
Citation: Cheng, M.; Zhu, K.; Chen, Y.;

Lu, Y.; Chen, C.; Yu, J. Reinforcement

Learning-Based Multi-Phase Seed

Scheduling for Network Protocol

Fuzzing. Electronics 2024, 13, 4962.

https://doi.org/10.3390/

electronics13244962

Academic Editor: Myung-Sup Kim

Received: 28 October 2024

Revised: 8 December 2024

Accepted: 11 December 2024

Published: 17 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Reinforcement Learning-Based Multi-Phase Seed Scheduling
for Network Protocol Fuzzing
Mingjie Cheng 1,2, Kailong Zhu 1,2,* , Yuanchao Chen 1,2 , Yuliang Lu 1,2, Chiyu Chen 1,2 and Jiayi Yu 1,2

1 College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China;
chengmingjie22@nudt.edu.cn (M.C.)

2 Anhui Province Key Laboratory of Cyberspace Security Situation Awareness and Evaluation,
Hefei 230037, China

* Correspondence: zhukailong@nudt.edu.cn

Abstract: In network protocol fuzzing, effective seed scheduling plays a critical role in improving
testing efficiency. Traditional state-driven seed scheduling methods in network protocol fuzzing
are often limited by imbalanced seed selection, monolithic scheduling strategies, and ineffective
power allocation. To overcome these limitations, we propose SCFuzz, specifically by employing
a multi-armed bandit model to dynamically balance exploration and exploitation across multiple
fuzzing phases. The fuzzing process is divided into initial, middle, and final phases with seed
selection strategies adapted at each phase to optimize the discovery of new states, paths, and code
coverage. Additionally, SCFuzz employs a power allocation method based on state weights, focusing
power on high-potential messages to improve the overall fuzzing efficiency. Experimental evaluations
on open-source protocol implementations show that SCFuzz significantly improves state and code
coverage, achieving up to 17.10% more states, 22.92% higher state transitions, and 7.92% greater
code branch coverage compared to AFLNet. Moreover, SCFuzz improves seed selection effectiveness
by 389.37% and increases power utilization by 45.61%, effectively boosting the overall efficiency
of fuzzing.

Keywords: protocol fuzzing; multi-armed bandit model; multi-phase; seed scheduling

1. Introduction

Fuzzing is a widely used and effective software testing technique that is distinguished
by its high level of automation, extensive applicability, and demonstrated efficacy in
identifying software vulnerabilities [1]. At its core, fuzzing operates through an iterative
process where input seeds are selected from an initial seed pool and modified through
mutations to create diverse test cases; then, these cases are executed on the target software.

In recent years, the focus of fuzzing research has primarily centered on coverage-based
graybox fuzzing (CGF), which improves testing efficiency by leveraging feedback from
code coverage [2]. Building upon the foundations of CGF, researchers have extended these
techniques to the domain of network protocol testing, leading to the development of stateful
coverage-based graybox fuzzing (SCGF). SCGF not only relies on code coverage information
but also integrates state information extracted from network protocol implementations.
This allows it to manage complex protocol state transitions and interdependent interactions,
providing a more nuanced and effective approach to identifying vulnerabilities in network
protocol implementations.

An essential aspect of effective fuzzing lies in seed scheduling, which significantly
impacts the efficiency and effectiveness of the fuzzing process. Seed scheduling generally
comprises two core tasks: seed selection and power allocation. Seed selection determines
which inputs from the seed pool should be prioritized for testing, while power allocation
assigns computational effort to these selected seeds to maximize test coverage. Unlike
CGF, where seed scheduling is typically guided by feedback on code coverage alone, SCGF

Electronics 2024, 13, 4962. https://doi.org/10.3390/electronics13244962 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13244962
https://doi.org/10.3390/electronics13244962
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5241-0157
https://orcid.org/0000-0002-1532-6658
https://orcid.org/0009-0009-5435-3083
https://doi.org/10.3390/electronics13244962
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13244962?type=check_update&version=1

Electronics 2024, 13, 4962 2 of 20

must also account for the specific states within the network protocol implementation. This
necessitates first identifying the target state for testing and then selecting seeds capable
of triggering this state. By incorporating protocol state information into the scheduling
process, SCGF can more effectively navigate and explore complex state spaces.

Current research on seed scheduling within SCGF primarily focuses on state represen-
tation methods [3–5]. However, regardless of the state representation method used, the
seed scheduling methods in network protocol fuzzing face three significant challenges:

Challenge 1: Imbalanced Seed Selection Strategy. Existing seed selection methods
tend to repeatedly select a small subset of high-frequency seeds, resulting in the excessive
testing of high-frequency states and code paths while neglecting the exploration of other
potentially critical states and paths. This imbalance diminishes the breadth of fuzzing,
limiting the effective utilization of valuable seeds within the seed pool and hindering a
comprehensive exploration of the code and state space of the protocol implementation.

Challenge 2: Monolithic Seed Selection Strategy. The commonly adopted strategy
is state-driven seed selection, where the target state is first chosen, and then a message
sequence capable of reaching that target state is selected from the seed pool. However, in
the later phases of fuzzing, the number of states tends to stabilize and remains relatively
small. As shown in Table 1, across 13 protocol implementations in the ProFuzzBench [6],
nearly two thirds of protocol implementations typically contain no more than 25 states
regardless of the state representation method used. In contrast, the number of seeds can
reach thousands. This single-pattern approach can result in numerous potentially valuable
seeds being filtered out during the state selection phase, preventing them from progressing
to the subsequent mutation phase.

Challenge 3: Uneven Power Allocation Strategy. Existing power allocation strategies
typically concentrate power on mutating specific messages within target states, overlooking
the potential value of other messages. Since seed files are often composed of multiple mes-
sages, this overly concentrated power allocation leads to imbalanced resource distribution,
preventing the full exploitation of the seed file’s potential and diminishing the overall
efficiency of the fuzzing process.

Table 1. Comparison of state inference results by NSFuzz on the ProfuzzBench.

Subjects AFLNet StateAFL NSFuzz

LightFTP 23 51 5
Bftpd 24 4 15

Pure-FTPd 29 3 6
ProFTPD 27 16 37
Dnsmasq 102 95 2
TinyDTLS 8 28 7

Exim 12 9 5
Kamailio 13 3 5
OpenSSH 42 48 19
OpenSSL 8 24 11

Forked-daapd 8 6 9
Live555 10 18 15
Dcmtk 3 11 7

In this paper, we propose SCFuzz, which is an effective solution to the seed scheduling
challenges in protocol fuzzing. To address the first challenge, we model the seed selection
problem as a multi-armed bandit problem, where the seed selection process must balance
exploration and exploitation. This ensures that the fuzzer can discover new states and
paths while also making efficient use of already identified high-value seeds. For the second
challenge, we divide the fuzzing process into multiple phases, employing the multi-armed
bandit model at each phase to guide seed selection. The selection strategy is dynamically
adjusted according to the needs of each phase, enabling the scheduling mechanism to
adapt to the increased number of seeds and the saturation of state discovery in the later

Electronics 2024, 13, 4962 3 of 20

phases. This strategy ensures that valuable seeds within the seed pool are fully utilized,
even as the test progresses. To address the third challenge, we refine power allocation by
analyzing the states triggered by selected seeds and leveraging the weights of messages
corresponding to those states. This allows power to be concentrated on messages more
likely to uncover new states or paths, thereby enhancing the overall efficiency and coverage
of the fuzzing process.

Specifically, we use the multi-armed bandit algorithm from reinforcement learning
to address the balance between exploration and exploitation. In addition, we divide the
fuzzing process into three distinct phases and dynamically adjust the focus of seed selection
based on the testing requirements of each phase. In the initial phase, the fuzzing process is
able to trigger numerous new states and state transitions, so the focus should be on broad
exploration of the state space to maximize the discovery of new states. During the middle
phase, the discovery of new states becomes increasingly difficult, and only a small number
of state transitions are typically captured. At this point, the strategy must consider both
state and path selection comprehensively. In the final phase, the state space approaches
saturation, and the discovery of new states and transitions nearly ceases, leaving only a few
new paths to be uncovered. Once seeds are selected, we analyze all potential target states
by calculating the weights of the states triggered. Given that different states have varying
levels of importance, we employ a set of heuristic rules to calculate the weight of each
state. Based on these weights, we perform fine-grained power allocation by distributing
more power to the messages corresponding to critical states. This enables a more precise
allocation of resources, thereby enhancing the coverage and overall effectiveness of the
fuzzing process.

We implemented a prototype of SCFuzz and evaluated its effectiveness on five widely
used open-source protocol implementations. The evaluation results demonstrate that SC-
Fuzz offers significant improvements over the state-of-the-art graybox protocol fuzzer,
AFLNET, across multiple metrics. Specifically, SCFuzz achieved an average improvement
of 17.10% in the number of states discovered, a 22.92% improvement in state transitions,
and a 7.92% improvement in code branch coverage. Additionally, seed selection effective-
ness improved by an average of 389.37%, while power utilization effectiveness improved
by 45.61%.

In summary, the main contributions of this paper are as follows:

• We propose a multi-phase seed selection strategy, where the fuzzing process is divided
into several phases. The seed selection problem is modeled as a multi-armed bandit
problem, and the selection strategy is dynamically adjusted at each phase to prioritize
seeds with the greatest potential to discover new states and paths.

• We propose a power allocation strategy based on state weights. By calculating the
weight of messages corresponding to states within the selected seed, the strategy
allocates more power to the messages deemed more significant.

• We implemented SCFuzz and evaluated it on widely used protocol implementations,
and the results show that SCFuzz outperforms the state-of-the-art fuzzer AFLNET
across several key metrics, including state and code coverage, seed selection effective-
ness, and power utilization effectiveness.

The paper is organized as follows. Section 2 provides the background of the study.
Section 3 reviews the related work in the field. Section 4 offers a detailed description of the
proposed methodology. Section 5 outlines the experimental setup and presents the results.
Section 6 discusses the limitations of the proposed approach. Finally, Section 7 concludes
the paper and suggests directions for future work.

2. Background

In this section, we introduce the background of CGF, SCGF, and the multi-armed
bandit model.

Electronics 2024, 13, 4962 4 of 20

2.1. CGF

CGF is one of the most popular and effective techniques in the field of vulnerability
discovery, particularly in the detection of vulnerabilities in stateless programs. The core
idea of CGF is to collect code coverage information through instrumentation and use this
information to guide the fuzzing process, thereby maximizing code coverage. CGF inserts
lightweight code instrumentation at critical locations to monitor execution and capture
coverage information. During the execution of test cases, these monitoring points record
the triggered code paths. If a test case triggers a new path or covers previously unexplored
code, it is added to the seed pool for subsequent fuzzing.

Although CGF performs well in vulnerability discovery for stateless programs, it
faces many challenges when applied to stateful network protocols. Network protocols are
inherently stateful, as their execution depends on the context and sequence of preceding
messages. This characteristic complicates the exploration of the state space using traditional
stateless fuzzing strategies. Moreover, the input and output of network protocols often
rely on intricate timing and event-driven mechanisms, further increasing the complexity of
fuzzing. Since CGF primarily focuses on code coverage and inadequately handles state
information, its effectiveness is limited when dealing with complex network protocols.

2.2. SCGF

To address the limitations of CGF in handling stateful network protocols, researchers
have developed SCGF. SCGF combines the strengths of traditional CGF, which leverages
code coverage to guide fuzzing. At the same time, it enhances the management of state
information, allowing more efficient exploration of the state space in stateful programs.
SCGF captures critical information during the execution of network protocols, infers the
state of the server, and dynamically constructs a state machine. This state machine then
guides the fuzzing process, prioritizing the exploration of states and code paths that are
more likely to expose vulnerabilities.

Figure 1 illustrates the general workflow of SCGF. Prior to initiating fuzzing, testers
capture network communication data between the client and server (e.g., pcap files gener-
ated by tcpdump) to obtain a series of actual message exchange sequences. These message
sequences are then parsed and used to construct the initial seed pool. With this initial seed
pool, SCGF initiates the fuzzing process, which can be divided into four phases during the
fuzzing loop:

Phase 1: Target State Selection. SCGF prioritizes states that were less explored during
the fuzzing process or those that may lead to new state transitions to enhance the coverage
of the protocol’s state space.

Phase 2: Message Sequence (Seed) Selection. Once the target state is identified, SCGF
selects a message sequence M from the seed pool that can reach that state.

Phase 3: Sequence Mutation. SCGF divides the original message sequence M into three
parts: the prefix M1, which is the message sequence necessary to execute the target state
s; the infix M2, containing all messages executed after the prefix M1 while still remaining
in state s; and the suffix M3, which is the remaining sequence of messages. SCGF mutates
only the infix M2 to ensure that the mutated sequence M′ can still maintain the stability of
the target state s.

Phase 4: Execution and Feedback Collection. The mutated test cases are sent to the
Service Under Test (SUT), and the feedback collected during execution is used to update
the state machine and bitmap.

Electronics 2024, 13, 4962 5 of 20

Figure 1. The general workflow of SCGF.

2.3. Multi-Armed Bandit Model

The multi-armed bandit (MAB) model is a classic optimization problem widely applied
in statistics, machine learning, and decision theory [7]. The name originates from slot
machines in casinos, where each machine has multiple arms, and each pull of an arm yields
a reward. The core of the MAB problem lies in balancing exploration and exploitation:
within limited resources or time, the decision-maker must choose among several available
arms, each of which may produce different rewards, but the distribution of these rewards
is unknown. Through continuous trials, the decision-maker gradually learns the expected
value of rewards for each arm, aiming to maximize cumulative rewards in the long run.

In fuzzing, the seed selection problem bears significant similarity to the MAB problem,
as it also involves balancing exploration and exploitation. Under constraints of limited
time and resources, the tester must weigh between the use of known effective seeds and
the exploration of new ones to achieve an optimal strategy for discovering vulnerabilities
and maximizing code coverage. However, traditional MAB models assume a fixed number
of arms with the reward of each arm being either deterministic or following a predefined
distribution. In fuzzing, high-performing test cases during execution are saved in a seed
pool, resulting in a continually increasing number of seeds that each have dynamically
changing potential as testing progresses. Therefore, traditional MAB models cannot be
directly applied to the seed selection problem in fuzzing.

The adversarial multi-armed bandit (Adversarial MAB) [8] is a variant of the tradi-
tional MAB problem, where the reward distribution of each arm can dynamically change
over time. Unlike the standard MAB problem, Adversarial MAB requires algorithms to
quickly adapt and respond to these reward changes to maximize cumulative rewards in a
dynamic environment. This characteristic makes Adversarial MAB particularly well suited
for the seed selection process in fuzzing. In this context, seeds can be viewed as the arms
of the bandit. As fuzzing progresses, the effectiveness of seeds tends to diminish because
the probability of discovering new code coverage or vulnerabilities decreases over time.
Therefore, the Adversarial MAB model can dynamically adjust seed selection strategies
according to the changing effectiveness of seeds throughout the testing process, thereby
maximizing the efficiency of fuzzing at different phases.

3. Related Work
3.1. Protocol Fuzzing

The development of network protocol fuzzing has primarily gone through two stages:
black-box fuzzing and gray-box fuzzing . Black-box protocol fuzzing [9–13] does not rely on
the internal structure of protocol implementations; it focuses solely on inputs and outputs

Electronics 2024, 13, 4962 6 of 20

and generates test cases based on prior knowledge of the protocol format. Peach [14]
configures “models” described in XML to automatically generate diverse test cases, while
SPIKE [15] uses a block-based testing approach, dividing protocols into multiple blocks
and generating different test cases according to predefined rules. These tools effectively
generate test cases without requiring internal protocol information, but they are limited by
low coverage and struggle to identify complex logical flaws.

Graybox protocol fuzzing [5,16–19] uses feedback information from the execution
process to guide the generation of test cases, thereby enhancing testing effectiveness.
Pham et al. [20] developed the first stateful graybox protocol fuzzing tool, AFLNet, based
on AFL [21]. Following this, graybox protocol fuzzing has rapidly advanced. For example,
SGPFuzzer [22] improves the effectiveness of generated test cases by refining message
sequence mutation strategies, while SnapFuzz [23] employs snapshot technology to increase
the speed of test case generation and system throughput.

3.2. Seed Scheduling

Research on the seed scheduling phase of stateful protocol fuzzing is relatively limited
with most studies focusing on state selection and state representation methods. Some
researchers have attempted to optimize state selection methods to enhance the effective-
ness of seed scheduling. Liu et al. [24] introduced the Monte Carlo Tree Search [25] in
AFLNetLegion, expanding the server state model into a tree structure and distinguishing
state nodes based on response codes. Borcherding et al. [26] proposed modeling the state
selection problem as a multi-armed bandit problem [7], optimizing the state selection pro-
cess by balancing exploration and exploitation. Additionally, some studies have sought to
improve seed scheduling through more precise state representations. StateAFL [3] captures
snapshots of long-lived memory and employs a locality-sensitive hashing algorithm to map
memory content to unique state identifiers. In contrast, NSFuzz [4] and SGFUZZ [5] utilize
static analysis and lightweight instrumentation to identify state variables in the source code
of protocol implementations, using the values of these variables to define states.

Although research on seed scheduling in stateful protocol fuzzing is limited, there has
been extensive investigation into seed scheduling in traditional coverage-based fuzzing.
The first category of methods tends to assign higher potential to seeds that explore paths
with lower execution frequencies [27–30]. AFLFast [31] employs a Markov chain model
to explain that deeper paths require more executions, thereby allocating more power to
low-frequency paths. Truzz [32] prioritizes seeds with higher potential to discover new
paths. FairFuzz [33] enhances test coverage by allocating power toward seeds that are
likely to reach rare branches, thereby controlling the mutation frequency of these seeds.
The second category prefers mutating high-benefit seeds that are closer to uncovered code
blocks [34,35]. K-scheduler [35] converts the control flow graph into an edge horizon graph
and calculates seed scores based on graph centrality, where higher scores indicate higher
seed rewards. BELIEFuzz [36] calculates the potential number of uncovered paths for
each seed based on the control flow graph, combining this with execution frequency to
comprehensively evaluate the mutation potential of each seed.

4. Methodology

To overcome the limitation of traditional state-driven seed selection, we first provide
an overview of the overall design of SCFuzz and then explain its key technical aspects.

4.1. Overview

As shown in Figure 2, SCFuzz consists of three primary modules: Multi-Phase Seed
Selection, Power Allocation Based on State Weights, and Mutation and Execution.

Electronics 2024, 13, 4962 7 of 20

Initial Seeds Seed Pool

Phase
Identification

State Evaluation
Power

Allocation

Power Allocation Based on State Weights
Program

Exploration vs
Exploitation

Initial Phase

Middle Phase

Final Phase

Seed Selection

𝜕 > 0.5

𝜕 = 0.5

𝜕 < 0.5

Exploitation

Exploration

Global Power
Initialization

Multi-Phase Seed Selection

Mutation & Execution

Mutation

Execution

Figure 2. Overview of SCFuzz.

Multi-Phase Seed Selection. We propose a mutil-phased seed selection strategy,
departing from traditional state-driven seed selection methods. This strategy employs
a multi-armed bandit model to dynamically balance exploration and exploitation across
different phases of the fuzzing process. The fuzzing process is divided into initial, middle,
and final phases with the seed reward probability calculation method adjusted at each
phase to optimize the discovery of new states, paths, and code coverage.

Power Allocation Based on State Weights. To improve the effective utilization of
power, we employ a power allocation strategy based on state weights. In protocol fuzzing,
seeds are composed of sequences of multiple messages, requiring power allocation to
individual messages. By calculating the weights of the states corresponding to each mes-
sage sequence, we indirectly assess the exploration potential of the protocol implemen-
tation in each state. Based on these weights, power is allocated appropriately to the
corresponding messages.

Mutation and Execution. We mutate the messages corresponding to each state based
on the power allocated to the states in the seed. The power assigned to a state determines
the number of mutations applied to its associated messages with states receiving more
power undergoing more mutation operations. After mutation, the seed generates new test
cases, which are then sent to the target server for testing. During testing, the test cases
are evaluated and filtered based on the feedback received. If a test case triggers new state
coverage or code coverage, it is saved and added to the seed pool for subsequent testing.

In the following, we present a detailed description of the core designs of SCFuzz,
including Multi-Phase Seed Selection and Power Allocation Based on State Weights.

4.2. Multi-Phase Seed Selection

In this subsection, we introduce multi-phase seed selection, modeling it as a multi-
armed bandit problem, dividing fuzzing into three phases, and detailing seed selection
methods for each phase.

4.2.1. Seed Selection Model

Before modeling the seed selection problem as an MAB problem, we propose the
following two assumptions for the server under test, which are denoted as SUT:

Assumption 1. Under the same input conditions, the execution results of the SUT should remain
consistent. Specifically, the triggered states and executed code paths are expected to remain consistent
across executions.

This assumption establishes consistency in the behavior of the SUT under identical
input conditions, thereby ensuring the repeatability and reliability of the testing outcomes.

Electronics 2024, 13, 4962 8 of 20

Assumption 2. The number of state chains and code paths in SUT is finite. The set of state chains is
denoted as SC = {sc1, sc2, . . . , scn1}, and the set of paths id denoted as CP = {cp1, cp2, . . . , cpn2}.

This assumption ensures that the number of state chains and code paths in the SUT
is limited, thereby simplifying the analysis process and enhancing the controllability of
program behavior.

Building on the two assumptions above, we introduce the following key definitions,
laying the theoretical foundation for the subsequent seed selection strategy.

Definition 1. At time t, the set of seeds in the seed pool is denoted as Seed = {seed1, . . . , seedm}.
The set of state chains triggered by these seeds is denoted as SC = {sc1, sc2, sc3, . . . , scm1}, and the
set of code paths is denoted as CP = {cp1, cp2, cp3, . . . , cpm2}.

The definition clarifies the set of seeds in the seed pool during protocol fuzzing as well
as the corresponding state chains SC triggered and the paths CP covered. The state chains
SC represent the state transitions triggered by the seeds, while the paths CP reflect the code
paths that have been executed. By analyzing the state chains and paths, the effectiveness of
the fuzzing can be evaluated, and the seed selection strategy can be optimized to improve
coverage further.

Definition 2. Transition Probability. At time t, assume that a seed seedt in the seed pool
triggers a state chain sci and a path cpi. The state chain transition probability psciscj represents the
probability that a test case mutating the seed triggers state chain scj. Similarly, the path transition
probability pcpicpj represents the probability that a test case mutating the seed executes code path cpj.

This definition explains that in protocol fuzzing, transition probabilities measure the
likelihood of generating different state chains and code paths during seed mutation. These
probabilities highlight the seeds most likely to improve coverage, providing important
guidance for optimizing the fuzzing process.

Definition 3. Transition Frequency. Transition frequency quantifies the rate at which a mu-
tated seed seedt triggers a specific state chain scj or executes a specific code path cpj during the
testing process.

• The transition frequency for state chains is calculated as follows:

fsciscj =
fsci (scj)

f (seedt)
(1)

where fsci (scj) denotes the number of times the mutated seed seedt triggers the state chain scj,
and f (seedt) represents the total number of mutations for seed seedt.

• Similarly, the transition frequency for code paths is given by the following formula:

fcpicpj =
fcpi (cpj)

f (seedt)
(2)

where fcpi (cpj) denotes the number of times the mutated seed seedt executes the code path cpj,
and f (seedt) represents the total number of mutations for seed seedt.

Transition frequency provides a quantitative measure of the likelihood that a given
seed will generate specific state chains or code paths, offering critical insights for seed
scheduling in fuzz testing. A higher transition frequency suggests that the seed is more
likely to produce specific state chains or code paths, thereby aiding in increasing test
coverage and exploration efficiency.

Electronics 2024, 13, 4962 9 of 20

Definition 4. Reward Probability. In protocol fuzzing, the reward for each seed mutation
is defined as the test case that generates and triggers a new state chain or executes a new code
path. When seed seedt is selected for testing and receives a reward, denoted as R(seedt) = 1, the
probability of the mutated seed triggering a new state chain is given by P(scnew | R(seedt) = 1).
Similarly, the reward probability for executing a new code path is P(cpnew | R(seedt) = 1).

Based on Definitions 1 and 2, the probability of seed seedt receiving a reward for
triggering a new state chain can be derived as follows:

P(scnew | R(seedt) = 1) =
n1

∑
j=m1+1

psciscj

= 1−
m1

∑
j=1

psciscj

(3)

Similarly, the probability of seed seedi receiving a reward for executing a new code
path can be derived as shown below:

P(cpnew | R(seedt) = 1) =
n2

∑
j=m2+1

pcpicpj

= 1−
m2

∑
j=1

pcpicpj

(4)

Based on the above assumptions and definitions, we map the seed selection problem
in SCGF to an adversarial multi-armed bandit problem. The task of the agent is to select a
seed from the seed pool for fuzzing and choose a seed that maximizes both state coverage
and code coverage.

Arms. Let A represent the set of arms available for selection by the agent. Each arm
ai ∈ A corresponds to a distinct seed ti within the seed pool. In each selection round, the
agent is constrained to selecting a single arm, which corresponds to choosing one seed for
fuzzing. The outcome of this selection influences future decisions, as the agent iteratively
adjusts its strategy based on feedback, progressively selecting the most promising seed
from the pool.

Reward Probability. In the MAB model for seed selection, it is necessary to calculate
the expected reward for each arm in order to select the arm with the highest expected
reward, i.e., the seed with the greatest potential to discover a new state or code coverage.
However, accurately calculating the expected reward for each arm is impractical. To address
this issue, we propose measuring the potential of a seed based on its reward probability.
The greater the seed’s reward probability, the higher the likelihood of discovering new state
or code coverage. Since the goal of seed selection is to maximize state and code coverage,
the reward probability of a seed can be formulated by combining Equations (3) and (4) as
outlined below:

P(R(seedt) = 1) = α · P(scnew|R(seett) = 1) + (1− α) · P(cpnew|R(seedt) = 1) (5)

where α ∈ [0, 1].
As shown in Equations (3) and (4), the calculation of the reward probability depends

on the transition probability. In AFLFast [31], transition probabilities are computed through
path constraint analysis; however, this method becomes almost infeasible for programs
with complex constraint relationships. To address this issue, we adopt the self-transition
frequency estimation method used in EcoFuzz [28] to compute the transition probability
of each seed. Since the reward probability gradually decays during the fuzzing process,
we balance this characteristic using the seed index. According to Equations (1) and (3), the
transition probability of the state chain can be approximately formulated as

Electronics 2024, 13, 4962 10 of 20

P(scnew|R(seedt) = 1) ≈ 1− fscisci√
index(seedt)

(6)

Similarly, the transition probability of the path can be approximately formulated as

P(cpnew|R(seedt) = 1) ≈ 1−
fcpicpi√

index(seedt)
(7)

As shown in Equations (5)–(7), the reward probability of a seed can be approximated as

P(R(seedt) = 1) ≈ α ·
(

1− fscisci√
index(seedt)

)
+ (1− α) ·

(
1−

fcpicpi√
index(seedt)

)
(8)

where α ∈ [0, 1].

4.2.2. Exploration vs. Exploitation

After modeling the seed selection problem as a multi-armed bandit problem, each
seed selection involves a balance between exploration and exploitation. Exploration refers
to selecting different arms to gather more information, even though these arms may not
necessarily provide the maximum immediate reward. However, through exploration, we
can gain a more comprehensive understanding of the potential reward distribution of each
arm. Exploitation, on the other hand, refers to selecting the arm expected to yield the highest
reward based on current observations to maximize immediate rewards. Nevertheless, since
the known information is based on limited observations, the currently optimal arm may not
be the globally optimal one. Therefore, it is essential to find a reasonable balance between
exploration and exploitation to maximize cumulative rewards.

In fuzzing, the seed selection process involves balancing exploration and exploitation,
which essentially means choosing between selected and unselected seeds. The seed pool
can be categorized into two states: exploration and exploitation. During the exploration state,
when there are unselected seeds in the pool, these seeds should be prioritized to ensure
that each one is thoroughly tested. Once all seeds have been selected, the pool transitions
into the exploitation state, where Equation (8) is applied to assess the seeds and select the
most promising one for further testing.

4.2.3. Phase Identification

The goal of protocol fuzzing is not only to maximize code coverage but also to maxi-
mize state coverage. New states are typically discovered during the initial phase of protocol
fuzzing. As fuzzing progresses, it becomes increasingly challenging to find new states in
the middle phase with only a few state transitions captured. In the final phase, it is nearly
impossible to discover new states or state transitions, and only a limited number of new
code paths are covered. Therefore, the protocol fuzzing process is divided into three phases,
each with distinct objectives based on the evolving goals of the test.

The phases of fuzzing are mainly divided based on runtime. Specifically, the tester
needs to clearly define the runtime intervals for the initial, middle, and final phases before
the fuzzing starts. By dividing time in this way, the fuzzing can adjust its strategy according
to the needs of different phases, thereby improving the coverage of states and code paths.

SCFuzz compares the current runtime in real time with the pre-set phase time to
determine the current phase of the fuzzing. The focus of testing shifts according to the
characteristics of each phase: in the initial phase, the emphasis is on broadly covering
protocol states and state transitions, so α > 0.5 is set in the seed reward probability
evaluation shown in Equation (8); in the middle phase, the testing balances the coverage of
states and code paths, gradually investing more effort into exploring code paths, setting
α = 0.5; in the final phase, as the exploration of the state space approaches saturation, the
focus shifts to thoroughly exploring the uncovered code paths with α < 0.5 to increase the
depth of testing in the code space.

Electronics 2024, 13, 4962 11 of 20

4.2.4. Seed Selection

After completing the “Exploration vs. Exploitation” and “Phase Identification” steps, the
state of the seed pool and the current fuzzing phase are determined. This allows SCFuzz to
define the scope for seed selection and the formula for calculating seed reward probabilities.

Algorithm 1 illustrates the seed selection process in detail. The algorithm takes the
seed pool, the state of the seed pool, and the current fuzzing phase as inputs. First, the
algorithm checks the state of the seed pool. If the seed pool is in the exploration state,
meaning there are seeds that have not yet been selected, a random selection is made from
these unfussed seeds (lines 1–2). If the seed pool is in the exploitation state, where all seeds
have already been selected, the algorithm selects a seed based on the reward probability of
each seed in the seed pool (lines 4–15). The reward probability is calculated according to
Equation (8) with the parameter α determined by the current fuzzing phase.

Algorithm 1 Seed Selection

Input: P: Seed pool, Pstate: State of the seed pool, Fphase: Fuzzing phase
Output: seed: Selected seed

1: if Pstate is exploration then
2: seed← RandomChooseFromUnfuzzedSeeds (P)
3: else
4: if Fphase is initial then
5: α← δ1
6: else if Fphase is middle then
7: α← δ2
8: else
9: α← δ3

10: end if
11: for i = 0 to length(P)− 1 do
12: if i = 0 or computeProbability (P[i], α) > computeProbability (P[seed], α) then
13: seed← P[i]
14: end if
15: end for
16: end if
17: return seed

During the initial phase of fuzzing, α is set to a higher value, prioritizing state explo-
ration. In the middle phase, α is set to a moderate value, balancing both state and code path
coverage. In the final phase, α is reduced to favor the deeper exploration of code paths.
Once the value of α is determined, the reward probabilities of all seeds in the pool are
computed, and the seed with the highest reward probability is selected for the next round
of fuzzing.

4.3. Power Allocation Based on State Weights

In this subsection, we propose a fine-grained power allocation method based on
state weights. The process begins with global power initialization, which allocates initial
power to the selected seed to ensure optimal resource distribution. Next, state evaluation
calculates the weights of the states corresponding to each message in the seed. Finally,
fine-grained power allocation assigns greater power to messages linked to states with more
weight, thereby enhancing the overall coverage and effectiveness of fuzzing.

4.3.1. Global Power Initialization

SCFuzz initializes power for the selected seed based on the power initialization strat-
egy of the existing protocol graybox fuzzing tool, AFLNet. This strategy considers fac-
tors such as seed execution time, code coverage, and introduction timing within the test.
Through this mechanism, higher initial power is directed to seeds that are efficient in exe-
cution, achieve greater coverage, or are newly introduced, thereby increasing their chances

Electronics 2024, 13, 4962 12 of 20

of mutation in subsequent fuzzing cycles. By dynamically optimizing resource distribution
in real time, this power initialization strategy enhances the overall testing efficiency.

4.3.2. State Evaluation

In protocol fuzzing, seeds are composed of message sequences, making it impractical to
mutate the entire seed directly. Instead, power needs to be allocated to individual messages
within the seed. Since it is difficult to directly assess the mutation potential of a single
message, we evaluate the states corresponding to the message sequence to estimate the
mutation potential of each message, thereby enabling a more effective allocation of power.

Not all states possess the same mutation potential. We apply the following heuristic
rules to quantify the weight of each state within the seed.

• Allocate more power to states with lower selection frequency. States that are selected
less often indicate they have rarely been explored in previous fuzzing attempts. Due
to insufficient testing, these states may hide potential vulnerabilities or undiscovered
behaviors and should therefore be prioritized for power allocation.

• Allocate more power to states with lower trigger frequency. States that are triggered
less often during testing may have more untapped potential. Prioritizing these states
can help uncover more unknown behaviors and security risks.

• Allocate more power to states with a higher number of state transition edges. States
with more transition edges are usually more complex and may lead to multiple
untested paths. Allocating more power to these states can significantly increase
path coverage.

• Allocate more power to states that are deeper in the implemented protocol state
machine. Deeper states, which require multiple transitions to reach, typically indicate
higher testing difficulty. By allocating more power to these states, we ensure that these
hard-to-reach states are adequately tested.

• Allocate more power to states that have historically discovered new paths multiple
times. These states have already proven their potential to trigger new execution paths
during previous testing. Continuing to allocate power to these states could reveal
even more new paths, boosting the overall effectiveness of fuzzing.

Based on the five heuristic rules mentioned above, we design a formula for calculating
the state weight. For a given state si, its weight is calculated as follows:

wsi =
discoverd_pathssi

× depthsi
× transsi

lg(lg(fuzzssi
+ 2)× selected_timessi + 2)

(9)

In Equation (9), discoverd_pathssi represents the number of new paths discovered
when state si is selected as the target state for fuzzing. depthsi refers to the depth of state
si within the state machine, while transsi denotes the number of transitions from state
si. f uzzssi represents the number of times state si has been triggered, and selected_timessi

represents the number of times state si has been selected as the target state. Since the
magnitudes of f uzzssi and selected_timessi are relatively large, to avoid an excessively
large denominator and consequently low weight differentiation, Equation (9) reduces their
magnitude. Using the above equation, we can perform precise quantitative evaluations
of each state that the selected seed can trigger, thereby gaining a more comprehensive
understanding of the testing potential and value of these states.

4.3.3. Fine-Grained Power Allocation

After determining the weights of the states that the selected seed can trigger, we need
to further allocate the global seed power to each state in a fine-grained manner. Based on
the weight of each state, the seed power is proportionally distributed among different states,
ensuring that states with higher weights receive more testing resources. This approach
effectively increases the mutation frequency of high-potential states, thereby enhancing the
overall coverage and efficiency of the fuzzing process.

Electronics 2024, 13, 4962 13 of 20

In the global power initialization phase, assuming the total power of the seed is
power_total, the power allocated to each of the n states in the seed file is calculated
as follows:

powersi = power_total × wsi

∑n
i=1 wsi

(10)

where, wsi represents the weight of state si, and ∑n
i=1 wsi is the total sum of the weights

for all states. This allocation method ensures that states with higher weights receive more
power, allowing rare or high-potential states to be prioritized for testing, thereby improving
the overall coverage and efficiency of the fuzzing process.

Allocating power to the states within a seed essentially means allocating power to
individual messages within the seed. Taking the seed and its corresponding state chain
in Figure 3 as an example, the weight of each state in the chain is calculated to assess its
mutation potential, after which the power is distributed accordingly. For instance, if the
power allocated to state S2 is power1, the subsequent message M3 will be assigned power1
units of power, meaning that M3 will undergo power1 mutation attempts.

M1 M2 M3 M5M4

S0 S1 S2 S3 S5S4State Chain

Message sequence

Figure 3. An example to explain the relationship between message sequence and state chain.

5. Evaluation

In this section, we evaluate the performance of SCFuzz and compare it to state-of-the-
art protocol fuzzers. We concentrate on the following research questions in the evaluation
of SCFuzz.

• RQ1: State coverage. How much improvement in state coverage does SCFuzz achieve
compared to the baseline?

• RQ2: Code coverage. How much improvement in code coverage does SCFuzz achieve
compared to the baseline?

• RQ3: Seed selection effectiveness. How does SCFuzz enhance seed selection effec-
tiveness compared to the baseline?

• RQ4: Power utilization effectiveness. How does SCFuzz improve power utilization
effectiveness compared to the baseline?

5.1. Experimental Setup

Implementation. We develop SCFuzz based on the widely used protocol fuzzing
framework AFLNET. We run all experiments on a server equipped with 64-bit Ubuntu
20.04, featuring dual Intel (R) Xeon (R) E5-2690@2.90 GHz CPUs and 128 GB of RAM.
Each selected protocol implementation and each fuzzer are individually set up in separate
Docker containers, utilizing identical computational resources for experimental evaluation.
To ensure the fairness of the experimental results, each fuzzer was subjected to 24 h of
fuzzing on each protocol implementation with the experiments repeated five times.

In the 24 h of fuzzing, we divide the process into three phases. The first 6 h represent
the initial fuzzing phase, during which we set the parameter α to 0.8, focusing primarily
on exploring the state space. The middle 8 h represent the mid-fuzzing phase, with α
set to 0.5, balancing the exploration of both the state space and code space. Finally, the
final 10 h represent the late fuzzing phase, where α is set to 0.2, focusing more on code
space exploration.

Electronics 2024, 13, 4962 14 of 20

Benchmark. Table 2 provides detailed information on the network protocol imple-
mentations used in our evaluation. We select fuzzing targets from the network protocol
fuzzing benchmark, i.e., ProFuzzBench [6]. Our evaluation encompasses three distinct net-
work protocols, which are represented by five different network service implementations,
including widely used protocols such as FTP, RTSP, and DAAP.

Table 2. The basic information of target protocol implementations.

Subject Protocol Version Language

Live555 RTSP 31284aa C++
LightFTP FTP 139af7c C

Pure-FTPD FTP 10122d9 C
ProFTPD FTP 61e621e C

Forked-daapd DAAP 2ca10d9 C

Baseline. We conducted a comparison between SCFuzz and the baseline open-source
graybox fuzzing tool for network protocols, AFLNet. AFLNet is specifically designed
for fuzzing stateful network protocols. It extends the widely used AFL by introducing a
state-aware feedback strategy. It monitors protocol-specific state transitions during fuzzing,
enabling better coverage in stateful network services. Other widely used fuzzers, such
as StateAFL [3] and NSFuzz [4], are also built on AFLNet but have not modified their
seed scheduling method. The enhancements made by these tools are orthogonal to the
enhancements introduced by SCFuzz. By comparing our experiments with AFLNet, we can
assess the effectiveness of the seed scheduling method proposed in this paper in relation to
existing fuzzers.

5.2. State Coverage (RQ1)

To evaluate the state space exploration capability of SCFuzz, we compared the number
of states and state transitions triggered by different fuzzers within 24 h of fuzzing. Since
SCFuzz enhances the seed scheduling method without altering the state representation
method, it uses response codes from response messages as state representations, which is
similar to AFLNet. To quantify the improvement of SCFuzz relative to the baseline, we
reported the percentage improvement in state coverage achieved within 24 h (Improv) and
the probability that a random campaign of SCFuzz outperforms a random campaign of the
baseline (Â12), which is measured by the Vargha–Delaney effect size [37].

Table 3 presents the experimental results on state coverage. It can be observed that
SCFuzz triggers a greater number of states and state transitions compared to AFLNet.
Specifically, SCFuzz achieves an average improvement of 17.10% in the number of states
and 22.92% in state transitions within 24 h of fuzzing compared to AFLNet. For all
tested protocol subjects, the Vargha–Delaney effect size (Â12 ≥ 0.6) indicates that SCFuzz
demonstrates a clear advantage over AFLNet in exploring the state space.

The improvements of SCFuzz on LightFTP are not significant. Specifically, the average
increase in the number of states is 4.35%, while the increase in state transitions is 4.90%.
Analysis shows that LightFTP is a lightweight program based on the FTP protocol, with
relatively simple functionality, which limits the effectiveness of SCFuzz on this program.
Similarly, SCFuzz does not perform well on Forked-daapd, where state transitions only
increased by 4.55%. Upon analysis, we found that the main reason is the slow execution
speed of this protocol program, which hinders the full potential of SCFuzz.

In conclusion, SCFuzz achieves greater state coverage than the baseline. Through
deeper state space exploration, SCFuzz shows clear advantages in protocol fuzzing. It
identifies more new states and transitions, improving the effectiveness and coverage of the
fuzzing process.

Electronics 2024, 13, 4962 15 of 20

Table 3. The average state coverage by different fuzzers.

Subject
AFLNet SCFuzz

States Trans States Improv Â12 Trans Improv Â12

Live555 11.00 77.60 13.00 18.18% 1.00 99 27.58% 1.00
LightFTP 23.00 220.20 24.00 4.35% 0.72 231 4.90% 1.00

Pure-FTPD 26.20 202.40 29.00 10.69% 1.00 266 31.42% 1.00
ProFTPD 22.00 152.60 28.00 27.27% 1.00 223 46.13% 1.00
Forked-
daapd 8.00 22.00 10.00 25.00% 1.00 23 4.55% 0.60

Average - - - 17.10% - - 22.92% -

5.3. Code Coverage (RQ2)

Code coverage has consistently been a key metric for evaluating fuzzing tools. Gen-
erally, higher code coverage indicates a more comprehensive test of the target program,
increasing the likelihood of triggering program vulnerabilities. Table 4 presents the branch
coverage, line coverage, and path coverage achieved by different fuzzers over five 24 h
fuzzing sessions. To quantify the improvements of SCFuzz relative to the baseline, we
report the percentage improvement (Improv) across various coverage metrics.

Table 4. The average code coverage by different fuzzers.

Subject
AFLNet SCFuzz

Branch Line Path Branch Improv Line Improv Path Improv

Live555 2796.4 5716 852 2982 6.64% 6010 5.14% 908 6.57%
LightFTP 321.8 660.4 566 332 3.17% 696 5.39% 580 2.47%

Pure-FTPD 1027.6 1907.2 1254 1239 20.57% 2169 13.73% 1617 28.95%
ProFTPD 4893.2 10708 2299 5233 6.94% 11,464 7.06% 2730 18.75%

Forked-daapd 2294.2 7356.2 242 2347 2.30% 7482 1.71% 262 8.26%

Average - - - - 7.92% - 6.61% - 13.00%

The results in Table 4 show that SCFuzz achieves higher branch, line, and path cover-
age across all five protocol implementations compared to AFLNet. Specifically, SCFuzz
achieves an average improvement of 7.92% in branch coverage, 6.61% in line coverage,
and 13.00% in path coverage relative to AFLNet. The improvement rates across the three
coverage metrics are generally consistent. Protocols that exhibit larger improvements in
branch coverage also tend to show higher line and path coverage. For instance, in the
Pure-FTPD protocol implementation, SCFuzz improves branch coverage by 20.57%, line
coverage by 13.73%, and path coverage by 28.95%.

Figure 4 illustrates the branch coverage over time during the 24 h fuzzing process for
both SCFuzz and AFLNet. As shown in the figure, SCFuzz and AFLNet exhibit similar
code coverage performance in the early phases of testing. However, as time progresses,
SCFuzz begins to demonstrate higher coverage, particularly in the later phases, where its
branch coverage significantly surpasses that of AFLNet.

In conclusion, SCFuzz achieves higher code coverage compared to existing protocol
fuzzers. Its seed scheduling method effectively selects seeds with the greatest potential to
explore the code space, thereby accelerating code coverage during the testing process.

Electronics 2024, 13, 4962 16 of 20

Figure 4. The branch coverage over time for different fuzzers during five 24 h fuzzing sessions.

5.4. Seed Selection Effectiveness (RQ3)

To evaluate whether the multi-phase seed selection strategy in SCFuzz can effectively
select seeds with the greatest potential for rewards, we calculated the proportion of selected
seeds that received rewards (i.e., discovered new code or state coverage) during the 24 h
fuzzing process. This proportion is measured against the total number of seed selections to
assess the effectiveness of the seed selection process. A higher rate of effective selection
indicates that the fuzzer is more efficient in identifying seeds that can discover new states or
code coverage, thereby enabling a deeper exploration of the target protocol implementation.

Table 5 presents the seed selection effectiveness of SCFuzz and AFLNet across different
protocol implementations. It is evident that SCFuzz consistently outperforms AFLNet
in terms of effective seed selection rate across all protocol implementations. On average,
AFLNet achieves an effective selection rate of 9.86%, whereas SCFuzz achieves 27.45%,
representing an improvement of 389.37%. In more complex protocol implementations
like ProFTPD and Forked-daapd, SCFuzz reaches effective selection rates of 33.10% and
42.86%, respectively, which are significantly higher than AFLNet’s 10.41% and 26.43%.
This indicates that SCFuzz is more effective in selecting seeds with higher potential for
discovering new state and code coverage, thereby improving the overall fuzzing efficiency.
Even in the relatively simple LightFTP protocol implementation, SCFuzz achieves an
effective selection rate of 29.73%, significantly surpassing the 3.11% rate achieved by
AFLNet, further demonstrating the advantage of SCFuzz in handling lightweight protocol
implementations.

Table 5. The proportion of selected seeds receiving rewards in different fuzzers.

Fuzzer Live555 LightFTP Pure-FTPD ProFTPD Forked-daapd Average

AFLNet 1.75% 3.11% 7.61% 10.41% 26.43% 9.86%
SCFuzz 13.56% 29.73% 18.01% 33.10% 42.86% 27.45%

Improv 674.11% 855.95% 136.66% 217.96% 62.16% 389.37%

In conclusion, the multi-phase seed selection strategy of SCFuzz demonstrates sig-
nificant advantages in selecting effective seeds. Through this strategy, SCFuzz is able to
efficiently identify and select seeds with greater potential during each fuzzing iteration,
and these seeds exhibit superior performance in discovering new code or state coverage.
This seed selection mechanism not only improves the efficiency of the fuzzing process but
also facilitates a deeper exploration of the protocol implementation.

Electronics 2024, 13, 4962 17 of 20

5.5. Power Utilization Effectiveness (RQ4)

To evaluate whether the power allocation strategy based on state weights in SCFuzz
improves power utilization effectiveness in fuzzing, we calculated the proportion of power
used to successfully trigger new code or state coverage during the 24 h fuzzing process. A
higher power utilization effectiveness indicates that the fuzzer is able to allocate resources
more effectively, ensuring that the power is directed toward seeds with the highest potential
for discovering new code paths and state transitions, thereby maximizing the overall
effectiveness of the fuzzing process.

Table 6 presents the power utilization effectiveness of SCFuzz and AFLNet across
different protocol implementations. The experimental results show that SCFuzz exhibits a
higher power utilization effectiveness in all protocol implementations. On average, AFLNet
achieves an average power utilization effectiveness of 0.37%, while SCFuzz achieves 0.54%,
representing a 45.61% improvement over AFLNet. Specifically, in the ProFTPD protocol
implementation, SCFuzz reaches a power utilization effectiveness of 1.45% compared to
the 0.99% achieved by AFLNet. This improvement demonstrates that the power allocation
strategy based on state weights of SCFuzz allows for a more efficient distribution of power,
allocating more resources to the messages within seeds that have higher potential, and
applying more mutations to these messages, resulting in the discovery of new code or
state coverage.

Table 6. The effectiveness of power utilization across different fuzzers.

Fuzzer Live555 LightFTP Pure-FTPD ProFTPD Forked-Daapd Average

AFLNet 0.10% 0.22% 0.24% 0.99% 0.29% 0.37%
SCFuzz 0.14% 0.35% 0.38% 1.45% 0.36% 0.54%

Improv 40.00% 59.09% 58.33% 46.46% 24.14% 45.61%

In conclusion, the power allocation strategy based on state weights of SCFuzz improves
power utilization, allowing the fuzzer to explore code and state spaces more efficiently
under limited power resources, thereby enhancing the overall test coverage.

6. Discussion

Although SCFuzz enhances the effectiveness of seed scheduling and improves the
overall efficiency of fuzzing, it still has certain limitations.

First, in dividing the fuzzing process into initial, middle, and final phases, we currently
define the duration of each phase as fixed values set at the start of the fuzzing. While this
phase division generally aligns with common fuzzing dynamics, it may not be universally
applicable across all protocol implementations. Fuzzing dynamics can vary significantly
between different protocols, and a fixed-phase duration model may not capture the nuances
of each fuzzing session. SCFuzz does not yet have the ability to adapt phase durations
based on real-time feedback, which could better reflect the actual progress of fuzzing.
Developing this adaptive capability represents a promising direction for future research.
In particular, the real-time monitoring of state discovery and transition rates could be
leveraged to adjust phase durations dynamically, ensuring a more efficient use of resources.

Secondly, seed scheduling and seed mutation are two core factors that influence the
effectiveness of fuzzing. Seed scheduling determines the direction of test selection, while
seed mutation impacts the validity and quality of the generated test cases. These two
factors are interdependent—optimal seed selection alone cannot fully exploit the potential
of seeds without effective mutation methods. However, most existing studies optimize seed
scheduling and mutation independently, which limits the generalizability and scalability
of their approaches. In SCFuzz, although we focus on improving seed scheduling, we
acknowledge that the performance of the seed selection strategy could be further improved
if coupled with a more sophisticated mutation strategy. The current lack of synergy between

Electronics 2024, 13, 4962 18 of 20

seed scheduling and mutation techniques is a key limitation. Therefore, exploring a more
integrated approach that combines both elements—scheduling and mutation—could be
a breakthrough for fuzzing performance. This combined strategy could consider the
characteristics of individual seeds, adjusting not only the selection order but also the
mutation approach applied to each seed. Further research into adaptive mutation strategies,
potentially using machine learning or reinforcement learning techniques, could help tailor
mutations based on the specific states triggered by seeds.

In summary, although SCFuzz has made significant progress compared to existing
fuzzing tools, there are still several areas that can be further improved. Future research
should focus on the design of adaptive phase management mechanisms and the deeper
integration of seed scheduling and mutation strategies. These improvements will not only
enhance the generalizability and performance of SCFuzz but also promote the application
of fuzzing tools in more complex and diverse testing environments. Addressing these chal-
lenges will lay a solid foundation for developing more efficient and precise fuzzing tools,
thereby advancing the widespread adoption of fuzzing technology in practical applications.

7. Conclusions

In this paper, we present SCFuzz, which is an innovative approach designed to opti-
mize seed scheduling in network protocol fuzzing. By conceptualizing seed selection as
a multi-armed bandit problem and partitioning the fuzzing process into distinct phases,
SCFuzz dynamically balances exploration and exploitation, tailoring its approach to the
unique requirements of each phase. Additionally, a power allocation strategy based on
state weights ensures focused resource distribution to high-potential messages, thereby
improving both the coverage and efficiency of the fuzzing process. The scientific contri-
bution of this study is rooted in its novel integration of multi-phase seed selection with a
dynamic exploration/exploitation trade-off and state-weighted power allocation. This inte-
grated methodology significantly enhances fuzzing coverage and overall testing efficiency,
addressing key challenges in the field of protocol fuzzing.

Experimental results substantiate the effectiveness of SCFuzz, demonstrating its supe-
rior performance compared to AFLNet across several widely used open-source protocol
implementations. Specifically, SCFuzz achieves up to 17.10% more states discovered, 22.92%
more state transitions, and 7.92% higher code branch coverage. Additionally, seed selection
effectiveness is improved by 389.37%, while power utilization increases by 45.61%, thereby
addressing the research questions formulated in this study. Beyond its technical contribu-
tions, this work holds societal implications by strengthening the security of communication
protocol implementations. Through improved fuzzing efficiency, SCFuzz enables an earlier
detection of vulnerabilities, mitigating the risks posed by security flaws in critical systems.

In conclusion, SCFuzz offers an effective solution to the challenges of protocol fuzzing,
contributing to both the scientific understanding of fuzzing strategies and the practical
security of communication protocols. Future work may explore adaptive phase manage-
ment and the integration of seed scheduling with mutation strategies to further refine and
enhance the performance of fuzzing techniques.

Author Contributions: Conceptualization, M.C., K.Z. and Y.L.; Formal analysis, Y.C. and M.C.;
Funding acquisition, Y.L.; Investigation, M.C., K.Z., Y.C. and Y.L.; Methodology, M.C., K.Z. and Y.C.;
Resources, M.C., K.Z. and Y.C.; Supervision, C.C. and J.Y.; Validation, M.C. and K.Z.; Visualization,
C.C. and J.Y.; Writing—original draft, M.C.; Writing—review and editing, M.C., K.Z. and Y.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: All the authors declare that they have no conflicts of interest.

Electronics 2024, 13, 4962 19 of 20

References
1. Manès, V.J.; Han, H.; Han, C.; Cha, S.K.; Egele, M.; Schwartz, E.J.; Woo, M. The art, science, and engineering of fuzzing: A survey.

IEEE Trans. Softw. Eng. 2019, 47, 2312–2331. [CrossRef]
2. Wu, W.C.; Nongpoh, B.; Nour, M.; Marcozzi, M.; Bardin, S.; Hauser, C. Fine-grained coverage-based fuzzing. ACM Trans. Softw.

Eng. Methodol. 2024, 33, 1–41. [CrossRef]
3. Natella, R. Stateafl: Greybox fuzzing for stateful network servers. Empir. Softw. Eng. 2022, 27, 191. [CrossRef]
4. Qin, S.; Hu, F.; Ma, Z.; Zhao, B.; Yin, T.; Zhang, C. Nsfuzz: Towards efficient and state-aware network service fuzzing. ACM

Trans. Softw. Eng. Methodol. 2023, 32, 1–26. [CrossRef]
5. Ba, J.; Böhme, M.; Mirzamomen, Z.; Roychoudhury, A. Stateful greybox fuzzing. In Proceedings of the 31st USENIX Security

Symposium (USENIX Security 22), Boston, MA, USA, 10–12 August 2022; pp. 3255–3272.
6. Natella, R.; Pham, V.T. Profuzzbench: A benchmark for stateful protocol fuzzing. In Proceedings of the 30th ACM SIGSOFT

International Symposium on Software Testing and Analysis, Virtual, 11–17 July 2021; pp. 662–665.
7. Slivkins, A. Introduction to multi-armed bandits. Found. Trends Mach. Learn. 2019, 12, 1–286. [CrossRef]
8. Auer, P.; Cesa-Bianchi, N.; Freund, Y.; Schapire, R.E. Gambling in a rigged casino: The adversarial multi-armed bandit problem. In

Proceedings of the IEEE 36th Annual Foundations of Computer Science, Milwaukee, WI, USA, 23–25 October 1995; pp. 322–331.
9. Banks, G.; Cova, M.; Felmetsger, V.; Almeroth, K.; Kemmerer, R.; Vigna, G. SNOOZE: Toward a Stateful Network protocol fuzzer.

In Proceedings of the Information Security: 9th International Conference, ISC 2006, Samos Island, Greece, 30 August–2 September
2006; Proceedings 9; Springer: Berlin/Heidelberg, Germany, 2006; pp. 343–358.

10. Miki, H.; Setou, M.; Kaneshiro, K.; Hirokawa, N. All kinesin superfamily protein, KIF, genes in mouse and human. Proc. Natl.
Acad. Sci. USA 2001, 98, 7004–7011. [CrossRef] [PubMed]

11. Gorbunov, S.; Rosenbloom, A. Autofuzz: Automated network protocol fuzzing framework. IJCSNS 2010, 10, 239.
12. Peng, H.; Shoshitaishvili, Y.; Payer, M. T-Fuzz: Fuzzing by program transformation. In Proceedings of the 2018 IEEE Symposium

on Security and Privacy (SP), San Francisco, CA, USA, 20–24 May 2018; pp. 697–710.
13. De Ruiter, J.; Poll, E. Protocol state fuzzing of TLS implementations. In Proceedings of the 24th USENIX Security Symposium

(USENIX Security 15), Washington, DC, USA, 12–14 August 2015; pp. 193–206.
14. Eddington, M. Peach Fuzzer: A Smart Fuzzer for Complex Inputs. Available online: https://www.peachfuzzer.com (accessed on

6 October 2024).
15. Aitel, D. The Advantages of Block-Based Protocol Analysis for Security Testing; Immunity Inc.: Miami, FL, USA, 2002; pp. 105–106.
16. Meng, R.; Mirchev, M.; Böhme, M.; Roychoudhury, A. Large language model guided protocol fuzzing. In Proceedings of the 31st

Annual Network and Distributed System Security Symposium (NDSS), San Diego, CA, USA, 26 February–1 March 2024.
17. Hu, Z.; Pan, Z. A systematic review of network protocol fuzzing techniques. In Proceedings of the 2021 IEEE 4th Advanced

Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 18–20
June 2021; Volume 4, pp. 1000–1005.

18. Zeng, Y.; Lin, M.; Guo, S.; Shen, Y.; Cui, T.; Wu, T.; Zheng, Q.; Wang, Q. Multifuzz: A coverage-based multiparty-protocol fuzzer
for iot publish/subscribe protocols. Sensors 2020, 20, 5194. [CrossRef] [PubMed]

19. Zardus. Preeny Repository. Available online: https://github.com/zardus/preeny (accessed on 6 October 2024).
20. Pham, V.T.; Böhme, M.; Roychoudhury, A. AFLNet: A greybox fuzzer for network protocols. In Proceedings of the 2020 IEEE

13th International Conference on Software Testing, Validation and Verification (ICST), Porto, Portugal, 24–28 October 2020;
pp. 460–465.

21. Zalewski, M. American Fuzzy Lop. Available online: https://lcamtuf.coredump.cx/afl/ (accessed on 6 October 2024).
22. Yu, Y.; Chen, Z.; Gan, S.; Wang, X. SGPFuzzer: A state-driven smart graybox protocol fuzzer for network protocol implementations.

IEEE Access 2020, 8, 198668–198678. [CrossRef]
23. Andronidis, A.; Cadar, C. Snapfuzz: High-throughput fuzzing of network applications. In Proceedings of the 31st ACM SIGSOFT

International Symposium on Software Testing and Analysis, Virtual, 18–22 July 2022; pp. 340–351.
24. Liu, D.; Pham, V.T.; Ernst, G.; Murray, T.; Rubinstein, B.I. State selection algorithms and their impact on the performance of

stateful network protocol fuzzing. In Proceedings of the 2022 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), Honolulu, HI, USA, 15–18 March 2022; pp. 720–730.

25. Browne, C.B.; Powley, E.; Whitehouse, D.; Lucas, S.M.; Cowling, P.I.; Rohlfshagen, P.; Tavener, S.; Perez, D.; Samothrakis, S.;
Colton, S. A survey of monte carlo tree search methods. IEEE Trans. Comput. Intell. Games 2012, 4, 1–43. [CrossRef]

26. Borcherding, A.; Giraud, M.; Fitzgerald, I.; Beyerer, J. The Bandit’s States: Modeling State Selection for Stateful Network Fuzzing
as Multi-armed Bandit Problem. In Proceedings of the 2023 IEEE European Symposium on Security and Privacy Workshops
(EuroS & PW), Delft, The Netherlands, 3–7 July 2023; pp. 345–350.

27. Wang, J.; Song, C.; Yin, H. Reinforcement learning-based hierarchical seed scheduling for greybox fuzzing. In Proceedings of the
Network and Distributed Systems Security Symposium, Virtual, 21–25 February 2021.

28. Yue, T.; Wang, P.; Tang, Y.; Wang, E.; Yu, B.; Lu, K.; Zhou, X. EcoFuzz: Adaptive Energy-Saving greybox fuzzing as a variant of
the adversarial Multi-Armed bandit. In Proceedings of the 29th USENIX Security Symposium (USENIX Security 20), Berkeley,
CA, USA, 12–14 August 2020; pp. 2307–2324.

29. Zhao, L.; Duan, Y.; Xuan, J. Send Hardest Problems My Way: Probabilistic Path Prioritization for Hybrid Fuzzing. In Proceedings
of the Network and Distributed System Security Symposium (NDSS), San Diego, CA, USA, 24–27 February 2019.

http://doi.org/10.1109/TSE.2019.2946563
http://dx.doi.org/10.1145/3587158
http://dx.doi.org/10.1007/s10664-022-10233-3
http://dx.doi.org/10.1145/3580598
http://dx.doi.org/10.1561/2200000068
http://dx.doi.org/10.1073/pnas.111145398
http://www.ncbi.nlm.nih.gov/pubmed/11416179
https://www.peachfuzzer.com
http://dx.doi.org/10.3390/s20185194
http://www.ncbi.nlm.nih.gov/pubmed/32933082
https://github.com/zardus/preeny
https://lcamtuf.coredump.cx/afl/
http://dx.doi.org/10.1109/ACCESS.2020.3025037
http://dx.doi.org/10.1109/TCIAIG.2012.2186810

Electronics 2024, 13, 4962 20 of 20

30. Zhao, Y.; Wang, X.; Zhao, L.; Cheng, Y.; Yin, H. Alphuzz: Monte carlo search on seed-mutation tree for coverage-guided
fuzzing. In Proceedings of the 38th Annual Computer Security Applications Conference, Austin, TX, USA, 5–9 December 2022;
pp. 534–547.

31. Böhme, M.; Pham, V.T.; Roychoudhury, A. Coverage-based greybox fuzzing as markov chain. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 1032–1043.

32. Zhang, K.; Xiao, X.; Zhu, X.; Sun, R.; Xue, M.; Wen, S. Path transitions tell more: Optimizing fuzzing schedules via runtime
program states. In Proceedings of the 44th International Conference on Software Engineering, Pittsburgh, PA, USA, 21–29 May
2022; pp. 1658–1668.

33. Lemieux, C.; Sen, K. Fairfuzz: A targeted mutation strategy for increasing greybox fuzz testing coverage. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering, Montpellier, France, 3–7 September 2018;
pp. 475–485.

34. Li, Y.; Xue, Y.; Chen, H.; Wu, X.; Zhang, C.; Xie, X.; Wang, H.; Liu, Y. Cerebro: Context-aware adaptive fuzzing for effective
vulnerability detection. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Tallinn, Estonia, 26–30 August 2019; pp. 533–544.

35. Kim, S.; Kim, Y. K-Scheduler: Dynamic intra-SM multitasking management with execution profiles on GPUs. Clust. Comput.
2022, 25, 597–617. [CrossRef]

36. Huang, H.; Chiu, H.C.; Shi, Q.; Yao, P.; Zhang, C. Balance seed scheduling via monte carlo planning. IEEE Trans. Dependable Secur.
Comput. 2023, 21, 1469–1483. [CrossRef]

37. Arcuri, A.; Briand, L. A hitchhiker’s guide to statistical tests for assessing randomized algorithms in software engineering. Softw.
Testing Verif. Reliab. 2014, 24, 219–250. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10586-021-03429-7
http://dx.doi.org/10.1109/TDSC.2023.3285293
http://dx.doi.org/10.1002/stvr.1486

	Introduction
	Background
	CGF
	SCGF
	Multi-Armed Bandit Model

	Related Work
	Protocol Fuzzing
	Seed Scheduling

	Methodology
	Overview
	Multi-Phase Seed Selection
	Seed Selection Model
	Exploration vs. Exploitation
	Phase Identification
	Seed Selection

	Power Allocation Based on State Weights
	Global Power Initialization
	State Evaluation
	Fine-Grained Power Allocation

	Evaluation
	Experimental Setup
	State Coverage (RQ1)
	Code Coverage (RQ2)
	Seed Selection Effectiveness (RQ3)
	Power Utilization Effectiveness (RQ4)

	Discussion
	Conclusions
	References

