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Abstract: Overconfidence in deep neural networks (DNN) reduces the model’s generalization per-
formance and increases its risk. The deep ensemble method improves model robustness and gen-
eralization of the model by combining prediction results from multiple DNNs. However, training
multiple DNNs for model averaging is a time-consuming and resource-intensive process. Moreover,
combining multiple base learners (also called inducers) is hard to master, and any wrong choice
may result in lower prediction accuracy than from a single inducer. We propose an approximation
method for deep ensembles that can obtain ensembles of multiple DNNs without any additional
costs. Specifically, multiple local optimal parameters generated during the training phase are sampled
and saved by using an intelligent strategy. We use cycle learning rates starting at 75% of the training
process and save the weights associated with the minimum learning rate in every iteration. Saved
sets of the multiple model parameters are used as weights for a new model to perform forward
propagation during the testing phase. Experiments on benchmarks of two different modalities, static
images and dynamic videos, show that our method not only reduces the calibration error of the
model but also improves the accuracy of the model.

Keywords: confidence calibration; deep ensemble learning; stochastic weight averaging

1. Introduction

During training, a deep neural network (DNN) learns the output probability, which
indicates the DNN’s confidence in the results. Some recent work has found that the
confidence of a DNN is not consistent with its accuracy [1–3]. These works point out
that DNNs suffer from overconfidence. An overconfident DNN gives high confidence
in wrong predictions. The problem of overconfidence poses a huge challenge to the
deployment of DNNs in real-world applications. For example, in health care, criminal
justice, and autonomous driving applications, we expect models to have a certain degree
of confidence in their predictions in order to make more informed decisions. Confidence
calibration not only enhances the model’s ability to generalize and minimizes potential
risks but also greatly aids in its interpretability [4,5].

Confidence calibration is the process of adjusting the predicted probabilities of a model
to better reflect the true likelihood of its predictions being correct [2,6]. More formally,
a completely calibrated classification model is one in which the probability of the predicted
outcome Ŷ being equal to the actual outcome Y is defined as P(Ŷ = Y | P̂ = p) = p,
where p falls within the range of [0, 1], and P̂ is the model’s associated confidence. It is
expected that P̂ will be calibrated, indicating that it accurately reflects an actual probability.
An accurately-calibrated classifier is a probabilistic classifier that can be directly interpreted
in terms of confidence score through its predicted probability output. To illustrate, a pre-
cisely calibrated (binary) classifier that yields 100 samples with a confidence score of 0.6 for
every prediction indicates that 60 samples will be accurately classified. Confidence cali-
bration refers to a model’s capacity to accurately assign probabilities to its predictions [7].

Electronics 2024, 13, 503. https://doi.org/10.3390/electronics13030503 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13030503
https://doi.org/10.3390/electronics13030503
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9715-0619
https://orcid.org/0000-0003-3950-4575
https://orcid.org/0000-0002-8100-9079
https://orcid.org/0000-0001-7742-4846
https://doi.org/10.3390/electronics13030503
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13030503?type=check_update&version=1


Electronics 2024, 13, 503 2 of 13

In recent years, multiple techniques have been introduced to generate predictive confidence
scores through calibration [2,8,9], including post-processing, Bayesian neural networks,
and deep ensemble methods. Temperature scaling is a post-processing calibration method
proposed by Guo et al. [2]. The main principle revolves around the utilization of a singular
scalar parameter, T > 0, denoting the temperature, to modify the logit score prior to the
implementation of the softmax function. The method cannot effectively handle out-of-
distribution data because T is computed on the validation set. The idea behind the Bayesian
neural network approach is to infer the probability distribution of the DNN parameters.
This distribution is used to sample the parameters for single forward propagation, resulting
in random predictions that are influenced by diverse model weights. However, precise
Bayesian inference is computationally difficult for neural networks and incurs extremely
expensive computational and memory costs [3].

Deep ensemble learning [10] combines the predictions of several base estimators
to reduce the variance of predictions and reduce generalization errors. The concept of
ensembling is based on the idea that a group of models can work together to enhance the
strengths and minimize the weaknesses of individual base learners. Deep ensembles were
originally proposed and discussed to improve the prediction performance of DNNs. In [11],
the authors, through the experimental analysis of several regression and classification tasks,
showed that averaging the predictions of ensemble models can also be used to derive
useful uncertainty estimates. Moreover, in [12], deep ensembles were shown to be state-
of-the-art for the domain shift (or out-of-distribution) setting. Compared to single-model
methods [2], the computational costs and memory consumption of the deep ensemble
approach are significantly higher. Moreover, the additional computations increase linearly
with the number of base learners. Some interesting methods, such as distillation, sub-
ensembles, and batch ensembles, have been proposed to solve these problems. However,
these approaches necessitate substantial changes to the training process and remain costly
in regards to both time and computational resources. To overcome these challenges, work
in [13] presented an approximate method to implement an ensemble of models without
increasing the training cost. During the training phase, multiple snapshots of the model are
periodically saved, and the predictions from the multiple snapshots are averaged during
the testing phase. Instead of training M models from scratch, the snapshot ensembles
in [13] were created by changing the learning rate to allow the optimizer to reach the
local minimum M times during the optimization process. In [14], the study demonstrated
that simple curves connect the optima of complex loss functions, with consistent training
and test accuracy. Based on this geometric finding, they proposed a new approximate
ensembling procedure called fast geometric ensembling (FGE). The FGE algorithm uncovers
various networks by taking small steps in the weight space while remaining in a low test
error region. FGE allows training of highly effective ensembles in the same amount of time
it takes to train a single model. However, these single-model multiple-weight methods
were initially proposed to improve the accuracy of the DNN but with little attention paid
to confidence in the output. It remains unclear whether these methods are effective in
reducing confidence errors.

To fill this gap, we propose a confidence calibration method based on stochastic
weight averaging. We achieve this by training a single DNN to converge to multiple local
minima on the loss surface and to sample and save the model parameters by using a smart
strategy. At a high level, the concept of averaging the stochastic gradient descent (SGD)
iterations has been around for several decades in the field of convex optimization [9,15].
In convex optimization, researchers have primarily focused on optimizing convergence
rates by implementing averaged SGD. In deep learning, the use of averaged SGD results
in a smoother trajectory for SGD iterations but yields minimal differences in performance.
By contrast, we are more concerned in this work with the effect of the method on the
calibration error. Multiple locally optimal weights generated in the training phase are
specially sampled, and then forward propagation is computed as new parameters for
the base learner during the testing phase. We force the optimizer to explore a variety
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of models rather than converge on just one solution by using a modified learning rate
strategy. We use a smart strategy to select relatively more meaningful weights from a large
number of candidate weights. To summarize, instead of designing multiple sets of DNNs,
the method simply trains a single model to obtain well-calibrated confidence output. We
tested our method on two benchmarks with varying modalities, including static images and
dynamic videos. Our experimental findings indicate that our method effectively minimizes
calibration error and enhances the model’s precision. The code is publicly available at
github.com/zjcao/swaCal (accessed on 22 January 2024).

The main contributions of our work are summarized as follows.

(1) We propose an alternate ensemble learning approach to improve the quality of neu-
ral network uncertainty measures to overcome overconfidence without incurring
additional computational costs.

(2) We evaluate our approach using two benchmarks with different modalities: static
images and dynamic videos. The results of our experiments demonstrate that our
approach successfully reduces calibration error and enhances the model’s accuracy.

The remainder of this paper is structured as follows. Section 2 discusses related studies
on deep ensemble learning and confidence calibration. Section 3 describes our proposed
approach in detail. The experiments and results are presented in Section 4. Section 5 is the
conclusion and suggests further studies.

2. Related Work
2.1. Confidence Calibration of a Deep Neural Network

Confidence calibration is a sub-task of open-set recognition that aims to improve the
accuracy of confidence scores for DNN output. DNN output is the probability during an
inference process that indicates the model’s confidence in the result. A precisely calibrated
confidence can represent the probability that the predicted label is correct. Although DNNs
have obtained good prediction accuracy in a variety of visual tasks, recent studies have
found that DNNs suffer from overconfidence [2,7,8]. For a classification task, data scientists
usually use softmax output (predicted probability) as the true probability of correctness in
the predicted category. This might have been reasonable for traditional network models
in the past, but it is not applicable to the DNNs of today. In [16], the authors found
that passing a point estimate through the softmax function produced a high probability.
After that, Guo et al. [2] found the same problem and demonstrated through a series of
ablation experiments that model depth and width, batch normalization, and weight decay
have strong effects on the confidence calibration of DNNs. The process of calibrating a
classifier involves creating a calibrator that translates the classifier’s output into a calibrated
probability ranging from 0 to 1. The calibrator attempts to predict the conditional probability
of the event, p(yi = 1/ fi) based on the classifier’s output, fi, for a specific sample.

The confidence calibration methods can be classified into three types depending on
the approach: (a) regularization methods during the training phase, (b) post-processing
methods after the training phase, and (c) DNN-based uncertainty estimation methods.
Regularization-based confidence calibration methods are performed by changing the ob-
jective function or by augmenting the training dataset during the DNN training process.
Label smoothing, data augmentation, and objective function modification are three com-
monly used methods for confidence calibration based on regularization [17–19]. On the
other hand, various methods have been developed in the last decade to recalibrate model
confidence through post-processing steps. Temperature scaling, proposed in [2], is a sim-
ple and effective technique for recalibrating the prediction probability of modern neural
networks. The core algorithm used for temperature scaling rescales the logit value, fi(x),
by using a single scale parameter, T (temperature), before passing it to the softmax function:
so f tmax( fi/T). T is extracted by minimizing the negative log-likelihood on the validation
datasets after the model training is complete. Although temperature scaling is an effective
way to quantify the total predictive uncertainty of calibrated probabilities, it cannot capture
the uncertainty caused by out-of-distribution data [12]. By decreasing model uncertainty,

github.com/zjcao/swaCal
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the confidence prediction of a DNN can be better calibrated. The rationale for this is that the
remaining uncertainty in the predicted data more accurately reflects the true uncertainty in
the prediction. Bayesian and ensemble methods are two methods that are used to estimate
model uncertainty. The key idea of the Bayesian method is to infer the probability distribu-
tion over the model parameters. The prior distribution of the neural network parameters
is specified, and then the posterior distribution of the parameters is calculated using the
training data. Finally, the uncertainty of the model is predicted according to Bayesian theory.
The main challenge for Bayesian deep learning is to specify meaningful conjugate priors for
the parameters. Moreover, exact Bayesian inference is often computationally difficult for
neural networks with a large number of parameters. Therefore, approximate Bayesian infer-
ence techniques, such as variational inference, Laplace approximation, and Markov chain
Monte Carlo (MC), are usually used to calculate posterior probabilities [1,6]. Although the
Bayesian neural network can estimate the uncertainty of the prediction, the inference phase
procedure requires substantial modification due to the inclusion of Bayes’ law. In addition,
specifying meaningful priors for Bayesian neural networks is a big challenge [3,4].

2.2. Deep Ensemble Learning

The deep ensemble learning approach merges the benefits of deep learning and ensem-
ble learning, resulting in a final model with improved generalization abilities [20]. The main
idea behind deep ensemble learning is that by combining several models, the deficiency
of a single base learner may be compensated for by other base learners so the overall
predictions of the ensemble are better than a single base learner. The ensemble method
for deep learning is roughly divided into two steps: (1) training different models (the
training phase) and (2) merging prediction results (the inference phase). In the training
phase, multiple models can be obtained using different model architectures, training data,
and training strategies. In the inference phase, the same input can be provided to the
model for the prediction. Finally, the prediction of each model is combined according to a
certain strategy to obtain the final prediction. The deep ensemble method can usually be
one of two types: the averaging method and the boosting method [5,6]. The core idea of
the averaging method is to build several estimators independently and then average their
predictions, as is performed in the bagging method and random forest. Boosting methods
such as AdaBoost and gradient tree boosting create the base estimators sequentially to
reduce the bias of the combined models. Boosting and random forest are classical machine
learning ensemble techniques and complementary methods [21].

In deep learning, dropout is designed as a regularization technique for neural networks
to avoid overfitting, which can also be interpreted as an ensemble of multiple models.
In [16], the authors showed that MC dropout can be used to quantify the uncertainty of the
model. However, in [11], the authors found that in various datasets and tasks of regression
and classification, deep ensemble methods were superior to MC dropout in quantifying
uncertainty. Furthermore, the deep ensemble method has been shown to be robust in
quantifying uncertainty for data beyond distribution [12,22]. However, the computational
costs and memory consumption of the ensemble method are significantly higher than in
other methods. Therefore, how to effectively reduce the computational workload and
memory consumption has become a new research topic in the area of ensemble methods.
Pruning methods [23] reduce the complexity of the ensemble by pruning members and
reducing redundancy among members. Other approaches, such as batch ensembles and sub-
ensembles, attempt to reduce computational cost and memory usage by sharing portions
among individual members. We propose an approximate ensemble learning approach
that is simple to implement, requires very little hyperparameter tuning, and achieves
comparable performance.
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3. Confidence Calibration
3.1. Approximate Deep Ensemble Learning

Confidence calibration is the degree to which the uncertainty of the prediction matches
the true underlying uncertainty in the data. The softmax probability score is commonly
employed by scientists as a confidence metric for the predictions in image classification
tasks. Studies have shown that DNN prediction scores can be either overly confident or
lacking in confidence. Deep ensemble learning methods reduce prediction variance and im-
prove robustness and generalization by combining prediction results from multiple DNNs
constructed using a specific learning strategy. The main principle behind the ensemble
approach is to construct several independent estimators and then average their predictions
to yield the final prediction. Due to its reduced variance, the combined estimator achieves
better results than any single base estimator. Formally, given sample x, the ensemble
prediction, p(y|x), is estimated by averaging the predictions of all the models, which can be
expressed as p(y|x) = 1

M ∑M
i=1 pi(y|x), where pi(y|x) is the predicted output of the i-th base

estimator, and m is the number of models in deep ensemble learning. It has been shown
that a DNN ensemble can improve the robustness and accuracy of the system compared
to using individual networks. However, the computational burden of training multiple
DNNs for the ensemble is considerable. Mastering the combinations of ensemble models
can be challenging, and an incorrect selection could lead to reduced prediction accuracy
compared to using a single model.

On the other hand, in [11], the authors showed that the utilization of an ensemble
method for averaging DNN predictions can provide reliable estimates of uncertainty.
In addition, the authors in [12] pointed out that a deep ensemble not only performs well
in quantifying the uncertainty of a model but also has good robustness against out-of-
distribution data. However, little attention has been paid to whether the confidence in the
output predictions of ensemble models is representative of the true probability. The ensem-
ble method requires more training time and computations compared to other confidence
calibration methods, such as Bayesian neural networks and the post-calibration method.

We propose using the approximate ensemble method to calibrate the confidence of
DNNs. We utilize a cyclical learning rate to collect models that are spatially close to
each other but that produce diverse predictions. Instead of individually training multiple
base estimators, our method performs a single supervised training session to obtain well-
calibrated confidence scores. Assume that the training data, D, has N pairs of independent
and identically distributed samples, denoted D = {xn, yn}N

n=1, where x ∈ Rd represents the
d-dimensional features, while y is the label for a classification task and is one of K classes
(i.e., y ∈ {1, . . . , K}). Given the input data, x, our task is to use the DNN to model the
probabilistic predictive distribution of the labels, pθ(y|x), where θ is the weight parameters
of the DNN. During the training phase, we utilize the training set D to conduct standard
supervised learning on the model via the proper scoring rules (which is further explained
in later sections). The parameters of DNNs are often several orders of magnitude greater
than the training data points. That is, they include a large possible function space that may
be very close to the data generation function. Thus, there are multiple low-loss valleys
(local optimums) during the whole learning period, all corresponding to good but different
functions (here, we call them candidate functions). These candidate functions represent
varying assumptions used to determine the underlying fundamental function. The more
candidate functions in the ensemble, the more likely it is to represent the truth, thus,
constructing a more robust model. Figure 1 shows the schematic of the loss landscape
based on SGD optimization. We can see that several local optima appear throughout the
training process. Note that the valley where the loss finally arrives is not considered the
global optimum either.
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Figure 1. Illustration of the 3D loss landscape with SGD optimization of the DNN during the
training phase.

The weights of the model are updated several times in each iteration cycle. The
sampling and saving of these weights are intuitively important to our method. In general,
four metrics are counted in each iteration cycle: training accuracy, training loss, validation
accuracy, and validation loss. Instead of saving the model using the validation accuracy,
we are using a cyclic learning rate for the last 25% training times and saving the network
weights corresponding to the lowest value of the learning rate in each cycle. That is,
when we save the model we only care whether the current cycle learning rate is at its
lowest. Afterwards, we perform stochastic weighted averaging on the multiple sets of
weights obtained.

3.2. Stochastic Weighted Averaging

During the training stage, the multiple local optimal weights generated during the
training process are sampled and simulated as new parameters of the base learner for
inference. Since the loss trajectories and weight values are different, this leads the ensemble
model to make diverse predictions. After the training stage, we save m model weights,
θ1, θ2, . . . , θm each of which are used in the final ensemble. Figure 2 illustrates the data flow
of fusion of our approach. In the inference phase, the given input is fed to multiple base
learners to predict output. The parameters of the multiple base learners are sampled from
the training process by a smart sampling strategy. The method allows for the training of
highly effective ensembles in the same amount of time it takes to train a single DNN.

Average

x

̂y

θmθ2θ1 ⋯⋯

Figure 2. The data flow of fusion during the testing phase of our method, where θ1, θ2, . . . , θm indicate
the set of m base estimators, and ŷ represents the output of base estimator, θm, on sample x.

In this work, we treated the ensemble as a uniformly weighted mixture model and
combined the predictions as follows:

p(y|x) = 1
m

m

∑
i=1

pθi (y|x, θi), (1)
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where m denotes the number of DNNs in the ensemble, and θi indicates the parameter of
the DNN. For classification tasks, this corresponds to averaging the predicted probabilities.
The difference is that we output the logit values, p(y|x), of multiple base learners after
weighted averaging; that is, only a set of confidence scores is obtained. The final prediction
result of x is then output according to this score. We hypothesized that weighted averaging
of multiple confidence scores could effectively reduce variance and produce well-calibrated
outputs, and the following experiments proved our hypothesis.

4. Experiment Results

We evaluated our approach using two benchmark datasets with different modalities:
static images and dynamic videos. In both cases, we followed standard training, validation,
and testing protocols. We evaluated the quality of the confidence score estimation and
the accuracy of the prediction. We show across two different datasets that our method
improves confidence scores without reducing classification error.

4.1. Evaluation Calibration Quality

Before showing experiments to recalibrate the classifier, the metrics for evaluating
the effectiveness of the calibration of the classifier need to be presented. Proper scoring
rules measure the quality of predictive uncertainty. A scoring rule assigns a numerical
score to a predictive distribution, p(y|x), rewarding better-calibrated predictions over
worse ones. Negative log-likelihood (NLL) is a popular and proper scoring rule for multi-
class classification tasks when measuring the accuracy of predicted probabilities. Given
probabilistic model p(y|x) and n samples, NLL is defined as follows:

L = −
n

∑
i=1

log(p(yi|xi)). (2)

In the field of deep learning, NLL is also known as cross-entropy loss. In this work, we use
NLL as a training criterion.

To quantify the quality of the given model’s confidence calibration, we use the follow-
ing evaluation metrics: expected calibration error (ECE), maximum calibration error (MCE),
and root mean square calibration error (RMSCE) [24]. ECE measures the correspondence
between the probability and the accuracy of the prediction. It is computed as the average
gap between within-bin accuracy, and within-bin predicted probability for m bins and can
be expressed as follows:

ECE =
N

∑
i

bi∥(pi − ci)∥ (3)

where bi indicates the fraction of data points in bin i, pi presents the average accuracy in
bin i, and ci indicates the average confidence in bin i.

In contrast to evaluation metrics, reliability diagrams are a visual representation of the
quality of the model’s confidence calibration. It plots the true frequency of a classifier’s
correctly classified labels against the predicted probability. Note that if a DNN is perfectly
calibrated, the diagram should plot the identity function.

4.2. Application 1: Gesture Recognition Task

Computers can interpret human gestures as commands through gesture recognition,
which is a form of perceptual computing user interface. The main objective of gesture
recognition is to categorize a gesture video clip into a specific action group. Gesture
recognition technology is highly applicable in various industries, including robot control,
autonomous driving, and virtual reality. The gesture recognition model should not only
correctly understand the command of the gesture but should also have a certain confidence
in the prediction. Unlike static images, the uncertainty of the deep learning model on
dynamic video is usually more difficult to capture. To evaluate the effectiveness of our
method more comprehensively, we first tested it on a video-based gesture recognition
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dataset. A precisely calibrated gesture recognition system functions as a probabilistic
classifier, allowing for the direct interpretation of the predicted probability output as a
confidence score. This probability gives a certain level of confidence in the prediction.

The publicly available Jester dataset [25] was used to asses the proposed method. It
contains 148,092 videos of people making standard hand gestures in front of a laptop or
webcam. We split the dataset into two categories (a closed set and an open set) and pro-
ceeded to create smaller sets by randomly selecting data from the closed set at a ratio
of approximately 1:4. There are 20 class gestures within the closed mini-datasets, with a
split of 8:1:1 for training, validation, and testing. The training, validation, and testing
sets contain 22,000, 2400, and 2240 gesture samples, respectively. We trained, validated,
and tested all models on the closed Jester mini-dataset in this study.

We utilized the PyTorch 2.1 deep learning framework to implement the proposed
network. The training and validation were conducted on a server containing four NVIDIA
GeForce RTX 3090 GPUs. In our study, we employed a 3D ResNet-18 model that was
initially trained on Kinetics-400. We then proceeded to fine-tune this model using the Jester
training set. We utilized SGD with a momentum of 0.9 as the optimizer and conducted
training on the model for 25 epochs with a batch size of 16. Following the settings from [15],
during the first 75% of training, we adopted the standard decaying learning rate strategy,
followed by a consistent and high learning rate for the remaining 25% (as shown in Figure 3).
The use of a modified learning rate scheme is expected to keep the optimizer bouncing
around the optimum, exploring different models rather than simply converging to a single
solution. Our model obtained 90.02% accuracy on the training set at the 25th epoch, with a
corresponding cross-entropy loss of approximately 0.28. At the same time, the validation
set achieved its best rate of 86.35% at the 21st epoch.

Le
ar

ni
ng

 R
at

e

Epoch

75% training

Average  
DNN weights

250

0.01

0.005

19

Figure 3. Illustration of the learning rate schedule. During the initial 75% of training, a standard
decaying schedule is employed, followed by a high constant value for the remaining 25%. The dots
of different colors represent the weights of the model in different training epochs.

In addition to evaluating the expected calibration error using ECM, MCE, and RM-
SCE, we also report the accuracy and average confidence in the model’s classifications.
The results obtained from the Jester test dataset are summarized in Table 1. We evaluated
our method on multiple scoring functions, including SGD (baseline), MC-Dropout [16],
and Logits-Scaling [26]. On the Jester test set, our method reduced the ECE error from
3.76% to 1.16%. Meanwhile, we observed that our method not only significantly reduced
ECE and MCE but also improved the prediction accuracy of the model to a certain extent.
For example, classification accuracy increased from 83.89% to 84.44%. The experiment
report further illustrates the effectiveness of our method in improving the quality of the
confidence estimation from DNNs in gesture recognition tasks.
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Table 1. Summary of classification accuracy, average confidence, RMSCE, MCE, and ECE, compared
to other methods, as obtained from the Jester test set. All values are percentages; (↑) indicates that
higher values are desirable, (↓) means lower values are better, and bold indicates the best results.

Method
Jester Test Set

Acc. (↑) Conf. (↑) RMSCE (↓) MCE (↓) ECE (↓)
Baseline (SGD) 83.89 87.65 8.73 4.53 3.76
MC-Dropout 84.21 89.91 3.70 8.34 4.83

Logits-Scaling 83.32 87.21 5.19 4.66 4.24
Ours 84.44 85.09 3.71 2.49 1.16

We used visualization to gain an intuitive understanding of the calibration of the
predicted probabilities. The reliability diagram illustrates the degree of calibration in
the probabilistic predictions of a classifier. The reliability diagram displays the average
predicted probability on the x-axis for each bin, while the y-axis reflects the fraction of
positive samples, indicating the proportion of samples with positive categories in each bin.
The diagram should represent the identity function if the model is accurately calibrated.
If the diagonal is not perfect, it suggests the model was not calibrated correctly. The com-
parison diagrams in Figure 4 show that after using our method, the gap was effectively
reduced, and the reliability diagram is closer to an identity function. The upper charts in
the figure are visualizations of the average confidence and accuracy, and below them are
reliability diagrams.

Figure 4. Comparison of reliability diagram and confidence histogram on the Jester test set. The upper
charts are visualizations of average confidence and accuracy, and below them are reliability diagrams
from (left) the SGD optimization method and (right) from our method.

4.3. Application 2: Image Classification Task

To evaluate the performance of the model in different tasks, we tested our proposed
method in an image classification task using the CINIC-10 datasets [27]. They were com-
piled by combining CIFAR-10 with images selected and downsampled from the Ima-
geNet database. The CINIC-10 datasets had 270,000 images and were divided into three
groups for training, validation, and testing. In each subset, there were 10 categories, each
with 90,000 images. We used three architectures that were pre-trained on ImageNet for a
backbone network (ResNet-50 [28], Wide-ResNet-50 [29], and VGG-16 [30]), and we then
fine-tuned them on the CINIC-10 training set using the transfer learning approach. The ex-
perimental setup and training strategy are consistent with those presented in Section 4.2.



Electronics 2024, 13, 503 10 of 13

Comparisons of classification accuracy, average confidence, RMSCE, MCE, and ECE of
the different architectures and methods on the CINIC-10 test set are summarized in Table 2.
We evaluated our method using the same scoring function as in Section 4.2, including: SGD
(baseline), MC-Dropout [16], and Logits-Scaling [26]. We observed that the VGG16-based
architecture yielded the best confidence calibration, with improved classification accuracy.
The other two architectures significantly improved accuracy by about 1.13% on average,
compared with the SGD optimization approach. Comparative results demonstrate that our
approach decreases the model’s calibration error while also increasing its accuracy.

Table 2. Summary of classification accuracy, average confidence, RMSCE, MCE, and ECE compared
to other methods, as obtained from the CINIC-10 test set, where (↑) indicates higher values are
desirable, (↓) means lower values are better, and bold indicates the best result.

Architecture Method
CINIC-10 Test Set

Acc. (↑) Conf. (↑) RMSCE (↓) MCE (↓) ECE (↓)

ResNet-50

Baseline (SGD) 72.92 75.93 5.22 3.39 3.01
MC-Dropout 73.03 76.28 5.70 3.62 3.25

Logits-Scaling 72.46 75.66 6.02 3.59 3.21
Ours 73.63 75.78 4.38 2.80 2.36

Wide-ResNet-50

Baseline (SGD) 73.06 77.01 7.48 4.43 3.97
MC-Dropout 72.82 77.05 7.85 4.83 4.31

Logits-Scaling 69.01 72.04 5.67 3.57 3.07
Ours 74.62 76.38 7.42 3.62 2.52

VGG-16

Baseline (SGD) 78.07 82.69 8.95 5.23 4.62
MC Dropout 78.97 85.23 20.01 7.04 6.29

Logits-Scaling 76.08 78.42 5.79 2.56 2.37
Ours 80.51 80.11 3.56 0.51 0.39

The MC-dropout method can be viewed as an approximation of Bayesian neural
networks. The method requires modification of the original network architecture and in the
testing phase. It is also necessary to perform multiple forward propagation and average
multiple predictions during the testing phase. In contrast, our method can be regarded
as a trainable method. There is no need to modify the model structure, and only one
forward propagation is required in the test phase, which greatly reduces the inference
time. The Logits-scaling method requires recalculating a hyperparameter T based on the
validation set after training and using T to modify the output of softmax during inference
on new inputs. An obvious shortcoming of this method is that it is very dependent on data
sets and has relatively less generality.

To visualize the calibration effect of our method on the CINIC-10 dataset, we also
visualized the calibration curves. The reliability diagram before and after confidence
calibration is shown in Figure 5. The red dashed line indicates the best calibration, where
the output confidence precisely reflects the accuracy. In the confidence histogram (upper
left), we observe a large gap between the mean confidence and the confidence; while in the
upper right graph (our method), we can see that this gap is greatly reduced. Comparing
the left and right reliability diagrams, we can also visualize that our approach is closer to
the red dashed line. These results are consistent with what we observed in application 1 in
Section 4.2.



Electronics 2024, 13, 503 11 of 13

Figure 5. Comparison of reliability diagram and confidence histogram from VGG-16 trained on the
CINIC-10 test set. The upper charts are visualizations of average confidence and accuracy, and below
them are reliability diagrams from (left) the SGD optimization method and (right) from our method.

5. Discussion and Future Work

We believe that there are three important factors that make our proposed approach
work. First, our method uses a modified learning rate schedule. This allows the optimizer
to continuously explore the optimal weights for high performance rather than just reaching
or limiting itself to a single solution. For example, we use a standard decaying learning
rate strategy for the first 75% of iterations, and a cyclical learning rate for the remaining
25% of iterations. Second, we choose to save the corresponding model weights when the
learning rate decays to its lowest value rather then saving model weights according to the
validation accuracy. Note that we are using a cyclical learning rate, so the learning rate
will decay to the lowest value multiple times; that is, we obtain multiple sets of model
weight parameters. The third is to average the model weight parameters traversed by the
optimizer. The key idea behind this is to leverage deep learning’s unique training objectives
flatness [14] to improve generalization and reduce overconfidence.

DNNs are usually learned through a stochastic training algorithm, which means the
DNN is sensitive to the training data and may learn a different set of weights at the end of
the training session, resulting in different predictions. The goal of machine learning is to
develop methods and algorithms to learn from the data; that is, extract the residing informa-
tion from the data. In fact, learning parameters from data is an inverse problem; we need to
infer the cause (parameters) from the result (observed data). In this work, we proposed an
approximate deep ensemble method to calibrate the confidence of DNNs. The ambiguity
in target y for a given x was captured by obtaining a probabilistic model with appropriate
scoring rules. In addition, the approximate combination of ensembles was used to predict
the output for x in an attempt to capture model uncertainty. Through experiments on two
benchmark datasets for image classification and gesture recognition, we demonstrated
that our method obtained well-calibrated confidence estimates. Removing correlations
from individual network predictions to promote ensemble diversity and further improve
performance is left to future work. It would be meaningful to refine multiple ensemble
models into a simpler single model to obtain a model with good confidence calibration.
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