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Abstract: To address the issues of significant object discrepancies, low similarity, and image noise
interference between source and target domains in object detection, we propose a supervised learning
approach combined with knowledge distillation. Initially, student and teacher models are jointly
trained through supervised and distillation-based approaches, iteratively refining the inter-model
weights to mitigate the issue of model overfitting. Secondly, a combined convolutional module is
integrated into the feature extraction network of the student model, to minimize redundant computa-
tional effort; an explicit visual center module is embedded within the feature pyramid network, to
bolster feature representation; and a spatial grouping enhancement module is incorporated into the
region proposal network, to mitigate the adverse effects of noise on the outcomes. Ultimately, the
model undergoes a comprehensive optimization process that leverages the loss functions originating
from both the supervised and knowledge distillation phases. The experimental results demonstrate
that this strategy significantly boosts classification and identification accuracy on cross-domain
datasets; when compared to the TFA (Task-agnostic Fine-tuning and Adapter), CD-FSOD (Cross-
Domain Few-Shot Object Detection) and DeFRCN (Decoupled Faster R-CNN for Few-Shot Object
Detection), with sample orders of magnitude 1 and 5, increased the detection accuracy by 1.67% and
1.87%, respectively.

Keywords: supervision; distillation; combination convolution; explicit visual center; spatial group-
wise enhance

1. Introduction

Few-Shot Object Detection (FSOD) stands as a prominent area of inquiry in computer
vision, aiming to detect objects from previously unseen categories with the aid of a minimal
set of training instances. The existing FSOD algorithm encompasses two primary categories:
single-domain FSOD and cross-domain FSOD.

Zhang et al. [1] introduced an unsupervised few-shot target detection framework
designed for domain adaptation. Utilizing the PASCAL VOC [2], Clipart [3], and Comic [3]
datasets as source domains, they evaluated the framework’s performance on the Water-
color [3], Cityscapes [4], and FoggyCityscapes [5] datasets. This was achieved through
an end-to-end adversarial learning approach. AcroFOD (An Adaptive Method for Cross-
domain Few-shot Object Detection) [6] employs an adaptive optimization strategy to filter
out data instances that are highly similar to the target sample from the existing dataset,
cross-fuses the foreground and background information of the image, enhances the diversity
of the augmented data, and conducts multi-level data enhancement. AsyFOD (An Asym-
metric Adaptation Paradigm for Few-Shot Domain-Adaptive Object Detection) [7] achieves
cross-domain small-sample target detection by leveraging the concept of domain adaptation.
To address the issue of data imbalance between the source and target domains, it introduces
an asymmetric adaptation paradigm. The source domain instance is segmented into target
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similar instances and target different instances. The former serves to augment the target
instance and adheres to the principle of asynchronous alignment, thereby mitigating pre-
mature overadaptation resulting from imbalanced data distribution. The region migration
module, which employs an attention mechanism, accomplishes the distribution alignment
between the source domain and the foreground domain within the target domain, and
constructs a domain classifier for each category. CD-FSOD [8] introduces a cross-domain
few-sample target detection benchmark, with MS COCO [9] as the source domain, which
employs the ArTaxOr (Cross-Domain Few-Shot Object Detection) [10], UODD (Unseen
Object Detection Dataset) [11], and DIOR (A Large-Scale Benchmark Dataset for Object
Detection in Aerial Images) [12] datasets as the target domains for detection, leveraging a
two-stage fine-tuning approach. It optimizes detection performance through the utilization
of both student and teacher models.

It can thus be observed that with single-domain FSOD and cross-domain FSOD, as
two distinct settings of small-sample object detection, the former primarily concentrates on
conducting efficient object detection within the same or similar data domains by utilizing
a limited number of labeled samples. Its core challenge lies in how to, fully excavate and
leverage prior knowledge, in the situation of scarce samples, through methods such as
transfer learning and meta-learning, in order to train a detection model with favorable
performance. The latter method further expands to scenarios where there exist significant
domain disparities between the source and target domains. Besides encountering the small-
sample issue, it also needs to address the additional challenges arising from the domain
differences, such as small inter-class distances and ambiguous foreground–background
boundaries. This demands that the algorithm not only possesses the ability to learn with a
small number of samples, but also is capable of adapting to the visual styles and feature
distributions in different domains. By introducing domain adaptation modules, using
learnable instance features, and other strategies, the cross-domain generalization ability of
the model can be enhanced. Hence, compared with single-domain FSOD, cross-domain
FSOD is more complex and challenging in aspects such as algorithm design, model training,
and evaluation standards.

Consequently, Cross-Domain Few-Shot Object Detection (FSOD) has become more
prevalent; however, it continues to grapple with two significant challenges: (1) The dispar-
ity in data distribution and feature variations across different domains poses significant
challenges for model transferability. Training models with limited samples often results in
overfitting, which in turn diminishes detection performance in the target domain. Preserv-
ing the model’s performance from the source domain necessitates the design of effective
regularization techniques and data augmentation strategies to mitigate overfitting. To ad-
dress this, we embrace the concepts of supervision and distillation, employing a two-stage
fine-tuning approach to construct the network model. This method facilitates weight tran-
sitions between models using exponential moving averages, thereby alleviating the issue
of model overfitting. (2) The cross-domain few-sample target detection method typically
encounters experimental target domain datasets that are often limited to a specific field,
leading to poor generalization performance of the model when faced with data from other
fields. When the domain discrepancy between the source and target domain datasets is
substantial, the original model struggles to generalize effectively to new samples. Enhanc-
ing the model’s generalization ability in the target domain is a critical challenge. To address
this, we propose incorporating a combined convolutional approach, an explicit visual
center, and a spatial grouping enhancement module within the feature extraction module,
multi-scale fusion module, and candidate region extraction module, respectively. These
enhancements are designed to bolster feature representation and improve the model’s
generalization capabilities.

Given the above content, in the second part of the article, we focus on the deficiencies
of the four commonly employed FSOD methods to achieve the detection of a new category
target with a small number of training samples. In the third part, we specifically introduce
a supervised and distillation-driven approach to realize small-sample target detection
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across different domains. In the fourth part, we verify the outstanding performance
of our proposed method for classification and identification on cross-domain datasets
through numerous comparative and ablation experiments. In the concluding section, we
summarize the work content of the entire text and discuss the direction of the work in the
subsequent stage.

To summarize, our main contributions include the following:

(1) We employed a concept grounded in supervision and distillation to construct our
network model, utilizing a two-stage fine-tuning approach. Additionally, we imple-
mented exponential moving average to facilitate weight transitions between models,
thereby mitigating the issue of model overfitting.

(2) We integrated combinatorial convolution, an explicit visual center, and a spatial
grouping enhancement module within the feature extraction module, as well as a
multi-scale fusion module and a candidate region extraction module. These additions
were designed to enhance feature representation and bolster the model’s generaliza-
tion capabilities.

(3) We subjected the proposed method to quantitative experiments and various ablation
studies on the dataset with MS COCO [9] as the source domain and ArTaxOr [10],
UODD [11], and DIOR [12] as the target domains. The experimental outcomes affirm
the reasonableness and efficacy of the suggested approach.

2. Related Research

Given that limited training data are insufficient to fully support the algorithm in
constructing dependable prediction models, FSOD methods typically depend on prior
knowledge to address the challenges posed by data scarcity. We divided the FSOD method
into four categories according to different models of prior knowledge: data enhancement-
based methods, meta-learning-based methods, distance measure-based learning methods,
and transfer-based learning methods.

2.1. Methods Based on Data Enhancement

The method described in [13–16], serving as an implementation of the preprocessing
phase, is frequently employed to augment the dataset, and represents a prevalent approach
to addressing the issue of limited samples. Nonetheless, data augmentation poses signifi-
cant challenges when a limited number of samples are at hand. These techniques aim to
enrich the training dataset by leveraging prior knowledge, thereby enabling the learning
of more reliable hypotheses. However, these operations are highly task-specific: the same
data augmentation strategy may yield meaningful samples in one task, yet in another
scenario, it could result in a data distribution that deviates from the actual application
context. Owing to this characteristic, contemporary research often employs transient data
transformation techniques, which impede the reuse of data augmentation strategies across
various tasks and datasets. Wu et al. [13] introduced the MPSR (Multi-Scale Positive Sample
Refinement for Few-Shot Object Detection) algorithm, which employs data augmentation
through the creation of multi-scale positive samples. A model was constructed utilizing
Faster R-CNN (Faster Region-Convolutional Neural Network) [14]. The Feature Pyramid
Network (FPN) [15] was employed to supplant the original backbone architecture, and
a category-agnostic regression loss function was implemented within the detection head.
Hua et al. [16] utilized the Feature Pyramid Network (FPN) to extract multi-scale features,
enhance the Regional Proposal Network (RPN), and introduce a support set image branch
to obtain the correlation between the support set and the query set images. However,
these operations are highly task-specific: the same data augmentation strategy may yield
meaningful samples in one task, yet in another scenario, it could result in a data distribution
that deviates from the actual application context.
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2.2. Meta-Learning-Based Methods

Meta-learning represents a pivotal avenue within the realm of machine learning [17–20],
focusing on the acquisition of learning methodologies. Ideally, when presented with a dis-
tribution of learning tasks, a meta-learner should progressively become adept at extracting
generalizable insights across these tasks, and fine-tune its algorithms to efficiently cater to
such requirements. Kang et al. [17] introduced a novel few-shot target detection approach
that leverages feature reweighting. This method harnesses the power of base classes, which
are abundant in labeled data, to integrate a meta-feature learner and reweighted modules
within a unified single-stage detector framework. The aim is to extract meta-features
and create global vectors, thereby enhancing the model’s generalization capabilities when
encountering new classes. MetaDet (metadata detection) [18] introduces a meta-learning
framework that leverages base class data, which is rich in annotation information, to gener-
ate meta-knowledge regarding model parameters. This approach facilitates the creation of
new class detectors. Additionally, it incorporates a weight prediction meta-model to ad-
dress the challenges of classifying and locating instances with limited samples, achieving a
unified and coherent solution. Meta RCNN (Meta Region-based Convolutional Neural Net-
works) [19] extracts the class attention vector by inferring image information and employs
a channel soft attention mechanism on the features of the ROI (Region of Interest) within
the region of interest to reconstruct the head portion of the RCNN predictor. This enables
the detection or segmentation of objects that align with the representation of a specific class
of vectors. FSDetView (Few-Shot Detection View) [20] partitions the model into a query
branch and a class data processing branch. The former operates on the query image, while
the latter processes images with bounding box masks. It constructs a pre-training model
using ample data, extracts distinguishing features, and subsequently directs the detection
of novel object categories with minimal samples.

2.3. Learning Method Based on Distance Measurement

In the realm of computer vision, distance measurement learning stands as a widely
adopted technique [21–24]. The core objective is to learn an appropriate mapping function
that projects the original high-dimensional sample data into a low-dimensional feature
space. In this space, the distance between similar samples is closely compressed, while
the distinction between dissimilar samples is significantly enhanced. Schwartz et al. [21]
introduced a classification approach and a single-sample target detection method known
as RepMet (Representative-based Metric Learning). By generating a model representation
with multiple pattern mixing for each class, the optimized backbone network parameters,
the embedding space, and the distribution of training categories within that space are
utilized for efficient classification and localization. Fan et al. [22] introduced a novel few-
shot target detection approach that leverages an attention-based Region Proposal Network
(RPN) and a multi-relationship detector. This method facilitates the learning of intricate
relationships between query and support sets through the sharing of distinct weight
branches. Consequently, the model can identify novel object classes without the need for
re-training or fine-tuning. CME (Class Margin Equilibrium) [23], a small-sample target
detection method grounded in class edge equilibrium, systematically optimizes the division
of feature space and the reconstruction of new class features. Han et al. [24] introduced
a query-adaptive few-shot target detection approach leveraging a heterogeneous graph
convolutional network. This method employs two parallel branches and an attention-based
Region Proposal Network (RPN) to learn from the query set and establish a matching
relationship with the support sets. It constructs heterogeneous graphs for candidate
bounding boxes and class nodes, thereby generating novel feature representations that
enhance the model’s predictive and classification capabilities.

2.4. Methods Based on Transfer Learning

The backbone networks employed in a standard target detection framework typically
undergo extensive pre-training, utilizing large datasets to minimize the performance gap
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between detection and classification tasks. Furthermore, depth detectors are more sus-
ceptible to overfitting issues compared to depth classifiers. Therefore, beyond accurate
category differentiation, it is essential to create distinct representations that maintain spatial
coherence and robustness for each individual target instance, and address the intricate task
of localization [25–27]. Chen et al. [25] introduced the LSTD (Low-Shot Transfer Detector)
algorithm, which has officially sparked a surge in research on small-sample object detection.
The algorithm adeptly merges the fundamental strengths of SSDs (Single-Shot MultiBox
Detectors) [26] and Faster R-CNN within a unified framework, streamlining and enhancing
the knowledge transfer process under scenarios of limited sample size. Wu et al. [27] in-
troduced a universally applicable prototype-enhanced few-shot target detection approach.
This method involves extracting common features from objects across all categories and
subsequently augmenting these with universal features to enhance the representation of
specific objects. This addresses the constraints associated with the straightforward use of
class prototypes within FSOD tasks.

3. Methodology

In this paper, we introduce a supervised, distillation-driven approach to few-shot tar-
get detection that spans across different domains. By leveraging supervision and knowledge
distillation, we achieve a synergistic enhancement between the student and teacher models,
thereby elevating the detection capabilities of the model. A comprehensive overview of
our method is depicted in Figure 1.
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During the basic training phase, we utilize the rich source domain data to facilitate the
pre-training of the model. Subsequently, during the fine-tuning phase, visual perturbations
such as random color jitter, grayscale transformation, and Gaussian blur are introduced
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to enhance the dataset and adapt the student model, while generating a set of enhanced
images. These enhanced images not only improve the robustness of the model but also
help in generalizing the learning process to unseen data. Using the enhanced images of
the target domain, the teacher model is fed into the network. The teacher model gener-
ates pseudo-labels, and the prediction result (LD) generated by the joint student model
calculates the distillation loss function (LS). Within the supervised branch, combined con-
volution (CConv), containing Partial Convolution and PointWise Convolution (PConv and
PWConv) [28], is employed to diminish the redundancy of model calculations and reduce
memory access during the feature extraction phase. During the multi-scale feature fusion
process, Explicit Visual Center (EVC) [29] is employed to capture data dependencies and
enhance the feature representation of the data’s local key areas. In the process of generating
corresponding region candidates, the Spatial Group-wise Enhance (SGE) method [30],
which incorporates spatial grouping, is employed to optimize the weight distribution of
feature groups. This approach aims to enhance feature representation and mitigate the
impact of noise. Subsequently, the generated sample labels are utilized to compute the
supervised loss function. The Exponential Moving Average (EMA) [31] is employed to
facilitate the weight updates for both the teacher and student models. Ultimately, the
model’s performance is assessed using the provided target domain data.

3.1. Supervision and Distillation

During the fine-tuning phase, we initially transferred the foundational detector
weights to the student model for model initialization. Subsequently, we employed the
standard detection [8] supervision loss function to train the student model on k samples
from each category’s target instance. The training weights were then fed back to both the
student and teacher models, enabling them to engage in a synergistic joint training process.
The teacher model refined the student model through the distillation branch loss function,
while the student model updated the teacher model’s weights via Exponential Moving
Average (EMA).

The overall loss function during the fine-tuning phase is computed as indicated in
Equation (1). Here, LS represents the loss function for the supervised branch, while LD cor-
responds to the loss function for the distilled branch. The hyperparameter λ serves to adjust
the relative weights of these two branches within the comprehensive optimization process.

L = LS + λLD (1)

The architecture of the student model is depicted in Figure 2. The PConv and PWConv
module is integrated into the feature extraction network, enabling a deeper processing
of the initial image features. This results in a more refined feature mapping that is fed
into the FPN. Additionally, EVC modules are incorporated into the network to enhance
the interaction and aggregation capabilities of features across different layers. After the
fusion of the feature afferents with the FPN, the SGE module is employed to enhance the
grouping capabilities of the RPN, thereby efficiently screening and optimizing candidate
regions. Ultimately, the optimized features undergo decoding and classification through
the ROI header network, enabling the prediction of the target object and its associated
attribute information within the image. The supervised detection loss function is presented
in Equation (2), wherein LS represents the supervised branch loss function, and Lcls and Lloc
denote the classification and regression loss functions, respectively. These are computed
based on the prediction results xi

s from the supervised branch and the actual sample labels.

LS = ∑
i

Lcls(xi
s, yi

s) + Lloc(xi
s, yi

s) (2)
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Within the distillation field, we performed the enhancement of the target sample
images by applying stochastic level flipping and cropping techniques. The essence of
this phase is to produce high-quality pseudo-labels for unlabeled images from the target
domain. The enhanced images were fed into the teacher model, which then generated a set
of candidate boxes via the Region Proposal Network (RPN). Utilizing the foreground scores
of the resulting candidate boxes, the one with the highest threshold was chosen as the
pseudo-boundary box, denoted as pi

d. The loss function during the distillation phase was
computed utilizing the prediction outcomes xi

d from the student model and the pseudo-
labels furnished by the teacher model. As illustrated in Equation (3), LD represents the
overall loss function for the distillation branch, while Lcls and Lloc denote the classification
and regression loss functions, respectively.

LD = ∑
i

Lcls

(
xi

d, pi
d
)
+ Lloc

(
xi

d, pd
s
)

(3)

The teacher model’s weight updates were carried out using the Exponential Moving
Average (EMA) technique, which significantly mitigates the issue of overfitting in opti-
mization algorithms such as Adam [17], Batch Normalization (BN) [18], and Momentum
Contrast (MoCo) [19]. Following the generation of pseudo-labels by the teacher model, the
student model’s trainable weights WS were updated via the backpropagation process. As il-
lustrated in Equation (4), γ denotes the learning rate. The student model refines the teacher
model’s weights in accordance with the EMA (Exponential Moving Average) mechanism.
The refinement process is detailed in Equation (5). Here, α signifies the hyperparameter
that governs the rate at which the moving average combines the old and new weights.

WS ←WS + γ
∂L

∂WS
(4)

Wt ← αWt + (1− α)Ws (5)

3.2. Combined Convolution

Feature extraction across various channels frequently results in redundant model com-
putations and elevated memory consumption. In this paper, we present a straightforward
combinatorial convolution within the backbone, aimed at reducing the model’s computa-
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tional complexity and memory traffic. The combined convolution module integrates partial
convolution (PConv) and pointwise convolution (PWConv) to achieve efficient fusion of
feature channel information.

PConv employs a filter that selectively operates on a subset of the input features,
leaving the rest of the channels unaltered, as depicted in Figure 3c. During the process of
accessing sequential memory, the initial or terminal contiguous channels within the input
feature graph are chosen for computation, ensuring that the input and output feature maps
maintain an identical number of channels. The computational complexity of PConv is
quantified by FLOPs (floating point operations per second), denoted as h × w × k2 × cp

2,
where h denotes the height, w signifies the width, k represents the number of kernels, and c
indicates the number of channels of the feature map, respectively. If the value of the partial
ratio is set to r = cp/c = 1/4, the required FLOPs amount to merely 1/16th of those needed
for a full-channel convolution, thereby significantly enhancing computational efficiency.
From Formula (6), it is evident that the module memory access is reduced to one-quarter of
that required by traditional convolution.

h× w× 2cp + k2 + cp
2 ≈ h× w× 2cp (6)
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PWConv is capable of integrating channel information in a more comprehensive and
efficient manner, and it synergizes with the depth dimensions of the feature maps produced
by PConv. The fusion of PWConv with PConv yields a T-shaped convolutional effect on
the input feature maps, as depicted in Figure 4.
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To ascertain the efficacy of feature extraction and computational efficiency in tradi-
tional convolution, T convolution, and combined convolution, we quantified the importance
of each position for all the filters in the pre-trained ResNet50 [8] model. The findings indi-
cate that the significance of the central position’s weight surpasses that of the surrounding
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positions, aligning with the T-shaped structure’s emphasis on the central area’s information
processing capabilities. Nevertheless, if the process can be broken down into two stages, the
potential computational redundancy among filters can be substantially mitigated, thereby
significantly decreasing the number of FLOPs needed for model computation without
compromising the model’s performance. Given the same input I ∈ Rc×h×w and output
O ∈ Rc×h×w, the FLOPs of the T-shaped convolution are computed to be h × w × (k2 × cp
× c + c × (c − cp)), surpassing the FLOPs value h × w × (k2 × cp

2 + c2) of the combined
convolution. There exists a correlation between the number of parameters in both convo-
lutions, denoted as (k2 − 1)c > k2cp. The conventional convolutional approach uniformly
processes the entire feature region, failing to accentuate positions with more pronounced
features. Consequently, the weights assigned are not meaningful, and the computational
efficiency is inferior to that of T-shaped convolution and combined convolution.

3.3. Explicit Visual Center (EVC)

Typically, when the Feature Pyramid Network (FPN) tackles tasks involving dense
prediction, it tends to concentrate on the interaction of features across different layers.
However, this emphasis may result in a deficiency of detailed features within individual
layers, potentially causing the network to overlook fine-grained feature information [3].
Given that deep features are abstractions of shallow specific features, we adopt a top-down
strategy to globally and centrally modulate the extracted feature pyramid. During this
process, the deep features derived from the explicit visual center information serve to
constrain all the shallow features.

The EVC module primarily comprises two parallel-connected components, as illus-
trated in Figure 5. These components include a lightweight multilayer perceptron (MLP)
and a learnable visual center mechanism. The lightweight MLP is designed to capture
global long-distance dependencies, while the learnable visual center mechanism retains
local critical regional information from the input image. This dual-component structure
enables the EVC module to effectively acquire both global and local feature information,
thereby enriching the visual center information for subsequent feature interactions. By
optimizing the feature extraction pyramid, the EVC module enhances the efficiency of
cross-layer feature interactions. Given that the EVC module can capture both global and
local feature information, it significantly improves the model’s ability to identify useful
feature information in the presence of noisy data, thereby enhancing the model’s robustness.
During the feature extraction process, noisy data often introduce irrelevant or redundant
information. By refining the feature extraction method, the EVC module minimizes the
impact of such irrelevant or redundant information on model performance, thus improving
the model’s accuracy. Through training on noisy datasets and leveraging the optimiza-
tion capabilities of the EVC module, the model can better learn the essential features of
the data, thereby enhancing its generalization ability. Consequently, the model demon-
strates improved predictive and classification performance when confronted with new,
unseen data.
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The lightweight multi-layer perceptron (MLP) is responsible for capturing the global
long-range dependencies within the deep feature X4, effectively extracting the global
contextual information. To preserve the local angular region information, a Learnable
Visual Center mechanism (LVC) is incorporated to aggregate the feature information
from local regions at the same level of X4. The features are smoothed by a stem block
architecture that encompasses a 7× 7 convolutional layer with 256 output channels, a batch
normalization layer, and an activation function layer. The output Xin of the stem block is
determined using Formula (7), wherein Conv7×7 signifies the 7 × 7 convolution operation
with a stride of 1, and the channel count is established at 256 [9] within the experimental
setup. BN refers to the batch normalization layer, while σ denotes the ReLU (Rectified
Linear Unit) activation function.

We concatenated the feature maps produced by the lightweight MLP and LVC mod-
ules along the channel dimension, employing them as the output for the EVC module’s
subsequent identification task. The splicing procedure is depicted in Equation (8). X de-
notes the output of the EVC module, while cat refers to the concatenation of feature graphs
along the channel dimension. Furthermore, MLP(Xin) and LCV(Xin) symbolize the feature
outputs subsequent to processing by the respective lightweight MLP and LVC modules.

Xin = σ(BN(Conv7×7(X4))) (7)

X = cat(MLP(Xin); LVC(Xin)) (8)

The Lightweight MLP (depicted in Figure 6), a pivotal element of the EVC module,
comprises two residual modules: one based on deep convolution, namely the residual
module [32], and the other, a channel MLP-based residual module. The output features
from the former serve as the input [33] for the latter. These two residual modules improve
the generalization ability of features by channel scaling [34] and regularized DropPath [35].
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Figure 6. Lightweight MLP module.

Within the residual module that employs deep convolution, the feature Xin, produced
by the stem block, is fed into the deep convolutional layer. Following group normalization,
the feature map is segmented into several subgroups along the channel dimension for
normalization computations. This process enhances the representational power of the
features and significantly alleviates the computational load. The incorporation of a channel
scaling module and a DropPath module can more effectively leverage computational re-
sources, enhance model performance, mitigate the overfitting phenomenon, and bolster the
model’s generalization capabilities and robustness. Finally, the aforementioned operation
is repeated, and the residual connection pertaining to the characteristic Xin is executed.

The output feature Xin
D, which is based on the deep convolution module, is depicted

in Equation (9). Here, GN represents the group normalization operation, and DConv
denotes the deep convolution layer with a kernel size of 1 × 1.

Xin
D = DConv(GN(Xin)) + Xin (9)



Electronics 2024, 13, 4975 11 of 22

The output feature Xin
D from the deep convolution-based residual module is normal-

ized and serves as the input for the channel MLP-based residual module. This module then
performs the channel MLP operation on the normalized features, followed by channel scal-
ing and regularization using DropPath. The processed features are subsequently combined
with the original input feature Xin

D via a residual connection. The outcome is depicted in
Equation (10), where CMLP represents the channel MLP operation. In comparison to the
spatial MLP, which concentrates solely on the spatial dimension of images, the channel MLP
not only significantly reduces computational complexity, but also satisfies the demands of
a variety of intricate visual tasks.

MLP(Xin) = CMLP(GN(Xin
D)) + Xin

D (10)

The LVC encoder module, as depicted in Figure 7, encompasses an internal dictionary
and two principal components. These components are as follows: (1) The native code book
B = {b1, b2, . . ., bk}, which embodies a collection of predefined features, with the aggregate
spatial dimensions of these features being N = H×W, where H and W denote the height and
width of the feature map, respectively. (2) The scale factor set S = {s1, s2, . . ., sk}. The feature
Xin output by the stem block is convolved with kernels of size 1 × 1, 3 × 3, and 1 × 1, and
the encoded result then undergoes deep feature extraction via a CBR (Convolutional-Batch
Normalization-ReLU) block, which comprises a convolutional layer with 3 × 3 filters, a
batch normalization layer, and a ReLU activation function. The extracted feature Xin is
input into the intrinsic codebook for deep information interaction. By applying a series
of predefined scale factors s, the components of feature Xi

D and feature bk are mapped to
their respective location data. The information encapsulated within the k-th visual code
word of an image can be derived using Equation (11). Here, Xi

D represents the i-th pixel of
the image, bk denotes the k-th learnable visual code word, sk signifies the k-th scaling factor,
Xi

D − bk embodies the pertinent information between the pixel and its corresponding code
word, and K corresponds to the aggregate count of visual centers.

ek =
N

∑
i=1

e−sk∥xi
D−bk∥

2

∑K
j=1 e−sk∥xi

D−bk∥
2 (xi

D − bk) (11)
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The combination function Φ serves to integrate all the visual codeword information ek,
thereby generating comprehensive information e, as illustrated in Equation (12).

To further pinpoint and refine the key features of the category, the data are transmitted
to a fully connected and 1 × 1 layer convolutional network. The scaling factor coefficient δ
is applied to each channel of the feature Xin to obtain the local angular region feature Z,
as illustrated in Equation (13). Conv1×1 denotes the 1 × 1 layer convolutional component,
and δ signifies the Sigmoid activation function, while ⊗ corresponds to the channel-wise
multiplication process. By summing Z and Xin, we derive the output characteristics of the
LVC module, as illustrated in Equation (14). Furthermore, ⊕ signifies the channel-wise
addition operation.

e =
K

∑
k=1

ϕ(ek) (12)

Z = Xin ⊗ (δ(Conv1×1(e))) (13)

LVC(Xin) = Xin ⊕ Z (14)

3.4. Enhanced Spatial Grouping

To alleviate the impact of background noise on target detection efficacy, we performed
lightweight SGE processing in the RPN. The SGE module finely tunes the significance of
each subfeature by generating tailored attention factors for every spatial location within
each semantic group. This empowers each group to independently bolster its acquired
representations while mitigating potential noise. In doing so, SGE leverages the similarity
between global and local feature descriptors to steer the attention factors, thereby optimiz-
ing the distribution of feature weights. During implementation, the SGE module encounters
hurdles, including ensuring the precision and efficiency of attention factor generation, as
well as attaining substantial performance gains without escalating the number of parame-
ters or computational load. Despite these challenges, the SGE module has demonstrated
remarkable improvements in both image classification and object detection tasks.

To adaptively modify the feature importance across various spatial locations within
each semantic grouping, unique attention weights were assigned to each location across all
the groups. This process enhances the model’s ability to learn expressions by reinforcing
critical subfeatures, while simultaneously suppressing potential noise that could impact
performance [36], as depicted in Figure 8. This process necessitates minimal additional
parameters and does not involve complex computational procedures. Instead, it operates
by processing subfeatures in parallel, leveraging the similarity between global statistical
features and local positional features to guide attention. Consequently, this approach
enhances the features and yields a semantic feature representation that is evenly distributed
across the spatial domain.

The input set of convolutional feature maps, characterized by a channel size of C
and a dimension size of H ×W, is segmented into G groups along the channel dimension.
The spatial position of each cluster corresponds to a vector, X = {x1,x2,. . .,xm}, xi ∈ RC/G,
m = H ×W. Given that the convolutional layer is prone to noise interference during the
processing of input images, the similarity among image features results in an uneven
feature response. To enhance the model’s capacity for learning and recognizing semantic
features within critical areas, this paper employs the global contextual information of
feature grouping to construct an approximate vector value that mirrors the semantic
representation of the feature group. This approach aims to extract semantic features that
are more balanced and discriminative. The spatial average aggregation function, denoted
as Fgp, which represents the global statistical feature, is illustrated in Equation (15).
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g = Fgp(X) =
1
m

m

∑
i=1

xi (15)

Utilizing the aforementioned global characteristics, significance weights for each local
feature can be derived through the dot product, as illustrated in Equation (16).

Electronics 2024, 13, x FOR PEER REVIEW 13 of 24 
 

 

all the groups. This process enhances the model’s ability to learn expressions by reinforc-

ing critical subfeatures, while simultaneously suppressing potential noise that could im-

pact performance [36], as depicted in Figure 8. This process necessitates minimal addi-

tional parameters and does not involve complex computational procedures. Instead, it 

operates by processing subfeatures in parallel, leveraging the similarity between global 

statistical features and local positional features to guide attention. Consequently, this ap-

proach enhances the features and yields a semantic feature representation that is evenly 

distributed across the spatial domain. 

The input set of convolutional feature maps, characterized by a channel size of C and 

a dimension size of H × W, is segmented into G groups along the channel dimension. The 

spatial position of each cluster corresponds to a vector, X = {x1,x2,...,xm}, xi ∈ RC/G, m = H × 

W. Given that the convolutional layer is prone to noise interference during the processing 

of input images, the similarity among image features results in an uneven feature re-

sponse. To enhance the model’s capacity for learning and recognizing semantic features 

within critical areas, this paper employs the global contextual information of feature 

grouping to construct an approximate vector value that mirrors the semantic representa-

tion of the feature group. This approach aims to extract semantic features that are more 

balanced and discriminative. The spatial average aggregation function, denoted as Fgp, 

which represents the global statistical feature, is illustrated in Equation (15). 


=

==
m

i

igp x
m

XFg
1

1
)(  (15) 

Input Image

C

H

W

ˆ

 G N
g

a

  

( )gp 

Global Average PoolingG N Normalization

 Position-wise Dot Product  Sigmoid

Sub-Feature Enhanced Sub-Feature

Local Positional Feature

 

Figure 8. Lightweight SGE module diagram. 

Utilizing the aforementioned global characteristics, significance weights for each lo-

cal feature can be derived through the dot product, as illustrated in Equation (16).  

The dot product serves as a measure of similarity between the global semantic feature 

g and the local features xi. Additionally, the concept of ci can be extended to ‖g‖‖xi‖cos(θi), 

and θi represents the angle between features g and xi. When the local eigenvector is substan-

tial and its orientation aligns with g, the initial weight value is likely to increase. Concur-

rently, the reinforcement mechanism for key regional features should also be substantiated. 

)cos( iiii xgxgc ==  (16) 

To eliminate amplitude discrepancies among coefficients from various samples and 

ensure balanced comparisons across spatial dimensions, c is normalized using Equation 

(17), where ε represents an additional, small positive value introduced to ensure numeri-

Figure 8. Lightweight SGE module diagram.

The dot product serves as a measure of similarity between the global semantic
feature g and the local features xi. Additionally, the concept of ci can be extended to
∥g∥∥xi∥cos(θi), and θi represents the angle between features g and xi. When the local eigen-
vector is substantial and its orientation aligns with g, the initial weight value is likely to
increase. Concurrently, the reinforcement mechanism for key regional features should also
be substantiated.

ci = g · xi = ∥g∥∥xi∥ cos(θi) (16)

To eliminate amplitude discrepancies among coefficients from various samples and en-
sure balanced comparisons across spatial dimensions, c is normalized using Equation (17),
where ε represents an additional, small positive value introduced to ensure numerical
stability. When integrating the network architecture, to achieve an approximate identity
transformation of the normalized layer, the learnable zoom parameter γ and offset param-
eter β are introduced for each weight coefficient ci

′, and the importance coefficient αi is
then assigned to it, as illustrated in Equation (18). Within the entire SGE module, if there
are only two additional parameters, their number can align with the number of groups.
Subsequently, the sigmoid function σ, typically assuming small integer values like 32 or
64, is applied to the coefficient αi. This process scales the original feature vector xi in the
spatial dimension, resulting in the enhanced subfeature vector xi

′ and the enhancer feature
group X′, as illustrated in Equations (19) and (20).

c′i =
ci − µc

σc + ε
, µc =

m

∑
j

cj, σc
2 =

1
m

m

∑
j
(cj − µc)

2 (17)

αi = γc′i + β (18)

x′i = xi · σ(αi) (19)



Electronics 2024, 13, 4975 14 of 22

X′ ≡
{

x′1...m
}

, x′i ∈ R
C
G , m = H ×W (20)

4. Experimental Analysis
4.1. Experimental Dataset

We selected the most commonly utilized dataset in the Few-Shot Object Detection
(FSOD) research field as the training set and validation dataset of this method, to ensure the
diversity and integrity of data parameters and to verify the advantages of this method. The
experimental datasets presented in this paper comprise MS COCO as the source domain,
with ArTaxOr, UODD, and DIOR serving as the target domains. We selected three major
categories and 30 subcategories, with a total of 35,648 images for the training set and 6889
images for the test set. The datasets for these three target domains are detailed in Table 1.

Table 1. Target domain datasets.

Dataset Data Field Category Number Training Images Test Pattern

ArTaxOr [10] Biology 7 13,991 1383
UODD [11] Underwater 3 3194 506
DIOR [12] Aviation 20 18,463 5000

The MS COCO dataset [9] features instances of everyday objects situated within
their natural surroundings, comprising 80 distinct categories. Specifically, the dataset is
partitioned into a training set with 118,000 images, a validation set with 5000 images, and a
test set with 20,000 images. Among these, 20 categories that coincided with those in the
PASCAL VOC dataset were designated as new classes, while the remaining 60 categories
served as the foundational classes.

The ArTaxOr dataset [10] encompasses 1.3 million distinct arthropod classes, including
centipedes, millipedes, and isopods, each featuring a variety of species that differ in size,
shape, and coloration. Each species is represented by a minimum of 2000 individual
specimens, and each image within the dataset depicts between 1 and 50 specimens.

The UODD dataset [11] comprises samples of sea urchins, sea cucumbers, and scallops
captured in various underwater scenarios with differing levels of light scattering. The
collection process took into account factors such as shooting angle, scene complexity, scene
contrast, and target size. The dataset includes approximately 19,000 objects, represented by
3194 images. The distribution of these images into training, validation, and test sets was as
follows: 2688 for training, 128 for validation, and 506 for testing.

The DIOR dataset [12] encompasses 20 common categories of infrastructure. It com-
prises a collection of 23,463 remote sensing images, captured across various weather
conditions, seasons, and imaging scenarios, spanning over 80 countries. These images
account for a total of 192,472 annotated object instances. Within each category, objects
exhibit variations in color, size, and scale, while there is a significant semantic overlap
among fine-grained objects across different classes.

4.2. Setting of the Experimental Parameters

The experimental environment was the NVIDIA GeForce RTX 3090 GPU and the
model framework was the standard Detectron2 [24].

In the context of Cross-Domain Few-shot Object Detection, the configuration of hy-
perparameters and training specifics is pivotal for optimizing model performance. An
initial learning rate of 0.001 was established, with an exponential decay strategy employed
to facilitate both the convergence and enhancement of the model’s performance. The
Adam optimizer, widely recognized for its efficacy in FSOD, was selected to dynamically
adjust the learning rate throughout the training process, thereby expediting the model’s
convergence. Considering the scale of the dataset, a batch size of 32 was determined
to minimize computational expenses. For the creation of both the student and teacher
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models, we employed a Faster R-CNN, Feature Pyramid Network (FPN), and ResNet50.
The confidence threshold was established at δ = 0.7, and the EMA ratio α was set to 0.999.
Table 2 presents the maximum number of training iterations for the three datasets within
the target domains, with sample sizes of K = 1, K = 5, and K = 10. The evaluation metric
employed is the mean Average Precision (mAP).

Table 2. Maximum iteration number setting.

Dataset/Sample Number 1 5 10

ArTaxOr [10] 5000 10,000 12,500

UODD [11] 10,000 15,000 15,000

DIOR [12] 8000 12,500 15,000

4.3. Experiment Comparison

To ascertain the efficacy of this approach, we selected ten models for few-sample
target detection, including CD-FSOD [8], for comparison purposes, including: A-RPN [37],
H-GCN [22], Meta R-CNN [24], TFA [38], FSCE [39], DeFRCN [40], FRCN-ft, Detic-FT [41],
and GOAT [42]. In particular, FRCN-ft undergoes pre-training using the CD-FSOD founda-
tional dataset, followed by fine-tuning on K target instance samples. For the comparative
experiments, the sample sizes across various orders of magnitude [8] are illustrated, repre-
sented as 1, 5, and 10. The outcomes are presented in Table 3, featuring bold and underlined
optimal and suboptimal values. The experimental outcomes demonstrate that the method
exhibited substantial benefits subsequent to the integration of the combined convolutional
module, the explicit visual center module, and the spatial grouping enhancement module.
It outperformed alternative methods across the three experimental datasets within the
target domain.

Table 3. Contrasting experimental results on the three target domains.

Method/
Sample Number

ArTaxOr UODD DIOR

1 5 10 1 5 10 1 5 10

A-RPN [37] 2.5 8.1 13.9 3.3 8.4 10.8 7.5 17.1 20.3
Meta R-CNN [24] 2.8 8.5 10 3.6 8.8 11.2 7.8 17.7 20.6

H-GCN [22] 2.6 8.2 12 3.8 7.7 11.0 7.9 18.0 20.9
TFA w/cos [38] 3.1 8.8 18 4 8.7 11.8 8.0 18.1 20.5

FSCE [39] 3.7 10.2 15.9 3.9 9.6 12.0 8.6 18.7 21.9
DeFRCN [40] 3.6 9.9 15.5 5 9.9 12.1 9.3 18.9 22.9
FRCN-ft [2] 3.4 9.3 15.2 1 9.2 12.3 8.4 18.3 21.2

CD-FSOD [8] 5.1 12.5 18.1 5.9 12.2 15 10.5 19.1 26.5
Detic-FT [41] 3.2 8.7 12.0 2 10.4 14 1 12.1 15.4
GOAT [42] 5.7 11.1 21.2 3.5 9.5 16.6 11.3 19.8 25.4

Ours 7.2 13.3 19.2 6.2 12.7 15.3 12.1 20.0 27.7

The experimental results show that the detection accuracy increases by 1.67% and
1.87% compared with the best GOAT [42] method for sample sizes 1 and 5. Since the
method mainly monitors small samples, the detection effect does not improve much
when the sample size is 10. This also illustrates the advantages of this method in small-
sample monitoring.

The prediction outcomes of the current approach, when compared with CD-FSOD,
GOAT, and TFA, are depicted in Figure 9. It is evident from the figure that the current
approach surpasses the other contrastive models in terms of both classification accuracy and
localization accuracy. When the image encompasses multiple objects (as seen in the first line
of Figure 9) or multiple objects of the same type (as depicted in the third line of Figure 9),
this method can accurately detect all the objects within the image. The experimental results
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prove that the method has satisfactory results for the detection of target images. In contrast,
TFA fails to detect any objects, while CD-FSOD and GOAT can only identify some of the
objects, resulting in a certain degree of omission. For the objects that are detected, the
boundary box positioning accuracy and recognition confidence of these two methods are
inferior to those of the present method. When the background noise within the image data
is excessively high (as seen in the second row of Figure 9), the positioning accuracy of this
method is markedly superior to that of the other methods. The converse is true when the
significance of features within the image’s object apart from the color are considered (refer
to the fourth row of Figure 9).
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The outcomes of the current methodology when applied to the datasets of the target
domains, namely ArTaxOr, UODD, and DIOR, are depicted in Figure 10, Figure 11 and
Figure 12, respectively.
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4.4. Ablation Experiments

The EVC (Enhanced Visual Context) module has emerged as the most influential
component in ablation studies due to its unique advantages. It captures global long-range
dependencies through an explicit visual center mechanism and integrates local corner re-
gion information, achieving effective fusion of global and local information. Simultaneously,
it utilizes a global centralized regulation method to adjust shallow features, significantly
enhancing the representation capability of the feature pyramid. These characteristics enable
the EVC module to excel in complex scenarios and under varying lighting conditions, par-
ticularly in the detection of small objects. Therefore, compared to methods such as CConv
and SGE, the EVC module demonstrates significant advantages in improving detection
accuracy, providing strong support for high-precision object detection applications.

EMA (Exponential Moving Average) technology is widely employed in optimizing
the parameters of the teacher model within the teacher–student model framework, owing
to its effectiveness in smoothing the parameter update process, minimizing performance
fluctuations, and swiftly adapting to data variations. By bolstering the stability of the
teacher model, EMA technology ensures more dependable output predictions, which, in
turn, optimizes the knowledge distillation process. This gradual evolution of the teacher
model fosters improved learning and mimicry by the student model, mitigates the risk of
overfitting, and ultimately results in substantial performance enhancements.

We performed ablation experiments to ascertain the necessity of the EMA strategy,
including the distillation stage, CConv, EVC, and SGE core component modules within this
approach. The outcomes of the ablation studies for the EMA strategy and distillation, with
sample sizes of 1, 5, and 10, are presented in Table 4. Here, ‘S’ denotes the student model,
while ‘T’ represents the teacher model. As illustrated in the table, both the Exponential
Moving Average (EMA) strategy and distillation enhance model performance. Notably, the
EMA strategy demonstrates superior efficacy in performance enhancement compared to the
distillation method, and it can additionally refine the model’s capabilities. As the teacher
model’s performance is enhanced, the student model’s performance correspondingly
improves, thoroughly demonstrating that a mutually beneficial learning relationship can
be established between the student and teacher models. Moreover, the implementation of
EMA and knowledge distillation techniques can effectively mitigate the issue of overfitting
in FSOD. Upon employing EMA, the teacher model emerges as a refined amalgamation
of the weights from various training phases of the student model, thereby enhancing the
overall stability of the model. The distillation loss can be viewed as a form of regularization,
which fortifies the student model’s learning process and enhances its capacity to generalize
to previously unseen samples.
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Table 4. mAP effects of EMA and distillation.

EMA Distillation
1 5 10

S T S T S T

Yes No 8.9 9.7 18.7 19.2 21.6 25.4
No Yes 9.0 9.6 18.9 19.1 22.9 23.7
Yes Yes 10.5 12.1 19.1 20.0 25 27.7

We also conducted experiments using various EMA ratios α, with specific values of 0.5,
0.7, 0.9, 0.999, and 0.9999. The corresponding mAP results are presented in Table 5. When a
smaller ratio is employed, such as α = 0.5, the student model exerts a significant influence
on the teacher model during each iteration, resulting in a low and unstable mAP for the
teacher model. The instability of the ratio is mitigated and enhanced as the EMA ratio α
increases. This occurs because at higher EMA ratios, the teacher model’s weights tend to
favor smoother historical averages, thereby enhancing the model’s stability. The model
achieved its peak mAP when the EMA ratio α was set to 0.999. Nevertheless, as the EMA
ratio α ascends further, the efficacy of the teacher model diminishes. This phenomenon
arises because the teacher model’s weight predominantly depends on the weights from a
remote past time window, rather than being influenced by the current learning outcomes
of the student model.

Table 5. Changes in EMA ratios and mAP under different samples.

Sample Number/α 0.5 0.7 0.9 0.999 0.9999

1 6.7 8.2 9.9 12.1 8.6
5 15.5 17.0 18.9 20.0 19.4
10 22.3 27 25.4 27.7 26.8

The pseudo-label threshold serves to filter out prediction bounding boxes with low
confidence levels, playing a pivotal role in optimizing distillation loss. The selection of an
appropriate pseudo-label threshold is essential to ensure that the model strikes a balance
between effective prediction and sufficient training. The mAP values at the threshold
levels of 0.6, 0.7, 0.8, and 0.9 are presented in Table 6. It can be observed that with a lower
threshold, the model tends to learn from less reliable bounding boxes, which consequently
leads to a diminished mAP for the model. On the contrary, if the threshold is set excessively
high, the enhancement of model performance is constrained, because it becomes impossible
to use a sufficient quantity of bounding boxes for training purposes. In this paper, the
highest mAP threshold was established at 0.7, a value that was consistently applied across
all the experiments.

Table 6. Pseudo-tag thresholds and mAP for different samples.

Sample Number/Threshold 0.6 0.7 0.8 0.9

1 9.8 12.1 10.0 10.3
5 17.9 20.0 18.5 18.2
10 25.7 27.7 22 21

Table 7 showcases the efficacy of each component of the method proposed in this
paper. It is evident that the ECA module plays a more significant role in enhancing model
performance compared to both the CConv and SGE modules. The EVC module is capable
of capturing the long-range dependencies of features, aggregating the local key regions of
the input image, and extracting more comprehensive features. This significantly enhances
the model’s detection accuracy.
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Table 7. Validation of the different components.

CConv EVC SGE
mAP

1 5 10

No No No 10.5 19.1 26.5
Yes No No 10.7 19.4 26.8
No Yes No 11.5 19.7 27.3
Yes Yes No 11.7 19.9 27.5
No No Yes 11.3 19.8 27.0
Yes Yes Yes 12.1 20.0 27.7

4.5. Discussion

Upon comparing the experimental results, it is apparent that our method demonstrates
superior performance relative to other methods across all three experimental datasets. It
is worth noting that, specifically when the number of samples K is 1 and 5, our method
achieves improvements in detection accuracy of 1.67% and 1.87%, respectively, compared to
the state-of-the-art method. Ablation experiments demonstrated that employing CConv to
diminish model redundancy and memory access, while simultaneously lowering the high
feature similarity in the channel dimension, enhances the model’s detection performance.
The SGE module is capable of significantly mitigating the impact of noise on images,
thereby further enhancing the model’s detection performance. When the background
information within an image closely resembles the target information, pixel-level EVC
(Edge-Enhanced Visual Computing) can significantly enhance the feature representation of
local critical regions.

5. Conclusions

In this work, we introduce a supervised and distillation-driven approach for detecting
targets with limited samples, addressing the challenges of weak correlation and substantial
data discrepancies in cross-domain scenarios. Initially, during the feature extraction phase,
the utilization of combined convolution serves to diminish the computational redundancy
within the feature channel dimension, thereby effectively curbing the model’s memory
access requirements. In the construction of the feature pyramid, an explicit visual center is
employed to capture and integrate long-range dependencies among features of varying
scales. This process enhances the feature representation of local angular regions, allowing
the model to achieve a comprehensive and discriminative feature representation. In the
end, the generation of potential areas through the use of combined features allows for a
significant reduction in the influence of data noise on detection outcomes, thanks to the
enhancement provided by spatial grouping, which leads to more accurate localization of
targets. Through comprehensive ablation experiments and qualitative analysis, we proved
that the proposed method effectively improves the detection accuracy of the model with
data from different fields. Certainly, the network model presented in this paper requires
enhancement in numerous areas. The subsequent research step will concentrate on how
to further streamline the model and diminish its complexity. Furthermore, our approach
will be expanded to encompass large-scale outdoor environmental monitoring. Given that
real-world scenes often contain objects with complex background environments, and these
objects can be highly confounded with the background information, a key focus will be on
how to mitigate the impact of background noise and enhance the accuracy of cross-domain
target detection.
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