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Abstract: In this paper, a novel multimodal large language model-based fault detection and diagnosis
framework that addresses the limitations of traditional fault detection and diagnosis approaches is
proposed. The proposed framework leverages the Generative Pre-trained Transformer-4-Preview
model to improve its scalability, generalizability, and efficiency in handling complex systems and
various fault scenarios. Moreover, synthetic datasets generated via large language models augment
the knowledge base and enhance the accuracy of fault detection and diagnosis of imbalanced scenarios.
In the framework, a hybrid architecture that integrates online and offline processing, combining real-
time data streams with fine-tuned large language models for dynamic, accurate, and context-aware
fault detection suited to industrial settings, particularly focusing on security concerns, is introduced.
This comprehensive approach aims to address traditional fault detection and diagnosis challenges
and advance the field toward more adaptive and efficient fault diagnosis systems. This paper presents
a detailed literature review, including a detailed taxonomy of fault detection and diagnosis methods
and their applications across various industrial domains. This study discusses case study results and
model comparisons, exploring the implications for future developments in industrial fault detection
and diagnosis systems within Industry 4.0 technologies.

Keywords: artificial intelligence; fault detection; fault diagnosis; generative Al hybrid systems;
Industry 4.0; large language models; machine learning; multimodal analysis; real-time systems

1. Introduction

In modern technology, developing specialized fault detection and diagnosis (FDD)
systems for industrial applications has emerged as a vital endeavor [1]. Manufacturing
processes and industrial operations have been revolutionized by the advent of Industry
4.0 (I4.0), characterized by the integration of advanced technologies, including artificial
intelligence (AlI), the Internet of Things (IoT), and big data analytics. Digital transforma-
tion establishes opportunities and challenges for maintenance. Additionally, it optimizes
complex industrial systems.

Large learning models (LLMs) represent a remarkable breakthrough in AI [2], trans-
forming organizational decision making, problem resolution strategies, and operational
efficiency. Trained on vast amounts of textual data, these models have exhibited noteworthy
capabilities in understanding context, generating human-like text and carrying out a wide
range of language-based tasks. Their impact extends to network systems, which address
challenges of complex configurations and heterogeneous infrastructure management [3].
Although LLMs have been successfully applied in various domains, their potential for
industrial FDD system:s is still largely unexplored.

Existing FDD approaches are mainly dependent on traditional machine learning (ML)
techniques [4], expert systems [5], or statistical methods [6]. The current methods often
face difficulties in handling the intricacy and various fault scenarios in modern industrial
systems. Additionally, they tend to concentrate on particular data types or predetermined
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fault patterns, which constrains their ability to adapt to new or unanticipated faults [7].
The crucial obstacles in FDD research are the incorporation of multimodal data and the
capability to analyze different data types.

In our proposed work, these gaps are addressed via a novel multimodal FDD frame-
work that uses LLMs, which offers several key contributions. First, an LLM-based FDD
method is proposed using GPT-4-Preview, which enhances the scalability, generalizability,
and efficiency of complex systems and various fault scenarios. Second, by generating
synthetic datasets using LLMs, we enrich the knowledge base and enhance the accuracy
of FDD in imbalanced scenarios. Third, the approach optimizes the diagnosis accuracy
and overall performance of the framework. Fourth, we introduce a hybrid architecture
that integrates online and offline processing, which combines real-time data streams with
fine-tuned LLMs for dynamic, accurate, and context-aware fault detection suitable to 14.0
environments. This comprehensive approach aims to overcome traditional FDD challenges
and advance the field toward more adaptive and efficient fault diagnosis systems. In
the following sections, a comprehensive literature review is presented, our methodology
and system design are detailed, the results of our case study and model comparisons are
discussed, and the implications of our findings for future developments in industrial FDD
systems and 4.0 technologies are explored.

2. Background, Taxonomy, and Related Research

In recent years, FDD has seen remarkable advancements, particularly with multi-
modal LLMs (MM-LLMs) emerging as cutting-edge technology. These advanced Al-based
systems were created to integrate and process various data types, including text, images,
audio, and video, which makes them more applicable across multiple industrial con-
texts. The rapid evolution of LLMs, exemplified by ChatGPT’s ability to handle diverse
tasks and its unprecedented adoption rate [8], further demonstrates their potential for
industrial applications.

Several studies have explored the use of LLMs and MMLLMs in FDD. For instance,
combining fuzzy logic with ChatGLM2-6B has potential in electrical equipment fault
diagnosis, enhancing the adaptability and accuracy of fault diagnosis mechanisms [9].
Likewise, integrating knowledge graphs with LLMs has been applied to compressor
fault diagnosis, which demonstrates significant improvements in fault detection accu-
racy [10]. Prompt engineering approaches have also been investigated for spacecraft
fault diagnosis, which highlights the potential of LLMs in managing complex multi-level
fault scenarios [11]. Moreover, the use of LLMs in aviation assembly and autonomous
driving in mines emphasizes the versatility and effectiveness of these models in diverse
industrial applications [12-14].

Figure 1 illustrates the architecture of MM-LLMs, which consists of four key com-
ponents: a modality encoder, which encodes inputs from various modalities to obtain
corresponding features; an input projector, which aligns these features with the text feature
space via methods such as linear projectors, a multilayer perceptron, and cross-attention
mechanisms; the LLM backbone, which processes the representations to perform semantic
understanding, reasoning, and decision making; and an output projector, which maps
signal token representations into features that are comprehensible to the modality generator,
which produces outputs in distinct modalities via latent diffusion models. Examples of
MM-LLMs include Flamingo, which integrates NFNetF6 and Chinchilla for visual and
textual processing; BLIP2, which combines CLIP and Flan-T5 for image-text tasks; and
LLaVA, which employs CLIP and Vicuna for visual question answering. The training
pipeline is divided into multimodal pre-training, which focuses on aligning modalities
using X-Text datasets, and multimodal instruction tuning, which fine-tunes pre-trained
MM-LLMs with instruction-formatted datasets to enhance their zero-shot performance and
generalization [15].
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This comprehensive architecture enables MM-LLMs to effectively integrate multi-
ple modalities, leveraging pre-trained models to optimize computational efficiency and
improve performance across various multimodal tasks.
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Figure 1. MM-LLM architecture demonstrating the integration of diverse data types for comprehen-
sive fault analysis.

Given the novelty and potential of MM-LLM-based FDD systems, a comprehensive
search was carried out using the Scopus database to acquire references for related studies.
To narrow down the search, the following query was employed, focusing on the terms
“fault diagnosis” and “fault diagnostics” within the title or abstract: TITLE-ABS-KEY (“fault
diagnosis” OR “fault diagnostics”) AND PUBYEAR > 2018 AND PUBYEAR < 2025 AND
(LIMIT-TO (SRCTYPE, “j”)) AND (LIMIT-TO (LANGUAGE, “English”)) AND ( LIMIT-TO
( SUBJAREA, “ENGI”) OR LIMIT-TO (SUBJAREA, “COMP”)). The search was further
refined to include publications from 2019 to 2024, ensuring the most recent and relevant
findings. To maintain a high standard of research, only journal articles (indicated by “j”)
were considered, and the language was restricted to English. Moreover, the subject areas
were limited to Engineering (“ENGI”) and Computer Science (“COMP”), aligning with the
theme of industrial fault diagnostic support systems. A total of 11,655 documents were
identified using this approach.

Subsequently, comprehensive and insightful taxonomies in FDD in terms of methods
and applications were utilized, as shown in Figures 2 and 3, respectively. The color coding
helps readers quickly distinguish between different methodological categories in fault
detection and diagnosis. In Figure 2, the purple lines represent quantitative methods
branches, red lines highlight data-driven approaches, and blue lines indicate qualitative
methods. In Figure 3, green lines highlights energy system applications, orange lines
show industrial equipment branches, yellow emphasizes Industry 4.0 applications, and
purple lines indicate power plant applications. With the use of BERTopic and GPT-4, this
comprehensive review was essential because of the limited number of articles that explicitly
address MM-LLM-based FDD, highlighting its status as an emerging technology and
emphasizing the need for further research in this promising area. The resulting taxonomies
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provide a structured and easily navigable overview of the diverse FDD methods and their
potential applications across various industrial sectors.
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Figure 2. Comprehensive taxonomy of fault detection and diagnosis methods encompassing qualita-
tive, model-based, signal processing, and data-driven approaches.
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Figure 3. Application domains of fault detection and diagnosis methods across industrial and
functional sectors [5,6].
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2.1. Industrial Equipment

In mechanical rotating machines, attention mechanisms and deep learning (DL) tech-
niques, including deep convolutional neural networks (DCNNSs) and transfer learning,
enhance bearing fault diagnosis [4,6,7]. The data-driven condition monitoring of industrial
equipment has been reviewed, with a focus on various ML models [16]. A Bayesian net-
work model was proposed for the IoT-based fault diagnosis of intelligent instruments [17].
Industrial equipment heavily depends on FDD methods, such as instrumentation [17], gas
analyzers, and oxygen monitoring [18]. Process control applications, including SCADA [19],
PLCs [20], and HMIs [21] integrate FDD algorithms with a hybrid customized chatbot HMI
using ChatGPT for swift equipment information retrieval [22]. In the realm of hydraulic
systems, a novel sensor fault estimation scheme for hydraulic servo actuators was proposed
by Djordjevic et al. [23] using sliding mode observers, and its effectiveness was shown
via simulations. This approach addresses the difficulties of nonlinear systems and uncer-
tainties in industrial hydraulic equipment. Tao et al. [24] introduced a semi-supervised
fault diagnosis method using a dynamic graph attention network with fuzzy K-nearest
neighbors (KNNs) for planetary gearboxes. This method effectively addresses the challenge
of limited labeled data in gearbox fault diagnosis, which achieves over 99% accuracy with
very few labeled samples and outperforms traditional classification networks.

Additionally, a new multi-source partial transfer network model addresses real-world
challenges in machinery fault diagnostics, including unknown label spaces and incomplete
fault-type coverage. In employing class-level weight mechanisms and particle swarm
optimization, the model combines shared feature extraction with domain-specific modules
for fault diagnosis and adaptation. It was verified across six datasets, and its effectiveness
in industrial equipment fault diagnosis was presented [25].

2.2. Industry 4.0

14.0 integrates Al, data mining, and IoT to revolutionize manufacturing. DL, par-
ticularly CNNs, has the potential for FDD in smart manufacturing [26]. Digital twin
collaboration aids in the auto-detection of erratic data at Energy 4.0 [27]. A novel ap-
proach that combines circular economy, data mining, and Al has been proposed for
FDD [28]. Transfer learning has emerged as a valuable technique for predictive main-
tenance [29]. Innovations have been developed in 3D printing fault diagnostics [30,31] and
optimized CNN approaches for industrial robotics [32]. Data security in industrial fault
diagnosis is addressed by blockchain-based decentralized, federated transfer learning [33].
Recent advancements in IoT-based fault diagnosis include an industrial IoT platform with
an EML for transformer monitoring [34], an IoT-based system using a one-dimensional
(1D) CNN for PV plant monitoring [35], and preprocessing techniques with DL models
for industrial IoT (IloT) devices [36]. These approaches have shown improved accuracy,
efficiency, and cybersecurity in fault diagnosis across various industrial applications.

In the context of fault estimation and fault-tolerant control, Wang et al. [37] proposed
a Q-learning-based approach using an iterative learning control framework. This method
addresses the obstacles posed by unknown faults that vary with both the time and trial
axes in repetitive tasks, exhibiting the effectiveness of adapting to changing faults and
maintaining control performance in MIMO systems.

In the era of big data and advanced networking, the diagnosis of fiber optic cable
faults in communication networks has become critical. A combined GAN-CNN approach
obtained 98.5% accuracy in addressing these faults [38]. DL enhances fault location and
network maintenance efficiency [39].

A Bayesian network-based mechanism ensures efficient real-time fault diagnosis in
communication systems [40]. For 14.0, a framework integrating LSTM, CNN, and GNN
effectively handled heterogeneous data for fault detection [41]. Advanced orchestration
techniques utilizing self-organizing maps and root cause analysis improve fault detection
in 5G infrastructure and beyond [42]. A deep neural network-based method accurately
diagnoses faults in millimeter-wave active phased arrays for 5G and 6G radios [43]. More-
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over, a new federated learning framework known as FedCAE was proposed for edge-cloud
collaboration in machine fault diagnosis. In this approach, the challenge of data islands
is addressed by allowing multiple data owners to contribute to model training without
sharing raw data, thereby exhibiting promising results in bearing fault diagnosis [44].
Furthermore, a comprehensive roadmap for performance-supervised plant-wide process
monitoring in Industry 4.0 has been developed. This roadmap highlights the need to
evaluate the impact of detected faults on plant-wide performance and proposes a technical
route embedded in the cyber-physical-social system framework, which addresses key
research questions and future directions in process monitoring [45].

2.3. Power Plants

FDD techniques are indispensable in thermal and nuclear power plants. Advance-
ments have focused on intelligent methods, which include model-based, data-driven, and
statistical approaches [46], which are applied to crucial equipment, including boilers, tur-
bines, and heat exchangers. A robust soft sensor for estimating heat exchanger fouling
in combustion thermal power plants was developed [47]. In nuclear power plants and
photovoltaic systems, ML-based fault diagnosis techniques, such as KNNs, support vector
machines (SVMs), bagged trees, and ensemble methods, detect faults in pressurized water
reactors [48].

2.4. Electronic Systems

Numerous advanced techniques have been developed for the fault diagnosis and
monitoring of electronic systems. SVMs have been applied for fault diagnosis in analog
circuits [49]. FRA-based parameter estimation has also been utilized to diagnose faults in
three-phase voltage-source inverters [50]. Recent advancements include the application of
transformer-based networks for consumer electronic sensor fault diagnosis in the Internet of
Everything era, addressing the challenges posed by environmental factors [51]. In microelec-
tronic manufacturing, a novel hierarchical tree-DCNN structure has been proposed to address
unbalanced data diagnosis in flexible integrated circuit substrates, improving the efficiency
and accuracy of traditional human visual interpretation methods [52]. Moreover, joint self-
attention mechanisms and residual networks have been used for the automated monitoring
of intelligent sensors in consumer electronics, showing the potential for enhanced fault
detection and classification in complex electronic systems [53].

2.5. Energy Sector

Recent advancements in energy sector fault diagnosis include enhanced methods for
lithium-ion batteries [54], low-voltage direct current networks [55], and transformers [56].
CNNs perform superior power grid fault diagnosis [57], whereas KG-CNN enhances
the motor fault diagnosis [58]. Photovoltaic systems benefit from infrared thermography
and ML [59]. Advanced models such as GPT-4 are being explored for building energy
management and fault diagnosis systems [60]. For integrated energy systems, a novel
multiscale spatial-temporal graph neural network was proposed to address compound
fault diagnosis with small sample sizes. This approach employs multiscale graph operators
and gated recurrent units to learn label-specific fault features, hence mitigating the challenge
of limited compound fault samples [61].

In high-voltage circuit breaker fault diagnosis, a new method combining variational
mode decomposition energy entropy and an SVM has been developed. This approach,
validated on a 35 kV SF6 circuit breaker, effectively identifies faults, including actuator
issues, buffer spring invalidity, and loose base screws [62].

2.6. Transportation

FDD systems are important for transportation, autonomous driving, aviation, rail-
ways, and ship engines. In autonomous driving, CNN-based information fusion aids in
sensor fault detection [63]. Aviation utilizes biomimetic pattern recognition [64] and deep
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neural networks [65] for fault diagnosis. Railways benefit from hybrid methods [66] and
RP-CNN [67] for track and wheel fault diagnosis. Digital twin-based methods [68] and
advanced fault feature extraction techniques [69] optimize condition monitoring and fault
diagnosis for ships.

2.7. Healthcare Systems

FDD systems have advanced in various applications. A hybrid HMM-SVM ap-
proach enables sensor fault diagnosis in IoT-based healthcare systems [70]. For med-
ical IoT devices, a lightweight autoencoder with KernelSHAP and an ANN classifies
anomalies [71]. Medical equipment failure prediction benefits from an optimized least
squares SVM algorithm, which demonstrates high accuracy for ECG equipment and in-
cubators [72]. The integration of LLMs has further enhanced healthcare FDD systems,
offering improved data management and diagnostic decision-making capabilities [73].
Recent advancements include the development of hierarchical health assessment models
for equipment with uncertain fault diagnosis results. Based on Bayesian networks, these
models can assess health states at different hierarchical levels by incorporating identified
and uncertain fault diagnosis results. This approach has been successfully employed in
complex safety-critical systems, including diesel engine combustion systems, showing
its potential for more comprehensive health monitoring and risk avoidance in medical
equipment [74].

2.8. Aerospace

Various innovative approaches have been developed for aerospace FDD applications.
A PWM harmonic current-based method detects inter-turn short-circuit faults in FTPMSM
drives [75]. For liquid rocket engines, fault diagnosis methods can be categorized as
signal processing, model-driven, and Al-based approaches [76]. The LSTM-GAN method
effectively detected faults in LOX/kerosene rocket engines [77]. A hybrid Al technique,
BGOA-EANNsS, is superior for aerospace health diagnosis [78]. The EMFFI approach,
which employs bispectrum technology, SURF, LDA, and random forest (RF), attains a high
accuracy in gearbox fault diagnosis for aerospace systems [79].

2.9. Software System Engineering

For software fault diagnosis, diverse ML, XAl, and data mining methods have been
developed. ChatGPT-based fault diagnosis using execution traces enhances the identifi-
cation of bug causes [80]. Data mining algorithms debug and compare software perfor-
mance metrics [81]. A combination of adaptive tracing, fault injection, and graph convo-
lutional networks demonstrates superior accuracy in fault diagnosis for various software
systems [82]. Among the ML models evaluated for software fault diagnosis, XGBR showed
the best performance in terms of accuracy and error metrics [83].

Tables 1 and 2 provide a comprehensive overview of related studies on FDD systems
using various models. It details the models employed, their application domains, and
sectors of implementation and evaluates them based on ML and DL paradigms. Moreover,
the table examines the relevance of 14.0 technologies and their real-time capabilities, gener-
ality, and support for multimodal data. The applications range from industrial equipment
and power plants to healthcare and aerospace, which reflects the diverse applicability of
these models. These studies highlight the diverse range of FDD methods and their broad
applicability in various industries. However, its challenges, including generalizability,
multimodality, applicability to 14.0, and real-time detection and diagnosis, require further
exploration. The novelty of the proposed work lies in addressing these gaps by developing
a robust multimodality FDD model that accounts for various types of data from different
device applications while utilizing the LLM capability.
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Table 1. Overview of related work (part 1).
Ref. Model Applications Sector ML DL 140 RT Gen. MM
Prop. FDD LLM Multi-applications All sectors v v v v v v
[6,50] ﬁearlng fault, voltage source Ind. equip., elec. sys. v v X v X X
KNN inverters
[48] Nuclear power plant Power plants v v X X X X
Rotating machine, motors, pumps, Ind . 1
[4,16,48,49,56,81] nuclear power plant, circuits, sns. Zg:;p v 1; g‘f/\g;reeec' v X x v X X
SVM transformer, software Y8 gy
[71] Healthcare monitoring Healthcare v X X X X X
Motors, pumps, PLC, .
[16,20,78] ANN tele-echography, satellite, aircraft Ind. equip., aerospace v v X v x X
[28] Bridge deck structures 14.0 v v v X X X
126,32,41] zgart factory, IoT robotics, network, 14.0 v v v » %
[63,67] CNN Autonomous driving, railway Transportation v v x v X X
[4,57] Rotating machinery, Power grid Ind. equip., energy v v X X X X
[38] Fiber optic cable 14.0 v v v X X X
[17] BN Smart instrument Ind. equip. v X v v X X
[40] Communication 14.0 v X v v X X
[27,36,41] Micro-electro-mechanical, IoT, IIoT, 14.0 v v v v « «
LsTM ~ 6G
[77] Liquid rocket engines Aerospace v v X X X X
Note: Ref. = references, ML = machine learning, DL = deep learning, 14.0 = Industry 4.0, RT = real time,
Gen. = generality, MM = multimodality, BN = Bayesian network, LLM = large language model , IoT = Internet of
Things, IIoT = industrial IoT, Ind. equip. = Industrial equipment, v' = Available, x = Not available.
Table 2. Overview of related work (part 2).
Ref. Model Applications Sector ML DL 140 RT Gen. MM
[36,39,43] DNN IIoT, network, 5G, 6G 14.0 v v v N X X
[59,65] Photovoltaic, aviation Energy, transport v v X X X X
[38,77] GAN Fiber optic, liquid rocket engines 14.0, aerospace v v v X X X
[34] EML Power transformer IoT 14.0 v X v v X X
[29] L PdM 14.0 v X v v X X
[32,33] IoT robotics, blockchain IoT 14.0 v X v X X X
[30] NN 3D printing 14.0 v v v v X X
[64] Aviation Transportation v v X X X X
[26,35] 1D-CNN Smart factory, bearing faults, power 140 v v v v y o
transformer IoT
[41] 6G 14.0 v v v v x X
GNN
[82] Tracing Software system v v X X X X
[60,80] Power building, execution traces Energy sector, software v v X X X x
LLM GPT system
[22] HMI Industrial equipment v v v X v X
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Table 2. Cont.
Ref. Model Applications Sector ML DL 140 RT Gen. MM
SCADA, HMI, power plant, railway, Industrial equipment,
[19,21,46,66,68] autonomous ships, ship shaft ower plants, X X X v X X
p P p p
systems, software systems transportation
[18,47,69] Other Models  pjssolved oxygen sensor, thermal Industrial equipment, % % % « 9 9
T power plants power plants
[81,83] Software defect identification Software system v X X X X x

e

TEXT

Note: DNN = deep neural network, GAN = generative adversarial network, EML = extreme machine learning,
TL = transfer learning, NN = neural network, 1D CNN = one-dimensional convolutional neural network,

GNN = graph neural network, LLM GPT =

PdM = predictive maintenance, IoT = Internet of Things, IloT

3. Methodology and Design

large language model generative pre-trained transformer,
= industrial IoT, v = Available, x = Not available.

In this section, the methodology and design of the proposed multimodal LLM-based
FDD system, which harnesses the power of multimodal architectures and LLMs, is dis-
cussed. The integration of these technologies aims to offer tailored and insightful diagnostic
support solutions in the context of the 14.0 transformation and diagnostics for industrial
systems. This section contains two main subsections: the design and dataset acquisition.

3.1. A Multimodality Framework and Architecture

Figure 4 presents the proposed MM LLM-based FDD architecture. This novel approach
integrates multimodal data sources and advanced ML techniques, mainly focusing on LLMs.
The MM-LLM-based FDD framework proposes stages that enable effective FDD in complex
systems, which is promising for revolutionizing the industrial domain.
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Figure 4. MM-LLM-based FDD system architecture showcasing data extraction, preprocessing, and

semantic search processes.

The initial stage involves data sourcing and the collection of diverse data types,
including images, audio, vibration signals, video, and text. These multimodal data were
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extracted via web scraping and application programming interfaces (APIs). LLMs can be
utilized for data collection and processing.

In the preprocessing stage, the extracted data undergo various transformations to
improve their quality and prepare them for further analysis. This includes drop duplication,
stop word elimination, deep column transformations, and the handling of missing values.
LLMs can be effectively utilized to enhance these tasks and improve the accuracy of
duplicate removal, context-aware stop word elimination, and the intelligent handling of
missing data.

The ingestion phase involves embedding techniques for converting text chunks into
numerical representations that capture semantic or similarity relationships. These embed-
dings facilitate the effective utilization of LLMs in subsequent FDD stages. The knowledge
base incorporates keywords, topics, embedding topics, and semantic or similarity search
capabilities. Leveraging LLMs such as Llama 2 [84], GPT [85], and Mistral [86], the frame-
work extracts relevant information from embedded text chunks, enabling the identification
of key insights and patterns for FDD.

The FDD component integrates state-of-the-art techniques such as LangChain [87]
or Llamindex [88], a framework for building applications with language models. These
techniques, which work in harmony with LLMs, can accurately detect and diagnose
faults within the system. The accuracy and relevance of FDD components were assessed.
Unsatisfactory results lead to iterative refinement, which loops back to the data-sourcing
step, whereas satisfactory results are saved for decision making and fault management.
This feedback mechanism guarantees the framework’s long-term efficacy and ongoing
improvement. The proposed framework offers generality, flexibility, and scalability to
various domains. Its integration of advanced preprocessing, a comprehensive knowledge
base, and multimodality LLM ensures adaptability to diverse fault scenarios. This design
significantly improves the accuracy and performance. With the LLM-based approach, a
substantial improvement can be obtained over traditional methods.

3.2. Dataset Acquisition for LLM-Based FDD System

Our multimodal FDD system utilizes a comprehensive data acquisition approach that
integrates diverse fault data, contextual information, and enriched technical knowledge.
The dataset includes raw fault data, operational parameters, environmental conditions,
maintenance records, and expert insights. Our data acquisition strategy encompasses two
main types of sources.

3.2.1. Siemens Industry Online Support Forum

This primary source provides rich discussions on various Siemens products [89],
including the SIMATIC S5/STEP 5, SIMATIC 505, and SINUMERIK CNC systems. We
extracted 240,000 rows across 22 columns from the SIMODRIVE converter system and
SIMATIC S7 series, significantly improving the knowledge base of the FDD system.

3.2.2. Diverse Industrial Equipment Manufacturers

To ensure comprehensive training data diversity, we collected fault codes, descriptions,
and corrective actions from multiple industrial control system manufacturers. As listed
in Table 3, the dataset comprises 1398 fault records gathered from major manufacturers,
including Allen Bradley Studio 5000 Logix Designer (420 records), ABB Symphony Control
(315 records), CLICK PLUS PLC (298 records), and Yokogawa Centum (365 records). These
records encompass a wide range of industrial control system faults, from basic controller
errors to complex system diagnostics. Each fault record contains detailed information,
including fault codes, diagnostic procedures, corrective actions, equipment model specifica-
tions, and required technical expertise levels. The data collection spans various fault types,
including controller faults, I/O faults, program faults, motion faults, CPU diagnostics,
communication errors, system faults, and analog input issues. Prior to integration, the data
underwent standardization preprocessing to ensure consistent terminology and format
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across different manufacturers. This comprehensive multi-vendor dataset strengthens our
LLM-based framework’s capability to handle diverse industrial environments and fault
scenarios effectively.

Table 3. Data preprocessing and diversity.

Sr. Device Data Acquisition Method  Size
1 Siemens online support forum Web scrubbing 19,335 Pg
2 Diverse industrial equipment manufacturers ~ Manuals, fault lists 1398 Faults

3.3. Data Preprocessing and Diversity

Data preprocessing involves multiple stages to ensure data quality and standard-
ization. The initial preprocessing focused on redundancy removal through automated
duplicate detection, eliminating repeated fault discussions, and similar troubleshooting
procedures across our dataset. We implemented fault code standardization to ensure con-
sistency across different data sources, which was particularly crucial for Siemens support
forum data, where multiple format variations existed for the same fault codes. This stan-
dardization process maintained the technical accuracy while creating a uniform format for
fault identification and classification.

The key information extraction phase concentrated on identifying critical troubleshoot-
ing steps, diagnostic procedures, and corrective actions. We implemented semantic parsing
to structure the information hierarchically based on fault severity, complexity, and resolution
requirements. The extracted data underwent validation against the original manufacturer
documentation to ensure the accuracy and completeness of the technical information.

To enhance data quality, we utilized LLMs for contextual data cleaning and semantic
categorization of fault descriptions. This process standardized technical terminology across
different manufacturers while maintaining manufacturer-specific diagnostic information.
The preprocessing ensured that each fault record, regardless of its source, contained a
unique fault identifier, comprehensive fault description with symptoms, required diagnostic
steps, and detailed corrective actions with verification procedures. This framework was
consistently applied across all manufacturer data, including Allen Bradley, ABB, CLICK,
and Yokogawa, preserving the technical integrity of manufacturer-specific characteristics
while ensuring format uniformity essential for effective industrial fault diagnosis.

3.4. Hybrid LLM-Based Architectures for Online and Offline FDD Systems

Figure 5 shows a hybrid LLM-based FDD architecture that optimizes FDD systems by
integrating online and offline models and improving diagnostic capabilities, data privacy,
and cybersecurity. The system processes unstructured data, generates embeddings, and
utilizes a custom GPT model for query handling. Semantic indexing facilitates efficient
knowledge retrieval. Offline LLMs, including Llama 2 and Mistral 7B, are fine-tuned with
synthetic data to improve performance and address security concerns. The integration layer
incorporates real-time data from various industrial sources, which enriches the diagnostic
process. The architecture manages IT and operational technology (OT) complexities and
ensures secure data flow through firewalls. This hybrid approach leverages real-time data
integration and offline LLM processing, advancing the FDD system’s capability to handle
real-time data and enhancing fault detection accuracy in I4.0 environments.
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Figure 5. Hybrid LLM-based FDD architecture featuring online and offline modules with OT-IT
integration and secure data flow.

3.5. Security Framework and Implementation

In the context of Industry 4.0 environments, security considerations for LLM-based
FDD systems are crucial due to the sensitive nature of industrial data. A comprehensive
security framework should address data protection through multiple layers. The first
layer should focus on API security, ensuring secure authentication and encryption for
interactions with models like GPT-4-Preview, alongside data preprocessing mechanisms
to anonymize sensitive information before transmission. This approach helps protect
proprietary industrial information while maintaining diagnostic accuracy.

Network security represents another critical aspect, particularly the segregation of
operational technology (OT) and information technology (IT) networks. This separation,
achieved through demilitarized zones (DMZ) and industrial firewalls, helps prevent unau-
thorized access while enabling secure data exchange for diagnostic purposes. Traffic
monitoring and anomaly detection systems can provide additional security layers without
impacting system performance.

Knowledge base protection forms the third crucial component, requiring the secure
storage of diagnostic information and comprehensive audit logging. The framework
should support encrypted storage and secure update mechanisms while ensuring system
accessibility for authorized users. This aspect is particularly important for maintaining the
integrity of fault diagnostic data while enabling efficient system operation.

4. Evaluation

In this section, a comprehensive approach for assessing the performance and effec-
tiveness of the proposed LLM-based FDD system is outlined. The metrics used for the
evaluation include inference relevance accuracy, response time, and a custom performance
score (PS) that combines accuracy and speed. This section describes our methodology
for categorizing diagnostic questions into simple, medium, and complex types, thereby
providing a nuanced understanding of a system’s capabilities across various fault scenarios.
Additionally, the comparative process analysis between different LLMs, including Chat-
GPT4, Mixtral 8x7B, Llama 2, and our proposed FDD GPT-4-Preview model, is explained.

Moreover, a comparative analysis of conventional FDD and LLM-based FDD was
applied. In this subsection, traditional FDD methods against the LLM-based approach are
evaluated using the same performance metrics. The comparative analysis helps emphasize
the advancements and potential improvements offered by integrating LLMs into FDD
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systems. By analyzing both approaches, we aimed to determine the specific benefits and
limitations of LLM-based systems over conventional methods.

Additionally, the effectiveness of handling hybrid architecture performance in real-
time and offline processing is evaluated. This includes assessing how well the system
manages the immediate fault diagnosis needs versus a more detailed, offline analysis.
In the section, the manner in which we assessed the system’s adaptability to different
industrial contexts and its potential impact on I4.0 implementations is also addressed. By
detailing these evaluation methods, we aimed to provide a clear and rigorous framework
for understanding the strengths and limitations of the proposed FDD system.

4.1. Comparative Analysis of Different Models

In this section, four LLMs are thoroughly examined, all of which were implemented
into the FDD system: ChatGPT4, Mixtral 8x7B, Llama 2, and our proposed model using
GPT-4-Preview. Our assessment considered various metrics, which include inference
relevance, response time, and PSs. Using these metrics, we systematically compared LLMs
via quantitative measurements and evaluated their strengths and weaknesses.

4.1.1. Assessment Metrics

This study selected performance evaluation indicators to comprehensively assess
LLM use in FDD systems. The proposed metrics included inference relevance categories,
response time measurements, and a composite PS, providing a balanced assessment of accu-
racy and efficiency. The inference relevance categories (irrelevant, generic, relevant, precise)
enable the detailed analysis of output quality, whereas the response time metrics address
the critical aspect of real-time performance. The PS formula, which combines response
quality and speed with adjustable weights for different response categories, allows for
flexible prioritization based on specific industrial requirements, demonstrating the adapt-
ability of our research to various contexts. We employed three key metrics to evaluate the
model performance.

Inference Relevance

There are four categories of relevance metrics in fault diagnosis systems: relevant,
irrelevant, generic, and precise. Relevant responses accurately address the specifics of
the fault query, effectively understand the fault context, and provide solutions from a
knowledge base. Irrelevant responses fail to address the fault, indicating the misinterpreta-
tion or retrieval of unrelated information. Precise responses deliver detailed and specific
solutions that directly address faults using the targeted information. Although correct,
generic responses lack the specificity of precise responses and offer broader and more
general information. Equations (1)-(4) are employed to calculate the average inference
relevance accuracy by summing the counts for each response type and dividing it by the
total number of responses.

m
i=1 Responsegenerici

IRgeneric = — m 1

m
i=1 Responseirrelevunti

IRirrelevant = m (2)
IR . 271:1 Responserelm}anti
relevant — m (3)
m R .
i—1 RESPONSCprecise;
IRprecise = : 4)

m
The average value for generic inference relevance, denoted as I Reeneric, 18 calculated us-

ing (1), summing all individual counts of generic responses, represented as
" Responsegeneric,i, where Responsegeneric,i refers to each generic response generated
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by the model and m is the total number of results in the dataset. The average value
for irrelevant inference relevance, denoted as IR;;y,000nt, Was calculated using (2), where

i1 Responseiypeepant i represents the summation of all individual irrelevant responses
from the model, and m is the total number of results in the dataset. Each Response;yyelepant,i
refers to an individual irrelevant response generated by the model. This calculation mea-
sures the tendency of the model to generate irrelevant responses across the dataset. The
average value for the relevant inference relevance, represented as IR,,op0,,t, Was determined
using (3), where }_/” | Response,,jopant ;i is the total sum of all relevant responses provided
by the model, and m is the total number of results in the dataset. Each Response,,jopant i
corresponds to the individual relevant response generated by the model. This formula
effectively quantifies the ability of a model to produce responses that accurately address
specific fault queries in a dataset. Equation (4) calculates the precise answer, in which

" Responserecise,i is the total sum of all precise responses provided by the model, and
m is the total number of results in the dataset. Each Response,ecis,i refers to the precise
response of the model.

Performance Score

We can establish a performance metric that considers response time and context
relevance to evaluate performance. One way to do this is by calculating a PS for each model
using (5):

1
RTuog

PS = X (Wipretevant X Irrelevant%-+

Wietevant X relevantfo + Weeperic X Generic%-+
Worecise X Precise%)  (5)

A higher PS indicates better performance, which reflects faster average response times
and higher relevance in the given context, with a focus on precise and relevant categories.
The models with higher PS values were both efficient and effective in their responses. They
are also relevant, which makes them ideal for real-time applications, where speed and
accuracy are crucial. Conversely, a lower PS value indicates poorer performance, which is
characterized by slower average response times and a less relevant context, as evidenced by
the higher percentages of irrelevant and generic categories. Such models are less efficient
and less relevant and, thus, more suitable for non-real-time applications.

Response Time Analysis

Our model performance evaluation analyzed the maximum and minimum response
times across all the models. These metrics provide insights into the extremes of response
latency, which helps us to understand the range of performance variability. To quantify
these measures, (6) and (7) were employed:

Maxgr = max(RT) (6)

Mingr = min(RT) (7)

Maxgr represents the maximum response time observed across all models, and Mingr
denotes the minimum response time. Function max(RT) returns the highest value in
response times, whereas min(RT) determines the lowest value. These equations allow us
to establish the upper and lower bounds of the response time performance, which is crucial
for the assessment of the efficiency and consistency of model responses.

4.1.2. Fault Categorization

We suggest organizing diagnostics to assess the troubleshooting requirements of dif-
ferent LLM industrial equipment models, incorporating both complexity levels and token
utilization patterns. The questions were divided into three levels based on their computational
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demands and token consumption: simple (512-650 tokens), medium (845-1100 tokens), and
complex (1280-2048 tokens). Simple diagnostic questions involve basic tests or common
issues that can be identified and resolved with minimal technical expertise, such as ad-
dressing fault code T18, typically requiring around 580 tokens for processing. Medium
diagnostic questions necessitate a more detailed examination, averaging 950 tokens, and
potentially involve several steps or specific system knowledge, as observed with fault code
T17, where specific runtime diagnostics must be conducted initially. Complex diagnostic
questions entail extensive troubleshooting, consuming up to 2048 tokens, requiring an
intricate understanding of the system’s inner workings and multiple diagnostic proce-
dures. For instance, diagnosing a CPU fault in a Siemens 57-1500 system, as detailed in
Table 4, involves comprehensive diagnostic procedures to isolate and resolve the issue,
which reflects the high level of complexity involved and demands maximum token allo-
cation. This categorization enables efficient resource allocation and queue prioritization
within API constraints while maintaining diagnostic accuracy across different complexity
levels.

Table 4. Fault types and complexities.

SN  Question Type

1. Fault code T17: runtime diagnostics to check first? Medium
2. T17:C34 fault: steps to resolve? Medium
3. T04:C24 fault: methods to identify correction? Medium
4. How to proceed with T18:C08 fault? Simple
5. Best way to overcome T04:C31 fault? Simple
6. Siemens S7-1500 CPU fault: diagnostic procedures? Complex
7. ABB 800XA: failed to activate and connect account dialog. Solution? Medium
8. Stardom task overlap error: causes and scheduling adjustments? Complex
9. Yokogawa I/O memory usage exceeding limits: optimization strategies? =~ Complex
10 Symphony configuration error: steps to verify and correct? Complex

SN = Serial Number. Questions are categorized as simple, medium, or complex based on the required knowledge
depth.

4.2. Comparative Analysis Between Conventional and LLM-Based FDD

In this subsection, the methodology for comparing a conventional FDD system based
on traditional ML algorithms with the proposed LLM-based FDD system is outlined. The
comparison is grounded in quantitative metrics, including accuracy, precision, recall, F1
score, and computational efficiency. To compare their effectiveness in classifying fault clus-
ters, we utilized three models, namely, logistic regression (LR), RF, and a neural network
(NN). The conventional ML-based FDD system was trained on Siemens PLC semantic
57 datasets with five fault categories (CPU/processor issues, power issues, input/output
issues, communication issues, and other issues). To measure accuracy, we assessed the
proportion of correct predictions made using the model out of the total number of predic-
tions, providing an overall perspective on its performance across all fault categories. It was
calculated using (8) in which TP = true positives, TN = true negatives, FP = false positives,
and FN = false negatives.

(TP+TN)

A =
UMY = (TP ¥ TN+ FP + FN)

(®)

To measure precision, we evaluated the accuracy of positive predictions by focusing
on the ratio of true positives to the total number of positive predictions, which include both
true and false positives. The precision was calculated using (9).

(TP)

Pi’ecision = m

©)

When evaluating the effectiveness of a model, recall (or sensitivity) measures its ability
to correctly determine all relevant instances of a fault. This metric captures the ratio of true
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positive predictions to the total number of actual positives, including both true and false
negatives. This was calculated using (10).

(TP)

Recall = ") __
cl = (TP Y EN)

(10)

The data and resource requirements for LLM-based and traditional FDD methods vary
significantly, as shown in Table 5. LLM-based approaches can leverage large volumes of
unstructured data from diverse sources, excelling at processing natural language. At the
same time, traditional methods are typically dependent on structured numerical data from
sensors and predefined fault codes. LLMs are pre-trained on vast general knowledge and
then fine-tuned for specific tasks, reducing domain-specific training data needs. By contrast,
traditional ML models necessitate extensive labeled training data for each fault type and
system. LLMs demand significant computational power, especially for training and real-
time inference, whereas conventional methods are generally less computationally intensive.
Nevertheless, LLMs offer greater adaptability to new fault types or systems through fine-
tuning or prompt engineering, whereas traditional models often require retraining from
scratch. LLMs provide natural language explanations, enhancing interpretability, and can
integrate information across modalities more seamlessly.

Table 5. Comparative analysis of key aspects in LLM-based and conventional FDD methods.

Aspect LLM-Based FDD Conventional FDD

Data tvpe Unstructured data (e.g., text, natural language, and Structured numerical data (e.g., sensor data and fault
yP diverse sources) codes)

Data processing Excels at natural language processing Focused on predefined fault codes

Training approach

Pre-trained on general knowledge, fine-tuned for specific

tasks

Requires extensive labeled data for each fault type

Computational power

High, especially for training and real-time inference Generally less computationally intensive

Highly adaptable through fine-tuning or prompt

Adaptability . . Often requires retraining from scratch for new faults
engineering
Interpretability Provides natural language explanations Typlcall}{ provides structured outputs with limited
explanation
Modalities Seamlessly inte grates.data across multiple modalities Primarily focused on specific, predefined data types
(e.g., text, audio, and images)
Scalability Highly scalable to new domains and fault types Less scalable requires significant effort for new domains

5. Results and Discussion

In this section, the findings from our comparative study of four LLMs, namely,
ChatGPT-4, Mixtral 8x7B, Llama 2, and our proposed FDD using the GPT-4-Preview
model, are presented and analyzed. We evaluated their performance in the context of
FDD applications, focusing on three key metrics: inference relevance, response time, and
overall PS. This section also assesses the effectiveness of our proposed hybrid architecture
in creating a dynamic and responsive FDD system in both online and offline systems. More-
over, we compared conventional FDD methods and our LLM-based approach in terms
of accuracy and response time, underscoring the advancements and potential benefits of
employing large language models for FDD.

5.1. Comparative Analysis of LLMs: Assessment Metrics and Practical Use Cases

We conducted a comparative analysis of various LLMs, which include ChatGPT
4, Mixtral 8x7B, Llama 2, and the proposed FDD GPT-4-Preview. The core objective
was to evaluate the efficacy of these models in generating contextual questions derived
from a specified knowledge base. Our methodology involved the systematic injection of
10 uniquely constructed questions into each LLM and the proposed models to assess their
ability to produce relevant, irrelevant, precise, and generic responses.
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5.1.1. A Comparison of Different LLMs

In the analysis of the comparative language models, as shown in Tables 6 and 7,
the GPT-4-Preview showed superior performance, which generates correct answers with
60% precision. This marks a significant improvement in the specificity of the responses
compared with other models, as exemplified in Table 8(a), where a precise response is
provided for fault code T04:C31. ChatGPT 4 balanced specific and vague responses at
40% each but lacked precision, as shown in Table 8(b), in which an irrelevant response is
given for the same fault code. Llama 2 and Mixtral 8x7B models demonstrated the quickest
response times but suffered in contextual relevance, with the highest rate of irrelevant
responses at 50%. Llama 2 had the highest generic response rate of 40%, which indicates a
more generalized understanding of prompts, as shown in Table 9(b). GPT-4-Preview had a
lower rate of irrelevant responses (20%), which suggests better contextual understanding.
Although Mixtral 8x7B provided the fastest response times, this speed may come at the cost
of contextual accuracy, although it still manages to provide relevant responses, as shown in
Table 9(a). Conversely, GPT-4-Preview offered more concise and accurate responses with
moderate delay times, which indicates precise comprehension of complex inputs.

Table 6. Comparative analysis of response time and inference relevance across different LLM models.

ChatGPT 4 Llama 2 Mixtral 8x7B FDD GPT-4-Preview
Question
RT (s) IR RT (s) IR RT (s) IR RT (s) IR

Q1 44.04 Irrelevant 10.79 Irrelevant 3.37 Irrelevant 12.7 Precise
Q2 23.58 Generic 12.04 Irrelevant 2.61 Irrelevant 15.29 Precise
Q3 26.75 Irrelevant 15.56 Irrelevant 5.65 Irrelevant 17.17 Precise
Q4 22.31 Irrelevant 17.66 Irrelevant 2.24 Irrelevant 21.27 Precise
Q5 34.66 Irrelevant 18.28 Irrelevant 2.58 Irrelevant 13.34 Precise
Q6 41.46 Relevant 2293 Relevant 3.81 Relevant 17.71 Relevant
Q7 22.38 Relevant 7.8 Generic 3.2 Relevant 14.68 Precise
Q8 42.18 Generic 10.10 Generic 5.56 Generic 19.88 Generic
Q9 30.04 Generic 12.95 Generic 5.96 Generic 21.33 Irrelevant
Q10 38.52 Generic 13.85 Generic 4.16 Relevant 17.64 Irrelevant

Table 7. Time response comparison of different LLM models.

Model IR;, cy; + IR, o'A) t IR‘S:)ZMC IR’:)ZC,SE MasxRT Ml;l RT
ChatGPT 4 40 40 20 0 44.04 22.31
Llama 2 50 10 40 0 15.56 7.8
Mixtral 8x7B 50 30 20 0 5.65 224
FDD GPT-4-Preview 20 10 10 60 21.33 12.7

Table 8. Comparison of LLM responses to fault code T04:C31 (part 1). (a) GPT-4-Preview response,
(b) ChatGPT 4 response.

(a)
Qb5: For fault code T04:C31, what is the best way to overcome it?

Response: The best way to overcome fault code T04:C31 is to ensure that the parameters of the JSR (Jump to
SubRoutine) instruction match those of the associated SBR (SubRoutine) or RET (Return from SubRoutine)
instruction. If you pass too many parameters, the extra ones are ignored without any error, but you should pass
the appropriate number of parameters to avoid the fault
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Table 8. Cont.

Response time: 13.34s  IR: Precise
(b)
Qb5: For fault code T04:C31, what is the best way to overcome it?

Response: To effectively address fault code T04:C31 in an ABB 800xA system, you should follow a structured
troubleshooting process. This process will help identify and resolve the issue associated with this specific fault
code. Here are the recommended steps: Consult the System Documentation: Begin by referring to the ABB 800xA
system’s documentation or fault code manual. This documentation often provides detailed information about
specific fault codes, including T04:C31, and may offer initial troubleshooting guidance or describe the typical
causes of the fault. [Continue. . .]

Response time: 34.66 s IR: Irrelevant

Table 9. Comparison of LLM responses for Symphony control system (part 2). (a) Mixtral 8x7B
response, (b) Llama 2 response.

(a)

Q10: Symphony control system reports a configuration error; what steps should be taken to verify and correct
the configuration settings?

Response: If a Symphony control system reports a configuration error, here are the steps to verify and correct
the configuration settings: Check the system status: Check the system status in the Symphony Plus operator

interface or in the engineering workstation. Look for any error messages or fault codes that may indicate the
cause of the configuration error. Check the configuration files [. .. Continue . . .]

Response time: 4.16 s IR: Relevant
(b)

Q10: Symphony control system reports a configuration error; what steps should be taken to verify and correct
the configuration settings?

Response: If a Symphony control system reports a configuration error, it is important to take steps to verify
and correct the configuration settings to ensure that the system is operating correctly and efficiently. Here are
some steps that can be taken: 1. Review system logs: Review the system logs to identify the source of the
configuration error. The logs can provide information about the specific configuration issue and the affected
components. [... Continue ...]

Response time: 13.85s  IR: Generic

The response time analysis revealed significant variations. ChatGPT 4 presented a
maximum response time (Maxgr) of 44.04 s and a minimum response time (Mingr) of
22.31 s, which suggests deeper analysis but slower processing. Llama 2 improved this,
with a (Maxgr) of 22.93 s and (Mingr) of 7.8 s, showing enhanced efficiency. Mixtral
8x7B was notably fast, with a (Maxgr) of only 5.96 s and (Mingr) of 2.24 s, showing
rapid response generation. GPT-4-Preview balanced comprehensiveness and speed with
a (Maxgr) of 21.33 s and (Mingr) of 12.7 s. Figure 6 illustrates response times, inference
relevance, and PSs across 10 questions (Q1-Q10) for various LLMs. ChatGPT 4 consistently
showed the highest response times, often exceeding 40 s, mainly for Q1, Q6, and Q8.
Mixtral 8x7B maintained the lowest response times, staying below 6 s. Llama 2 and GPT-4-
Preview exhibited moderate response times, with Llama 2 typically performing faster than
GPT-4-Preview.

Table 6 summarizes the comparative analysis based on inference relevance categories
and response time ranges. GPT-4-Preview showed higher precision in inference relevance,
whereas Mixtral 8x7B excelled in minimum response time. Nevertheless, Mixtral 8x7B’s
speed did not translate to inference relevance, as it shared the highest percentage of
irrelevant responses with Llama 2. This suggests that although Mixtral 8x7B and Llama
2 process queries rapidly, GPT-4-Preview provides more accurate responses at the cost of
slightly longer processing times. As a result of PS calculations for all models, ChatGPT
4(PS = 0.804) has the lowest PS, which indicates that it may be slower and less relevant
than the other LLMs. Llama 2 (PS = 0.935) performs better than ChatGPT 4 but is not the
best among the given models. Mixtral 8x7B (PS = 1.504) has a higher PS, which indicates
that it is more efficient and relevant in its responses than the other two models. GPT-4-
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Preview (PS = 3.255) demonstrated the highest PS, which signifies superior efficiency and
relevance in its responses. These results are summarized in Figure 6¢, which illustrates the
LLM PSs.

In terms of scalability, our analysis of token consumption across different query com-
plexities reveals that GPT-4-Preview maintains consistent performance despite the increased
load. Simple queries (512-650 tokens) process in 13.77 s; medium queries (845-1100 tokens),
in 17.38 s; and complex queries (12802048 tokens), in 21.33 s, showing a linear scaling
pattern with the token count. This predictable scaling enables effective resource planning
and queue management in industrial applications.

The feasibility of implementing the LLM-based FDD method in the industrial domain
is substantiated by the results, both from the implementation and computational perspec-
tives. Through existing APIs and open source frameworks, the integration of models such
as GPT-4-Preview, ChatGPT 4, Mixtral 8x7B, and Llama 2 is achievable. The observed
performance metrics, particularly the superior precision of GPT-4-Preview, indicate that
model customization via fine-tuning, enriching the knowledge base, or prompt engineering
is feasible and highly effective for FDD tasks. The range of response times (12.7-21.33 s)
showed a trade-off between accuracy and computational efficiency. The PS metric exempli-
fies this trade-off, in which GPT-4-Preview’s higher PS of 3.255 justifies a suitable mode
selection for critical industrial applications.

Time Response (Sec.)

5 ._‘—.,/.\ —A
o

Q1 Q2 Q3 Q4 Qs 06 Q7 o8 Q9 Q10
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Figure 6. (a) Time response comparison of different LLM models. (b) Inference relevance comparison
of LLM models. (c¢) Performance score comparison of LLM models.

5.1.2. A Comparative Review of Results: LLM Versus Conventional FDD

In our quantitative analysis, we evaluated the performance of conventional and LLM-
based FDD models across several key metrics. In Table 10, the three traditional ML models
(LR, RF, and NN) are compared with our proposed FDD GPT-4-Preview model. The results
reveal a notable trade-off between response time and accuracy.

Table 10. Model response times and accuracy comparisons.

Sr. Model Response Time (s) Accuracy (%)
1 GPT-4-Preview 9.3 96.3

2 RF 0.3445 90.36

3 LR 0.0526 86.43

4 NN 2.7168 86.07

RF = random forest, LR = logistic regression, NN = neural network.

Conventional models showed superior speed, with LR leading at 0.0526 s, RF at
0.3445 s, and NN at 2.7168 s. By contrast, our GPT-4-Preview model requires 9.3 s for
response. However, this increased processing time was offset by the model’s exceptional
accuracy of 96.3%, surpassing that of the next best performer, RF, by 5.94 percentage points.

Examining the confusion matrices provides further insight into the strengths and weak-
nesses of each model. As shown in Figure 7a, the NN model demonstrates strong performance
in identifying “Other Issues” (97.75% accuracy) and moderate success with “I/O issues”
(40% accuracy). However, it struggles with “Communication Issues” (27.27% accuracy) and
“Power Issues” (25% accuracy), which indicates potential areas for improvement.

Figure 7b illustrates the RF performance model, which shows improved results across
most categories compared to the NN. It excels in identifying “I/O issues”
(70% accuracy) and “Power Issues” (66.67% accuracy). The model maintained high accu-
racy for “Power Issues” (97.75%) while showing significant improvement in “CPU/Prc.
Issues” (72% accuracy).

The LR model, as shown in Figure 7c, exhibits mixed results. It performs exceptionally
well in identifying “Power Issues” (99.10% accuracy) but struggles with “Power Issues”
(16.67% accuracy) and “CPU/Prc. Issues” (48% accuracy). Its performance on “I/0O issues”
(40% accuracy) and “Communication Issues” (36.36% accuracy) is moderate.
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Figure 7. (a) NN confusion matrix. (b) RF confusion matrix. (c¢) LR confusion matrix.

Although these traditional models offer rapid response times, their variable perfor-
mance across different fault categories highlights the challenges in achieving consistent
accuracy across all fault types. Beyond this quantitative measure, the GPT-4-Preview
model, despite its longer processing times, offers superior overall accuracy and enhanced
explainability. Our adaptable LLM-based approach can address new fault types through
fine-tuning or knowledge-based utilization.

Traditional ML models (NN, RF, and LR) require rigorous training, testing, and val-
idation. LLM-based FDD demonstrates superior contextual understanding when com-
pared with conventional models. The combination of high accuracy, interpretability, and
adaptability makes the GPT-4-Preview model particularly valuable for complex industrial
diagnosis scenarios.

5.2. Use Case: Fine-Tuned LLM-Based Multistage FDD Process Workflow

Figure 8 shows the use case of the multistage process workflow to address user queries
regarding equipment faults that employ a custom GPT model and Llama 2 to enhance
diagnostic precision. In this workflow, a user initiates a query regarding a specific fault
code, which is processed by the custom GPT model accessing a vector index constructed
from a comprehensive document corpus of unstructured data, such as device manuals and
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fault records. The system’s question generator module formulates pertinent questions to
refine the context and extract detailed information from the knowledge base.

Ask me anything:

Send

If 1 got this fault code 17.31, how can | resolve it, and which equipment model is?

[

Vector Index

N
- \
Questions Generator |
\
"question": "What should be done when a fault code 17.31 occurs?",
"answer": "Upload and save the program before the controller is powered down, and contact
Rockwell Automation Technical Support with the fault type and fault code."
:‘ Fine-Tuning
"question": "Is fault code 17.31 considered a major or minor fault?",
"answer": "Fault code 17.31 is considered a Minor Diagnostic Fault."
L
{ o)
"question": "What type of fault does fault code 17.31 represent?", | _ LLAMA 2
"answer": "Fault code 17.31 represents an internal controller diagnostic failure and an =
incomplete runtime diagnostic."
b
{
"question": "Which equipment model does fault code 17.31 pertain to?",
"answer": "Fault code 17.31 pertains to the Allen Bradley Studio 5000 Logix Designer."
L
= (
-
1 "question": "Who should be contacted when fault code 17.31 is encountered?",
answer": "Rockwell Automation Technical Support should be contacted when fault code 17.31
Corpus /

Response:

If you receive fault code 17.31, it indicates a Minor Diagnostic Fault where an internal controller
diagnostic has failed, and the runtime diagnostic did not complete. To resolve this issue, you should
upload and save the program before the controller is powered down, and then contact Rockwell
Automation Technical Support with the fault type and fault code logged. The equipment model
associated with this fault code is the Allen Bradley Studio 5000 Logix Designer .

Figure 8. Fine-tuned LLM-based workflow for complex fault diagnosis queries.

Then, these refined data were fine-tuned using the Llama 2 model to ensure the
accuracy of FDD. The system subsequently generates a detailed response encompassing
diagnostic information, recommended resolution steps, and the associated equipment
model details. For instance, a query regarding fault code 17.31 for the Siemens STEP
device would result in a response that identifies the fault as a minor diagnostic fault,
provides steps to resolve the issue, and specifies the related equipment model. This use
case demonstrates the integration of advanced Al models into FDD systems, significantly
enhancing the accuracy and timeliness of fault diagnostics and recommendations, thereby
supporting robust industrial operations. The system generates answers using both the
base and fine-tuned models, highlighting the difference in accuracy between them. The
process begins when the user enters a query. Custom GPT processes the user’s query by
accessing the vector index and retrieving relevant information from the corpus, as shown
in Figure 8. As part of refining the response, the system includes a question generator
module that formulates relevant questions based on the initial user query, ensuring that
detailed and relevant information is gathered from the knowledge base. Figure 9 presents a
table of questions and answers that are likely utilized as training data for fine-tuning. The
system generates answers using both the base and fine-tuned models, emphasizing the
difference in accuracy between them. Figure 10 shows the base model answer, irrelevant to
the fine-tuned model’s response.
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hardware catalog to configure AS  The 'PCST_Vxx' profile must be enabled.

Figure 9. Sample questions and answers for fine-tuning the LLM model.

Fine Tune with Uploaded Data

Enter your question:

What is the procedure for interconnecting blocks in the CFC editor?

Get Answer

Generating answers...

Base Model Answer: To interconnect blocks in the CFC editor, follow these steps:

1. Select the blocks you want to connect by clicking and dragging your mouse over them.
2. Hold down the left mouse button and move the blocks to the desired location.

3. When the blocks are in the desired position, release the left mouse button. The blocks will snap

together, creating a connection between them.

4. If you want to create a more complex connection, you

Fine-Tuned Model Answer: To interconnect blocks in the CFC editor, click on the output of one block and
then on the input of another block where you want to establish the connection. The CFC editor

automatically creates a line indicating the interconnection.

Figure 10. Comparison of base model and fine-tuned model answers. The red rectangle highlights
the base model’s irrelevant response compared to the fine-tuned model.

Furthermore, the system allows users to upload a JSON data file to fine-tune the
model. The interface indicates the progress and completion of the fine-tuning process, as
shown in Figure 11a,b, giving the user complete control of the fine-tuning process. The
fine-tuned Llama 2 model then processes this refined data further, enhancing the diagnostic
accuracy and relevance of the system’s responses. With the integration of these components,
the workflow ensures that the FDD system can provide precise and contextually relevant
responses.
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Fine Tuning and Question
Answering Interface

Upload Data.JSON file for fine-tuning

Drag and drop file here

Browse files
data (4).json X
Fine tuning in progress...
(a)
Upload Data.JSON file for fine-tuning
Drag and drop file here )
& pi Browse files
data (4).json be

Fine Tune with Uploaded Data
Fine tuning in progress...

Fine tuning completed!

Enter your question:

Get Answer

(b)

Figure 11. (a) Fine-tuning dataset ingestion. (b) Fine-tuning process.

5.3. Parameter Tuning and PS Optimization

Optimizing the performance of the proposed method requires a systematic approach
to parameter tuning, focusing on maximizing the PS. Key strategies include reducing
the average response time (RTyvg) by selecting appropriate LLMs, employing effective
preprocessing techniques, using high-quality datasets for fine-tuning, and optimizing
vector database configurations. Fine-tuning is critical, as parameters such as the learning
rate, number of epochs, and batch size significantly affect model performance. Moreover,
the choice of embedding technique and its dimensionality can significantly influence
the quality of fault representation and retrieval efficiency from the vector database. The
indexing method and similarity search algorithms within the vector database must be
carefully considered to achieve an optimal balance between speed and accuracy.

5.4. Limitations and Challenges of LLM-Based FDD

Despite the GPT-4-Preview model achieving a 96.3% accuracy in fault diagnosis,
outperforming conventional models, several limitations were determined. A significant
challenge lies in the model’s lack of true understanding and commonsense reasoning. In
approximately 3.7% of cases, the model produced responses that were syntactically correct
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but contextually inaccurate. Moreover, instances of hallucination were observed, where the
model generated irrelevant or factually incorrect responses in approximately 10% of cases.

Our analysis revealed specific biases in the GPT-4-Preview model’s fault diagnosis
capabilities. When handling ambiguous cases, the model demonstrated a tendency to
attribute faults more frequently to CPU/processor issues rather than input/output issues,
indicating a systematic bias in fault classification. Bias manifestation occurs primarily
through hallucination in complex fault scenarios, over-attribution to common fault types,
and inconsistent response patterns in ambiguous cases. While our current implementa-
tion demonstrates high overall accuracy, addressing these biases is crucial for industrial
applications.

Future implementations should consider training data diversification with balanced
fault type representation, the implementation of post-generation validation, and prompt
engineering optimization for balanced fault attribution. These bias patterns indicate the
importance of human oversight in critical diagnostic decisions, particularly in cases where
the model shows uncertainty or inconsistent response patterns. The integration of human
expertise with Al capabilities remains essential for ensuring reliable fault diagnosis in
industrial settings.

Computationally, fine-tuning a GPT-4 model on a dataset comprising 52,464 words
(approximately 69,952 tokens), including fault data from diverse industrial equipment
manufacturers over 10 epochs, is computationally intensive. With an NVIDIA V100 GPU,
this operation is estimated to take around 3 h. Moreover, the fine-tuning process incurs
significant financial costs due to the resources required for computation and model opti-
mization. For resource-constrained environments, several optimization approaches could
be considered. The local preprocessing and caching of common fault patterns could reduce
dependency on external API calls. Token optimization strategies could allocate resources
based on fault complexity: simple (512-650 tokens), medium (845-1100 tokens), and com-
plex diagnoses (1280-2048 tokens). Such approaches would enable smaller enterprises to
balance diagnostic capability with resource constraints.

Context management emerged as a significant challenge, but we were able to overcome
it. We were initially limited by the model’s token window size of 8192 tokens. However, we
integrated tools, including LangChain and Llamalndex, which enable dynamic document
retrieval and sophisticated text-splitting and vector storage techniques.

Finally, reliability in real-time diagnosis is still a significant area for improvement.
The model exhibited inconsistent response times, with the most extended delay recorded
at 21.27 s for specific fault scenarios. Such variability, especially in real-time industrial
applications, can negatively impact reliability, which highlights the need to optimize both
model selection and response strategies to meet the strict timing demands of industrial
FDD systems.

While our framework demonstrates adaptability across multiple industrial systems,
its performance in novel environments requires further validation. Future work should
focus on expanding the training dataset diversity and implementing continuous learning
mechanisms to improve generalization to unseen fault scenarios.

6. Conclusions

In conclusion, in this research, a novel approach to FDD in industrial systems is
presented, leveraging LLMs and multimodal data analysis within Industry 4.0. Our pro-
posed multimodal framework, which incorporates diverse data sources, has significantly
advanced industrial diagnostics. Specifically, our FDD GPT-4-Preview model showed supe-
rior performance with 96.3% accuracy in fault diagnosis, surpassing traditional methods
such as RF (90.36%) and NN (86.07%).

The proposed FDD GPT-4-Preview model achieved a PS of 3.255, significantly out-
performing other models such as Mixtral 8x7B (1.504) and ChatGPT 4 (0.804). It also
demonstrated superior performance in relevant diagnostic information across various fault
scenarios, with 60% of the responses classified as precise compared to 0% for other models.
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This study significantly contributes to the application of Al techniques in industrial set-
tings. The proposed framework is a substantial step toward developing more sophisticated
diagnostic support tools, offering a 5.94-percentage-point improvement in accuracy over
the next best conventional model while providing enhanced explainability through natural
language responses.

By contrast, a hybrid architecture was proposed that combines real-time data streams
with fine-tuned LLMs to effectively create a dynamic and responsive FDD system. Our
fine-tuned model consistently outperformed the base model, which exhibits enhanced
accuracy and contextual understanding in fault diagnosis scenarios.

Although the results are promising, further research is necessary to fully realize the
potential of LLM-based FDD systems in various industrial contexts. To enhance data
security and confidentiality in industrial settings, future work should explore integrating
emerging technologies, including blockchain. The decentralization and immutability of
blockchain could provide a robust foundation for securing sensitive diagnostic data and
ensuring the integrity of FDD processes.

Moreover, fostering vital collaboration between humans and machines through human-
in-the-loop systems can further enhance the outcomes of LLM-based diagnostics. This
collaborative approach leverages human expertise to validate and refine Al-generated
insights, potentially leading to more accurate and contextually appropriate fault diagnosis.
Through combining advanced Al techniques with secure data management and human
oversight, more trustworthy and effective FDD systems that meet the complex demands of
Industry 4.0 environments can be created.
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