρ1γη

]
Hξ̃(k)

)
,

≤ ι−1µ

1 + µeT(k)Pe(k)

(
− eT(k)Re(k)

)
− ι−1µ

1 + µeT(k)Pe(k)
q̃T

2 (k)

[
ρ3 −ρ1ργ

−ρ1ργ ρ4

]
︸ ︷︷ ︸

ρ5≥0

q̃2(k), (47)
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where q̃T
2 (k) =

[
σT(x(k))∆̃(k) ξ̃T(k)HT]. In (47), γ = ργη−1 is used. One can then show

positive definiteness of ρ5 as shown in Appendix D. Finally, one can obtain an upper bound
for (47) that is

∆V ≤
l−1
0 µ

1 + µeT(k)Pe(k)

(
− eT(k)Re(k)

)
, (48)

which proves the boundedness of the
(
e(k), ∆̃(k), ξ̃(k)

)
. It then follows from Theorem 13.10,

ref. [42] that limk→∞(e(k)) = 0.

Remark 1. The given proposed discrete-time adaptive control architecture can be sequentially
executed in embedded code. Table 2 presents one possible sequential operation of this architecture.
Note that no knowledge of any signal from step (k + 1) is required to execute the architecture.

Table 2. Sequential operation.

Initial Execution: k = 0

1: Using xr(0) and c(0), calculate xr(1)

2: Using x(0), c(0), ∆̂(0), and ξ̂(0), calculate u(0)

3: Apply u(0) to obtain x(1)
from the physical system

Repetitive Execution: k ≥ 1

4: Using x(k − 1) and xr(k − 1), calculate e(k − 1)

5: Using x(k) and xr(k), calculate e(k)

6: Using e(k − 1), e(k), x(k − 1), and ∆̂(k − 1),
calculate ∆̂(k)

7: Using ξ̂(k − 1) and x(k − 1),
calculate ξ̂(k)

8: Using xr(k) and c(k), calculate xr(k + 1)

9: Using x(k), c(k), ∆̂(k), and ξ̂(k), calculate u(k)

10: Apply u(k) to obtain x(k + 1) from the system

Remark 2. The generalization of the results obtained from undirected connected graphs considered
in this work to other types of graphs requires assumptions on the connectivity. For directed
graphs, ensuring a strong connectivity and understanding the implications of the graph’s Laplacian
matrix properties are critical; thus, our results can be generalizable under conditions of strong
connectivity. In the context of disconnected or weakly connected graphs, on the other hand, it is
necessary to develop more complex control strategies or redefine objectives that are achievable within
the constraints of these graphs. Each graph type introduces specific considerations that must be
addressed to ensure the successful application and generalization of control strategies developed here
for undirected connected graphs.

4. Illustrative Numerical Example Results

In order to illustrate the efficacy of the proposed discrete-time control architecture, con-
sider a group of five agents on a line graph with the third agent being a leader. See Figure 1
for the graph formation chosen for the illustrative numerical examples of this paper.

The coupled dynamics state parameter fui for each agent are selected according to
the fui ∈ (−1, 1) standard rule. In particular, the coupled dynamics parameters are se-
lected as F = diag ([−0.1,−0.05,−0.02, −0.15,−0.2]), G = diag([0.6, 0.5, 0.4, 0.3, 0.2]), and
H = diag([1.3, 1.2, 1, 0.9, 0.7]/5). The known basis functions and unknown weights are
assigned to create nonlinear and linear dynamics in the simulation. For the simulations, we
set the uncertain weights as ∆ = diag([0.075, 0.05, 0.015, 0.0375, 0.0606]) and the known ba-
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sis functions are selected as σ1(x1(k)) = x2
1(k), σ2(x2(k)) = cos(x2(k)), σ3(x3(k)) = x3(k),

σ4(x4(k)) = sin(x4(k)), and σ5(x5(k)) = x3
5(k).

Figure 1. Graph representation for an undirected line graph with five agents, where the third agent is
the leader.

Here, we choose the nullspace ω = [1; 2; 3; 2; 1] and use the bounded command
c(k) = v(k)w3 = 1.5 (i.e., v(k) = 0.5) such that limk→∞ x(k) = v(k)ω. Thus, the expectation
for convergences is that the first agent should converge to 0.5, the second agent should
converge to 1, the third (the leader) agent should converge to 1.5, the fourth agent should
converge to 1, and the fifth agent should converge to 0.5.

The update law requires the calculation of the learning rate γ, where the learning
rate is defined as γ = ργη−1 with ργ ∈ (0, 1) being a free variable and η = 2l2

µλ(P) + 2d∗
2

is bound for the ∥ σT(x(k))σ(x(k))
1+µeT(k)Pe(k) ∥2 as given in Appendix A with selected l = 1 and µ = 1,

and calculated d∗ = 1.53. For the simulation and the calculation of η value, we set the
Lyapunov equation matrix R to 1 that yields λ(P) = 1.1466. Note that the learning rate is
restricted with γ ∈ (0, 1) for the stability of the closed-loop multiagent system; thus, we set
the free variable ργ to 0.99 that yields a calculated learning rate value γ = 0.154 ∈ (0, 1).
We set the time step ∆t to 0.2 (i.e., frequency to 5 [Hz] to show the discrete nature of the
response of the multiagent system and this frequency is set to represent low-cost, small,
and educational aerial or ground robots), where this results in the response having a leader
convergence time of around 40 [s] that heavily depends on the learning rate, discrete-time
step, user-assigned nullspace, and graph selection.

We set the control parameter ϵ to 1
6 that satisfies ϵ < 1

max(di)+1
rule defined in Section 2,

where modified degree values are calculated as d̄1 = 2, d̄2 = 2, d̄3 = 1.333, d̄4 = 2, and
d̄5 = 2. Here, the max(di) = 2 satisfies the 1

6 < 1
2+1 rule and ensures that the eigenvalues of

“I − ϵF(G, ω)” remains within the unit circle with λ1 = 0.3576, λ2 = 0.5000, λ3 = 0.6483,
λ4 = 0.8333, and λ5 = 0.9385. Finally, all the initial conditions are set to zero.

To motivate the necessity of the controller that is proposed in Section 3, we first
simulate the uncertain multiagent system in the presence of the unmeasurable coupled
dynamics with the proposed controller of Section 2. The simulation aims to replicate the
conditions that agents might encounter, including the nonlinear and linear uncertainties
and dynamic couplings that can significantly impact performance. Figures 2–4 show the
closed-loop system response with the proposed discrete-time adaptive control architecture
given in Section 2.

However, as shown in Figures 2–4, it is evident that the standard control strategy is
insufficient for achieving convergence to the assigned positions and it even yields instability,
highlighting the challenging nature of the task and the need for a more robust control
solution. This lack of convergence is particularly noticeable in the tracking responses,
which deviate from the desired trajectory and signal inadequate compensation for the
uncertainties and coupled dynamics.

Building on these insights, we further implement the advanced discrete-time adaptive
control architecture detailed in Section 3. This enhanced controller is specifically designed
to address the instability in the earlier simulations, incorporating strategies for managing
both the agent-based uncertainties and the coupled dynamics. Figures 5–8 then show the
closed-loop system response, control input, unknown weights estimates, and observer
state, respectively, for each agent in the presence of the agent-based uncertainty and the
coupled dynamics with the proposed discrete-time adaptive control architecture given in
Section 3. These figures collectively illustrate an improvement over the initial results, with
the system now successfully mitigating the adverse effects of uncertainties and coupled
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dynamics, as evidenced by the stabilized trajectories. Most notably, the convergence to
the assigned positions is clearly achieved, validating the effectiveness of the proposed
controller in Section 3.
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Figure 2. Uncertain multiagent system response in the presence of coupled dynamics with the
proposed discrete-time adaptive control method given in Section 2.
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Figure 3. Control inputs with the proposed discrete-time adaptive control method given in Section 2.
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Figure 4. Agent-based uncertainty estimations of the proposed discrete-time adaptive control method
given in Section 2.
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Figure 5. Uncertain multiagent system response in the presence of coupled dynamics with the
proposed discrete-time adaptive control method given in Section 3.
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Figure 6. Control inputs with the proposed discrete-time adaptive control method given in Section 3.
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Figure 7. Agent-based uncertainty estimations of the proposed discrete-time adaptive control method
given in Section 3.
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Figure 8. Agent-based coupled dynamics of the proposed discrete-time adaptive control method
given in Section 3.

In summary, the comparative analysis between the standard and proposed controller
simulations serves as a compelling argument for the necessity of the proposed control
architecture proposed in Section 3. The marked improvement in system performance and
stability underscores the value and impact of the proposed discrete-time adaptive control
solution in managing complex, uncertain multiagent systems.

5. Conclusions

This paper addresses the challenges and complexities associated with discrete-time
architectures in the context of multiagent systems with uncertain scalar dynamics and
coupled interactions. Specifically, the paper introduces a discrete-time adaptive control
architecture with observer dynamics for managing unmeasurable coupled dynamics. Addi-
tionally, a user-assigned Laplacian matrix is incorporated to induce cooperative behaviors
among multiple agents. The proposed control architecture is accompanied by Lyapunov
analysis employing logarithmic and quadratic Lyapunov functions to guarantee asymptotic
stability. Through an illustrative example, the paper demonstrates the effectiveness of the
introduced control architecture, showcasing its ability to address uncertainties and coupled
dynamics in multiagent systems. These contributions open avenues for further research in
the development and application of adaptive control strategies in discrete-time scenarios.

The future research direction can include adding actuator dynamics and unknown
control degradation to the multiagent system model and experimentally validating the
theoretical results of this paper with the system with multiple robots to address real-world
challenges. In addition, future research can include investigating the generalization of our
control strategies to other graph types, such as directed, disconnected, or weekly connected
graphs, aiming to address the specific challenges they present for multiagent systems.
Finally, another future research direction is verifying and determining the convergence
rate of the overall multiagent system that depends on learning rate, discrete-time step,
user-assigned nullspace, and graph selection.



Electronics 2024, 13, 524 19 of 22

Author Contributions: Conceptualization, K.M.D.; Methodology, K.M.D. and I. A. A.; Validation,
I.A.A.; Writing—original draft, I.A.A.; Writing—review & editing, I.A.A.; Supervision, K.M.D. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Aeronautics and Space Administration
through the University of Central Florida’s NASA Florida Space Grant Consortium and Space Florida.

Data Availability Statement: The data presented in this study are available in this article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this appendix, the upper bound for ∥ σT(x(k))σ(x(k))
1+µeT(k)Pe(k) ∥2 ≤ η is obtained. Given that

∥x(k)∥2 ≤ ∥e(k)∥2 + x∗r , ∥σ(x(k))∥2 ≤ lc + l∥x(k)∥2, and setting d∗ = lc + lx∗r then the
bound on σT(x(k))σ(x(k)) can be written as

∥σT(x(k))σ(x(k))∥2 ≤
(
lc + l∥x(k)∥2

)2

= l2
c + 2llc(∥e(k)∥2 + x∗r ) + l2∥x(k)∥2

2

= l2
c + 2llc(∥e(k)∥2 + x∗r ) + l2(∥e(k)∥2

2 + 2x∗r ∥e(k)∥2 + x∗
2

r )

= l2
c + 2l(lc + lx∗r )∥e(k)∥2 + 2l(lc + lx∗r )x∗r − l2x∗

2

r + l2∥e(k)∥2
2

= l2
c + 2ld∗∥e(k)∥2 + 2ld∗x∗r − l2x∗

2

r + l2∥e(k)∥2
2

= l2∥e(k)∥2
2 + 2ld∗∥e(k)∥2 + d∗

2 − 2l2x∗
2

r − 2llcx∗r + 2ld∗x∗r
= (l∥e(k)∥2 + d∗)2.

Then an upper bound for ∥ σT(x(k))σ(x(k))
1+µeT(k)Pe(k) ∥2 can be written as

∥σT(x(k))σ(x(k))
1 + µeT(k)Pe(k)

∥2 ≤
( l√

µλ(P)
+ d∗

)2

=
l2

µλ(P)
+ d∗

2
+

2ld∗√
µλ(P)

≤ 2l2

µλ(P)
+ 2d∗

2
= η,

where the Young’s inequality “2xy ≤ x2

2 + y2

2 ” is used at the last step.

Appendix B

In this appendix, the below N is proven to be positive definite

N ≜ ρ1(2 − ργ)− (1 +
1
β
)P.

Note that setting ρ1 ≜ 1+β
β P yields

N ≜ (1 +
1
β
)P(2 − ργ)− (1 +

1
β
)P.

Recall that ργ ∈ (0, 1); and hence, “(2 − ργ) > 1”. That concludes the positive definite-
ness of

N ≜ (1 +
1
β
)P(1 − ργ) > 0.
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Appendix C

In this appendix, the below F̄ matrix is proven to be positive semi-definite

F̄ ≜


β(I − ϵF)T P(I − ϵF)

(
P(I − ϵF)

)T (
P(I − ϵF)

)T

P(I − ϵF) 1
β P

(
−P + ρ1

)T

P(I − ϵF) −P + ρ1 P

 ≥ 0.

To prove the positive semi-definiteness of the above matrix, one needs to prove that the
minors of the matrix are positive semi-definite [44]. Let p1, p2,and p3 be the minors of F̄
given by

p1 = β(I − ϵF)T P(I − ϵF) > 0,

p2 = (I − ϵF)T P(I − ϵF)P − (I − ϵF)T P(I − ϵF)P = 0,

p3 = (I − ϵF)T P(I − ϵF)
(

PTP − βPTP + 2βρ1P − βρ2
1

)
−(I − ϵF)T P(I − ϵF)

(
PTP + PTP − ρ1P

)
+(I − ϵF)T P(I − ϵF)

(
−PTP + ρ1P − 1

β
PTP

)
= (I − ϵF)T P(I − ϵF)

(
−βPTP + 2βρ1P − βρ2

1 − 2PTP + 2ρ1P − 1
β

PTP
)

= (I − ϵF)T P(I − ϵF)
(
−βPTP − 2PTP − 1

β
PTP

)
+(I − ϵF)T P(I − ϵF)

(
ρ1
(
2βP + 2P

)
−βρ2

1

)
= (I − ϵF)T P(I − ϵF)

(−(β + 1)2

β
PTP

)
+(I − ϵF)T P(I − ϵF)

(
2ρ1P

(
β + 1

)
−βρ2

1

)
,

where p1 is positive definite since β ∈ R+ and P ∈ P+, and p2 = 0. To prove p3 = 0, one
needs to use ρ1 ≜ 1+β

β P that is defined in Appendix B. Then one can conclude p3 = 0 as

p3 = (I − ϵF)T P(I − ϵF)
(−(1 + β)2

β
PTP

)
+(I − ϵF)T P(I − ϵF)

(
2
(1 + β)2

β
PTP − (1 + β)2

β
PTP

)
= 0

This concludes the proof that the matrix F̄ is positive semi-definite.

Appendix D

In this appendix, the below ρ5 matrix is proven to be positive definite

ρ5 =

[
ρ3 −ρ1ργ

−ρ1ργ ρ4

]

with ρ1 ≜
1+β

β P, ρ3 ≜
[
(1+ 1

β)P− (1+ 1
β)ργP

]
= (1− ργ)ρ1, and ρ4 ≜

[
− 2P+RHρ2 − ργρ1

]
.

To prove the positive definiteness of the above matrix, one needs to prove that the minors
of the matrix are positive semi-definite [44]. Let p1 and p2 be the minors of ρ5 given by

p1 = ρ3 = (1 − ργ)ρ1,

p2 = ρ3ρ4 − ρ2
γρ1ρ1

= (1 − ργ)ρ1(−2P + RHρ2 − ργρ1)− ρ2
γρ1ρ1

= ρ1
(
−2P + (1 − ργ)RHρ2 − ργρ1 + 2ργP

)
.



Electronics 2024, 13, 524 21 of 22

Here, p1 is positive definite since ργ ∈ (0, 1). Then setting ρ2 ≜ 1
λ(RH)

(1 − ργ)−1(2P +

ργρ1 − 2ργP) yields

p2 = ρ1
( RH

λ(RH)
− RH

)
(2P + ργρ1 − 2ργP)

p2 = ρ1
( RH

λ(RH)
− RH

)
︸ ︷︷ ︸

>0

(2P(1 − ργ)︸ ︷︷ ︸
>0

+ργρ1).

This concludes the proof that the matrix ρ5 is positive definite.
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