
Citation: Ahn, S.; Im, D.; You, D.;

Hong, Y. High-Performance Garbage

Collection Scheme with Low Data

Transfer Overhead for NoC-Based

SSDC. Electronics 2024, 13, 4838.

https://doi.org/10.3390/

electronics13234838

Academic Editor: Luis Gomes

Received: 11 October 2024

Revised: 4 December 2024

Accepted: 6 December 2024

Published: 7 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

High-Performance Garbage Collection Scheme with Low Data
Transfer Overhead for NoC-Based SSDC
Seyeon Ahn, Donghyuk Im, Donggon You and Youpyo Hong *

Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea;
2021111916@dgu.ac.kr (S.A.); 2020111875@dgu.ac.kr (D.I.); ehdrhs1013@dgu.edu (D.Y.)
* Correspondence: yhong@dgu.edu; Tel.: +82-2-2260-3818

Abstract: Solid-state drives (SSDs) have become the preferred storage solution for performance-
critical applications due to their high speed, durability, and energy efficiency. However, the inherent
characteristics of NAND flash memory, such as block-level erasure and data fragmentation, necessitate
frequent garbage collection (GC) operations to reclaim storage space. These operations, while
essential, introduce significant performance overhead, particularly in modern SSD controllers (SSDCs)
that utilize network-on-chip (NoC) architectures. In such architectures, GC requires substantial
data transfer over interconnects for error correction, leading to increased latency and reduced
throughput. This paper presents a novel GC scheme designed to minimize latency in NoC-based
SSDCs. Unlike conventional methods that unconditionally transfer data for error correction, the
proposed approach selectively determines the data transfer path based on the presence of errors. By
leveraging the low error probability of NAND flash memory, this scheme avoids unnecessary data
traversal across the interconnect, significantly reducing GC overhead. A hardware implementation
using task queues ensures efficient parallelism without disrupting other operations. The experimental
results demonstrate that the proposed scheme improves SSD performance across various real-world
workloads, achieving up to a 26.9% reduction in average latency and a 50.0% reduction in peak
latency compared to traditional GC methods. These findings highlight the potential of optimizing data
traversal paths in NoC architectures, providing a scalable solution for enhancing SSD performance
for diverse applications.

Keywords: solid-state drive; garbage collection

1. Introduction

Solid-state drives are increasingly favored for applications demanding rapid data
retrieval and processing, thanks to their low access times and energy efficiency compared to
traditional storage devices. In addition to offering faster performance, SSDs exhibit higher
reliability due to their resistance to physical damage and longer lifespan. These advantages
have driven the widespread adoption of SSDs across diverse domains, including cloud
computing, data centers, and consumer electronics [1–3].

However, the performance and reliability of SSDs are heavily influenced by how
efficiently they manage the storage medium, NAND flash memory. A major challenge
arises from the inherent characteristics of NAND flash memory, which requires data to be
erased in blocks before it can be rewritten. Over time, this leads to fragmentation, where
valid data are scattered across blocks, reducing the available storage space. To address
this issue, SSDs rely on a process called garbage collection, which consolidates valid data
and reclaims storage space by erasing blocks with obsolete data [4,5]. While GC improves
storage utilization, it comes at the cost of increased internal data transfer and latency,
significantly degrading SSD performance, especially under high workloads [6,7].

This trade-off between storage efficiency and performance is a critical bottleneck in
SSD design. Frequent GC operations not only consume significant bandwidth but also

Electronics 2024, 13, 4838. https://doi.org/10.3390/electronics13234838 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13234838
https://doi.org/10.3390/electronics13234838
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13234838
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13234838?type=check_update&version=1

Electronics 2024, 13, 4838 2 of 16

increase the wear on NAND flash memory, shortening its lifespan. Researchers have
explored strategies to optimize GC by reducing its frequency or minimizing the amount
of data transferred during the process. For example, prioritizing blocks with the highest
number of invalid pages or predicting the lifespan of data can reduce unnecessary GC
operations. However, these methods face challenges such as limited accuracy in data
lifespan prediction or inefficiencies in managing data transfer during GC [8–12].

A more recent trend in SSD architecture involves the adoption of network-on-chip in-
terconnects in SSD controllers. NoC-based architectures provide scalable, high-throughput
communication between SSD components, addressing the limitations of traditional bus
systems. However, the use of NoC interconnects introduces significant latency during GC
operations, as data often need to traverse multiple routing slices for error correction before
being written back to NAND flash memory. This delay is particularly pronounced when ap-
plying low-density parity-check (LDPC) error correction coding, which is computationally
intensive and typically performed on the host-side CPU [13–16]. Despite the growing use
of NoC-based SSDCs, previous research has largely overlooked how interconnect latency
impacts GC performance.

To address this gap, we propose a novel GC scheme designed specifically for NoC-
based SSDCs. Unlike conventional approaches that unconditionally transfer data from flash
memory to the CPU for error correction during GC and write the ECC-checked data back
to flash memory [17,18], our scheme selectively determines the data transfer path based on
the presence of errors. By leveraging the low error probability of NAND flash memory, the
proposed method minimizes unnecessary data traversal across the interconnect, reducing
latency and improving SSD performance. Our contributions are as follows:

1. We introduce a selective copy-back mechanism that prioritizes shorter data paths
when no errors are detected during GC, significantly reducing interconnect delays.

2. We present a hardware implementation using task queues to efficiently manage the
proposed selective data flow, enabling parallelism with minimal overhead.

3. We evaluate the proposed scheme under real-world workloads, demonstrating up
to a 26.9% improvement in average latency and a 50.0% reduction in peak latency
compared to conventional methods.

By tackling the latency challenges associated with NoC interconnects in SSD con-
trollers, our approach offers a scalable solution that enhances SSD performance while
maintaining storage efficiency. To the best of our knowledge, there is currently no academic
research that specifically addresses NoC-based SSD controllers.

The remainder of this paper is organized as follows: Section 2 provides background on
SSD architecture, GC mechanisms, and NoC-based SSDCs. Section 3 details our proposed
GC scheme and its hardware implementation. Section 4 presents the experimental setup
and results, and Section 5 concludes with a discussion of implications and future directions.

2. Background

To understand the motivation behind our proposed work, it is important to first
discuss the evolution of SSD architectures. Therefore, this section provides an overview
of conventional SSD architecture, the concepts of GC and ECC, and the introduction of
NoC-based SSD controllers.

2.1. Conventional SSD Organization

Traditional SSD architectures typically comprise a CPU, DRAM, and multiple NAND
flash memory units, referred to as channels. As shown in Figure 1, the CPU manages read
and write requests from the host and temporarily stores data in DRAM. Given that the read
and write speeds of NAND flash memory are significantly slower than those of the CPU
and DRAM, parallelism is employed through multiple NAND flash channels.

Electronics 2024, 13, 4838 3 of 16

Electronics 2024, 13, x FOR PEER REVIEW 3 of 18

that the read and write speeds of NAND flash memory are significantly slower than those
of the CPU and DRAM, parallelism is employed through multiple NAND flash channels.

Figure 1. Conventional SSD organization (FMC: flash memory controller).

Historically, these components have been interconnected using a system bus, which
serves as the communication highway. However, this bus-based approach comes with
several inherent limitations. Buses are constrained in terms of bandwidth, which can lead
to bottlenecks when multiple components attempt to communicate simultaneously. As the
number of NAND flash channels increases, the bus must handle more requests, which
exacerbates latency issues and limits scalability. This results in inefficient data transfer,
particularly during critical operations such as GC, where data must be moved frequently
and rapidly.

Additionally, the bus architecture creates contention among different components,
leading to delays that can severely impact overall SSD performance. The rigid addressing
and communication methods of bus systems hinder the flexibility required for modern
SSD workloads that demand high throughput and low latency. Thus, while conventional
bus-based SSD controllers were suitable for early SSD designs, they struggle to meet the
performance demands of contemporary applications.

In contrast, the adoption of interconnect-based architectures, such as network-on-
chip, offers significant advantages in handling the increasing complexity and performance
requirements of SSDs. NoC systems facilitate better parallelism and scalability, allowing
for non-blocking communication among components, which mitigates the limitations as-
sociated with traditional bus systems.

2.2. Garbage Collection in SSDs
The erase operation in flash memory differs significantly from that in other data stor-

age types, such as hard disks. In flash memory, each memory cell must be initialized be-
fore future writes can occur, and erasure must be performed at the block level due to the
physical structure of the memory. A key aspect of the erase operation is that it is executed
in units of blocks; if a page within a block is marked for erasure, it is considered invalid
until the entire block has been erased. Furthermore, overwriting data in flash memory
requires a preceding erase operation because of the device’s physical characteristics.
When a page in a block needs to be updated, the existing page is invalidated, and the new
data are written to another valid page. This operational mechanism implies that SSDs can
contain many blocks with numerous invalid pages, leading to significant storage ineffi-
ciencies. To reclaim this storage space, blocks with a high number of invalid pages un-
dergo a process known as GC. During this process, valid data from the target block is
copied to another block—a procedure referred to as “copy-back”—after which the entire
original block is erased.

Figure 2 illustrates a snapshot of SSD where GC is in progress. Block1 in channel0 is
full of invalid pages except one valid page which is page1. This means a significant waste
of storage, and it is desirable to initialize block1 after moving page1 in another place such
as page1 in channel1 as indicated by the red arrow. This process is called copy-back. Once

Figure 1. Conventional SSD organization (FMC: flash memory controller).

Historically, these components have been interconnected using a system bus, which
serves as the communication highway. However, this bus-based approach comes with
several inherent limitations. Buses are constrained in terms of bandwidth, which can lead
to bottlenecks when multiple components attempt to communicate simultaneously. As
the number of NAND flash channels increases, the bus must handle more requests, which
exacerbates latency issues and limits scalability. This results in inefficient data transfer,
particularly during critical operations such as GC, where data must be moved frequently
and rapidly.

Additionally, the bus architecture creates contention among different components,
leading to delays that can severely impact overall SSD performance. The rigid addressing
and communication methods of bus systems hinder the flexibility required for modern
SSD workloads that demand high throughput and low latency. Thus, while conventional
bus-based SSD controllers were suitable for early SSD designs, they struggle to meet the
performance demands of contemporary applications.

In contrast, the adoption of interconnect-based architectures, such as network-on-
chip, offers significant advantages in handling the increasing complexity and performance
requirements of SSDs. NoC systems facilitate better parallelism and scalability, allowing
for non-blocking communication among components, which mitigates the limitations
associated with traditional bus systems.

2.2. Garbage Collection in SSDs

The erase operation in flash memory differs significantly from that in other data
storage types, such as hard disks. In flash memory, each memory cell must be initialized
before future writes can occur, and erasure must be performed at the block level due to the
physical structure of the memory. A key aspect of the erase operation is that it is executed in
units of blocks; if a page within a block is marked for erasure, it is considered invalid until
the entire block has been erased. Furthermore, overwriting data in flash memory requires a
preceding erase operation because of the device’s physical characteristics. When a page in
a block needs to be updated, the existing page is invalidated, and the new data are written
to another valid page. This operational mechanism implies that SSDs can contain many
blocks with numerous invalid pages, leading to significant storage inefficiencies. To reclaim
this storage space, blocks with a high number of invalid pages undergo a process known
as GC. During this process, valid data from the target block is copied to another block—a
procedure referred to as “copy-back”—after which the entire original block is erased.

Figure 2 illustrates a snapshot of SSD where GC is in progress. Block1 in channel0 is
full of invalid pages except one valid page which is page1. This means a significant waste
of storage, and it is desirable to initialize block1 after moving page1 in another place such as
page1 in channel1 as indicated by the red arrow. This process is called copy-back. Once the
copy-back operations are complete for the GC target block, an erase operation is applied to
block1 in channel0 to reclaim the storage.

Electronics 2024, 13, 4838 4 of 16

Electronics 2024, 13, x FOR PEER REVIEW 4 of 18

the copy-back operations are complete for the GC target block, an erase operation is ap-
plied to block1 in channel0 to reclaim the storage.

Figure 2. Illustration of garbage collection in SSD.

While the GC increases the available storage space, it does so at the cost of SSD exe-
cution time. That is, frequent copy-back operations lead to a significant increase in the
write and read operations to the flash memory requested by the host. Also, the frequent
GC leads to a reduction in the device’s overall lifespan because NAND flash memory cells
have a relatively short lifetime compared to other types of storage.

2.3. NoC-Based SSD Controller
As SSD capacities and performance demands continue to grow, traditional bus-based

SSD architectures face scalability and bandwidth limitations. To address these challenges,
modern SSD controllers increasingly adopt NoC architectures. NoC-based SSDCs consist
of a CPU core, SRAM, DRAM, and multiple NAND flash memories connected by an in-
terconnect as shown in Figure 3. This interconnect functions as a communication back-
bone within the chip, providing scalability and enabling parallelism across multiple
NAND flash memory channels.

The NoC interconnect is composed of routing slices, each of which serves as a buffer
with routing capabilities. Data communication occurs as packets traverse these slices, and
the total latency depends on the number of slices along the path. For GC operations, this
means valid data from a NAND flash block must travel through multiple slices to reach
the host-side CPU, where error correction is performed. Once processed, the data are
routed back through the interconnect to its destination NAND flash memory. This round-
trip significantly increases latency due to the cumulative delays introduced by slice tra-
versal.

Figure 2. Illustration of garbage collection in SSD.

While the GC increases the available storage space, it does so at the cost of SSD
execution time. That is, frequent copy-back operations lead to a significant increase in the
write and read operations to the flash memory requested by the host. Also, the frequent
GC leads to a reduction in the device’s overall lifespan because NAND flash memory cells
have a relatively short lifetime compared to other types of storage.

2.3. NoC-Based SSD Controller

As SSD capacities and performance demands continue to grow, traditional bus-based
SSD architectures face scalability and bandwidth limitations. To address these challenges,
modern SSD controllers increasingly adopt NoC architectures. NoC-based SSDCs consist
of a CPU core, SRAM, DRAM, and multiple NAND flash memories connected by an inter-
connect as shown in Figure 3. This interconnect functions as a communication backbone
within the chip, providing scalability and enabling parallelism across multiple NAND flash
memory channels.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 18

Figure 3. NoC-style SSD controller architecture.

3. Proposed Garbage Collection Scheme
As highlighted in the previous section, the evolution of SSD controllers has signifi-

cantly influenced performance, particularly through the adoption of interconnect-based
architectures. While these architectures provide advantages such as higher throughput
and improved timing closure, they also introduce significant latency challenges during
GC operations. This section outlines the core concepts behind our proposed GC scheme,
which is specifically designed to mitigate interconnect-induced latency.

3.1. Adaptive Data Path Selection for Garbage Collection Efficiency
In NoC-based SSD controllers, the GC process involves several key steps:

1. Target Block/Page Identification: Blocks with a high number of invalid pages are se-
lected for GC. Valid pages from these blocks are identified and copied to a temporary
buffer in the flash memory controller (FMC).

2. Error Correction: Valid data in the FMC buffer are routed via the NoC interconnect
to the CPU for error correction using the low-density parity-check algorithm.

3. Data Write-Back: Once corrected, the data are written to an empty page in the target
NAND flash block.
This process incurs significant latency due to two main factors:

• Round-Trip Traversal: Each copy-back operation involves two interconnect travers-
als—one to the CPU for error correction and another to return the data to the target
NAND flash memory.

• Slice-Based Delays: Data packets pass through multiple interconnect slices, with each
slice adding latency based on the interconnect size and the number of active channels.
Existing GC optimization methods primarily focus on reducing GC frequency or pri-

oritizing blocks with higher invalid page counts. While beneficial in some scenarios, these
approaches fail to address the core issue of interconnect latency during GC operations.
Similarly, techniques that pre-empt GC during high-priority host requests overlook inef-
ficiencies in the data transfer process, leaving potential performance gains untapped.

The proposed GC scheme effectively addresses these limitations by selectively opti-
mizing the data flow paths based on real-time error detection, as illustrated in Figure 4.
When no errors are present, the CPU is bypassed, allowing data to flow directly from the
FMC buffer to the NAND flash memory, thus significantly reducing traversal time. The
process is outlined as follows:

Figure 3. NoC-style SSD controller architecture.

Electronics 2024, 13, 4838 5 of 16

The NoC interconnect is composed of routing slices, each of which serves as a buffer
with routing capabilities. Data communication occurs as packets traverse these slices, and
the total latency depends on the number of slices along the path. For GC operations, this
means valid data from a NAND flash block must travel through multiple slices to reach the
host-side CPU, where error correction is performed. Once processed, the data are routed
back through the interconnect to its destination NAND flash memory. This round-trip
significantly increases latency due to the cumulative delays introduced by slice traversal.

3. Proposed Garbage Collection Scheme

As highlighted in the previous section, the evolution of SSD controllers has signifi-
cantly influenced performance, particularly through the adoption of interconnect-based
architectures. While these architectures provide advantages such as higher throughput
and improved timing closure, they also introduce significant latency challenges during GC
operations. This section outlines the core concepts behind our proposed GC scheme, which
is specifically designed to mitigate interconnect-induced latency.

3.1. Adaptive Data Path Selection for Garbage Collection Efficiency

In NoC-based SSD controllers, the GC process involves several key steps:

1. Target Block/Page Identification: Blocks with a high number of invalid pages are
selected for GC. Valid pages from these blocks are identified and copied to a temporary
buffer in the flash memory controller (FMC).

2. Error Correction: Valid data in the FMC buffer are routed via the NoC interconnect to
the CPU for error correction using the low-density parity-check algorithm.

3. Data Write-Back: Once corrected, the data are written to an empty page in the target
NAND flash block.

This process incurs significant latency due to two main factors:

• Round-Trip Traversal: Each copy-back operation involves two interconnect traversals—
one to the CPU for error correction and another to return the data to the target NAND
flash memory.

• Slice-Based Delays: Data packets pass through multiple interconnect slices, with each
slice adding latency based on the interconnect size and the number of active channels.

Existing GC optimization methods primarily focus on reducing GC frequency or
prioritizing blocks with higher invalid page counts. While beneficial in some scenarios,
these approaches fail to address the core issue of interconnect latency during GC opera-
tions. Similarly, techniques that pre-empt GC during high-priority host requests overlook
inefficiencies in the data transfer process, leaving potential performance gains untapped.

The proposed GC scheme effectively addresses these limitations by selectively opti-
mizing the data flow paths based on real-time error detection, as illustrated in Figure 4.
When no errors are present, the CPU is bypassed, allowing data to flow directly from the
FMC buffer to the NAND flash memory, thus significantly reducing traversal time. The
process is outlined as follows:

1. Copy-Back Operation: During the copy-back process, valid pages from the GC target
block are temporarily stored in the FMC buffer, as presented in Figure 4a.

2. Error Analysis: Data packets are routed to the CPU via the NoC for error analysis by
the ECC unit, as presented in Figure 4a:

• No Errors Detected: If no errors are found, the data stored in the FMC buffer
are routed directly back to an available location in the NAND flash memory, as
shown in Figure 4b.

• Errors Detected: If errors are detected, the ECC unit within the CPU performs
the necessary corrections, after which the corrected data are routed back to the
NAND flash memory, as shown in Figure 4c.

Electronics 2024, 13, 4838 6 of 16

Electronics 2024, 13, x FOR PEER REVIEW 6 of 18

1. Copy-Back Operation: During the copy-back process, valid pages from the GC target
block are temporarily stored in the FMC buffer, as presented in Figure 4a.

2. Error Analysis: Data packets are routed to the CPU via the NoC for error analysis by
the ECC unit, as presented in Figure 4a:
• No Errors Detected: If no errors are found, the data stored in the FMC buffer are

routed directly back to an available location in the NAND flash memory, as
shown in Figure 4b.

• Errors Detected: If errors are detected, the ECC unit within the CPU performs
the necessary corrections, after which the corrected data are routed back to the
NAND flash memory, as shown in Figure 4c.

Flash

FMC

Flash

FMC

Flash

FMC

Flash

FMC

Flash

FMC

Flash

FMC

Flash

FMC

SRAM

DRAM

CPU

SLICE

Flash

FMC

SLICESLICESLICESLICE

SLICESLICESLICESLICE

SLICESLICESLICE

Yes

No
> 99%

< 1%

Error in GCtarget?

ECC

Flash

FMC

Flash

FMC

Flash

FMC

Flash

FMC

Flash

FMC

Flash

FMC

Flash

FMC

SRAM

DRAM

CPU

SLICE

Flash

FMC

SLICESLICESLICESLICE

SLICESLICESLICESLICE

SLICESLICESLICE
GCtarget

ECC

Flash

FMC

Flash

FMC

Flash

FMC

Flash

FMC

Flash

FMC

Flash

FMC

Flash

FMC

SRAM

DRAM

SLICE

Flash

FMC

SLICESLICESLICESLICE

SLICESLICESLICESLICE

SLICESLICESLICE

GC corrected

targetGC

CPU

ECC

targetGC

(a)

(b)

(c)
target

Figure 4. Copy-back data path selection by the proposed GC scheme.

By eliminating unnecessary round-trip traversal for error-free data, this approach
significantly reduces latency while maintaining data reliability. Hardware-implemented
task queues manage the selective path optimization seamlessly.

This method leverages the typically low error rates of NAND flash memory, making
full round-trip traversal for LDPC correction unnecessary in most cases. By dynamically
analyzing error conditions during the copy-back operation, the scheme minimizes tra-
versal length without compromising data integrity.

Key innovations include the following:
1. Selective Data Path Optimization: A dynamic mechanism determines the shortest

path for copy-back operations. Error-free data bypasses the CPU and is directly writ-
ten back to NAND flash memory, reducing interconnect latency by roughly half.

2. Error-Adaptive Control: For data with errors, full round-trip traversal ensures com-
patibility with standard LDPC correction processes, preserving reliability.

Figure 4. Copy-back data path selection by the proposed GC scheme.

By eliminating unnecessary round-trip traversal for error-free data, this approach
significantly reduces latency while maintaining data reliability. Hardware-implemented
task queues manage the selective path optimization seamlessly.

This method leverages the typically low error rates of NAND flash memory, making
full round-trip traversal for LDPC correction unnecessary in most cases. By dynamically
analyzing error conditions during the copy-back operation, the scheme minimizes traversal
length without compromising data integrity.

Key innovations include the following:

1. Selective Data Path Optimization: A dynamic mechanism determines the shortest
path for copy-back operations. Error-free data bypasses the CPU and is directly
written back to NAND flash memory, reducing interconnect latency by roughly half.

2. Error-Adaptive Control: For data with errors, full round-trip traversal ensures com-
patibility with standard LDPC correction processes, preserving reliability.

Unlike conventional GC schemes that require unconditional data transfers to the
CPU for error correction, this method adapts data flow based on error conditions. By
aligning with the parallelism inherent in NoC architectures, the proposed scheme reduces
interconnect delays and enhances overall SSD performance.

The originality of this approach lies in addressing interconnect latency by exploiting
low error probabilities, a factor often overlooked in previous research. The result is a
scalable solution that mitigates latency challenges in NoC-based SSD controllers while
ensuring data reliability and efficient storage management.

3.2. Efficient Data Handling Through Task Queue Architecture

The proposed GC scheme intelligently governs the flow of data to be copied back,
requiring a precise hardware mechanism for its implementation. A defining characteristic

Electronics 2024, 13, 4838 7 of 16

of multi-channel SSDs is their capacity to perform multiple tasks simultaneously—such
as processing host-oriented read and write requests while executing GC tasks—thereby
maximizing overall SSD throughput. In prior work, we introduced an efficient method for
managing multiple tasks in bus-based SSD controllers using a task queue [10].

To effectively support parallelism in NoC-based SSD controllers, each flash memory
channel is paired with a dedicated task queue that organizes all requests for that channel,
as illustrated in Figure 5. Each channel is associated with four distinct task queues: read
requests from the host (Rhost), read requests for GC (Rgc), write requests from the host
(Whost), and write requests for GC (Wgc). Tasks in these queues are processed sequentially
by dedicated hardware that operates independently for each channel.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 18

Figure 5. Configuration of dual task queue.

4. Evaluation
4.1. Experimental Setup

We first extracted trace files from an SSD for various workloads using tools such as
ftrace [19], blktrace, and blkparse [20]. Next, we modeled an eight-channel SSD system in
C and measured its performance across these workloads.

For trace extraction, we used a 1 TB Samsung T5 Portable SSD, running on a host
system with an Intel® Core™ i7-9700K CPU and 32 GB of RAM. The operating system was
Red Hat Enterprise Linux Workstation release 7.9, with Linux kernel version 3.10.0-
1160.59.1.el7.x86_64. Table 1 summarizes the key features of our SSD model configuration,
which are adapted from previous studies on GC [4,21–24].

Table 1. Parameters of SSD configuration.

Features Value
Number of Channels 8
Planes per Channel 4

Blocks per Plane 512
Pages per Block 64
Page Size (KB) 4

Table 2 summarizes the delay parameters for one page read or write with the SRAM,
the flash memory, and the interconnect used in our SSD model. For SRAM, we extracted
delay information from single-port 16-bit SRAM from a Xilinx Spartan-7 FPGA (model
xc7s100fgga676-1), manufactured by AMD, located in Santa Clara, California, USA, using
Xilinx Vivado 2021.2. The delay information of NAND flash memory is from Micron
MT29F4G08ABADAH4 NAND flash model [25].

Figure 5. Configuration of dual task queue.

The criteria for enqueueing tasks in the Wgc (write requests for GC) queue are de-
termined by the analysis results from the ECC unit. If the ECC unit detects errors in
the page data, the corrected data will be stored in an empty page of flash memory, and
the corresponding request will be added to the Wgc queue. Conversely, if the ECC unit
confirms that the page data are error-free, the data temporarily held in the FMC buffer will
be written back to an available page in the flash memory, and no new task will be enqueued
in the Wgc queue.

Key innovations include the following:

1. Efficient Task Queue Integration: The approach integrates with task queue architec-
tures in NoC-based SSD controllers, enabling smooth implementation alongside host
read and write operations.

2. Integration with ECC Analysis: The task queue enqueues GC write requests (Wgc)
only if errors are detected and corrected. Otherwise, error-free data from the FMC
buffer are directly written back without generating additional Wgc tasks.

4. Evaluation
4.1. Experimental Setup

We first extracted trace files from an SSD for various workloads using tools such as
ftrace [19], blktrace, and blkparse [20]. Next, we modeled an eight-channel SSD system in
C and measured its performance across these workloads.

Electronics 2024, 13, 4838 8 of 16

For trace extraction, we used a 1 TB Samsung T5 Portable SSD, running on a host
system with an Intel® Core™ i7-9700K CPU and 32 GB of RAM. The operating system
was Red Hat Enterprise Linux Workstation release 7.9, with Linux kernel version 3.10.0-
1160.59.1.el7.x86_64. Table 1 summarizes the key features of our SSD model configuration,
which are adapted from previous studies on GC [4,21–24].

Table 1. Parameters of SSD configuration.

Features Value

Number of Channels 8
Planes per Channel 4

Blocks per Plane 512
Pages per Block 64
Page Size (KB) 4

Table 2 summarizes the delay parameters for one page read or write with the SRAM,
the flash memory, and the interconnect used in our SSD model. For SRAM, we extracted
delay information from single-port 16-bit SRAM from a Xilinx Spartan-7 FPGA (model
xc7s100fgga676-1), manufactured by AMD, located in Santa Clara, California, USA, using
Xilinx Vivado 2021.2. The delay information of NAND flash memory is from Micron
MT29F4G08ABADAH4 NAND flash model [25].

Table 2. Delay of SSD components for one page read or write.

Delay Value

SRAM read (µs) 12
SRAM write (µs) 12
NAND read (µs) 25
NAND write (µs) 200
NAND erase (µs) 700
Interconnect (µs) 714

In order to identify a realistic interconnect delay, we designed a 16 × 8 interconnect
using Verilog HDL for the eight-channel SSD and measured the timing from the synthesis
results. Each task queue for a channel requires an interconnect port, similar to the DMA
controllers for NAND flash memories and DRAMs, which is why we chose an interconnect
dimension of 16 × 8. We synthesized the Verilog HDL targeting the Xilinx Spartan-7 FPGA
from which we extracted SRAM delay parameters. According to the synthesis report, the
critical path delay between two neighboring slices is 87 ns.

To calculate the total interconnect delay for transmitting one page between the host
and NAND flash memory, we use the following formula:

1 page interconnect delay =

(
215

4
+ 13.5 − 1

)
× 87 ns, (1)

Here, (215/4) represents the number of movements required to transmit one page.
Since a page is 4 KByte and 1 byte equals 8 bits, a single page contains 215 bits. By dividing
one page by the data transmission unit of 4 bits, we obtain the number of movements
required to transmit one page. Additionally, 13.5 is the average number of slices a data
transmission unit passes through, calculated by considering all possible cases. The reason
for subtracting one at the end is that the actual number of movements is one less than the
number of slices. Therefore, the total delay for transmitting one page across the interconnect
is 8204.5 × 87 ns, which equals approximately 714 µs.

As stated before, the bit error rate of MLC ranges from 1 × 10−9 to 1 × 10−4. In our
simulation, the probability that the GC target page has errors is set to 1 × 10−4.

Electronics 2024, 13, 4838 9 of 16

4.2. Trace File Analysis

Table 3 shows the profiles of the trace files extracted from six different workloads
used in our experiment. These trace files were extracted by installing a database and
benchmark programs, such as MySQL based on sysbench [26,27], Yahoo Cloud Serving
Benchmark (YCSB) family [28], Cassandra [29], MongoDB [30], RocksDB [31], and Phoronix
Test Suite [32] family SQLite and Dbench.

Table 3. Characteristics of trace files.

Workloads Cassandra Dbench MySQL SQLite MongoDB RocksDB

Read Ratio (%) 80.2 0.0 0.0 0.0 36.9 50.5
Write Ratio (%) 19.8 100.0 100.0 100.0 63.1 49.5

Seq. Request (%) 56.8 13.2 9.8 18.7 18.7 9.9
Rand. Request (%) 43.2 86.8 90.2 81.3 81.3 90.1

Aver. Read Size (KB) 70.5 4.0 0.0 4.0 6.4 4.9
Aver. Write Size (KB) 103.7 7.6 5.8 4.9 4.7 4.5

4.3. Experimental Results

We conducted simulations using our C model of the SSD, along with trace files
extracted from various workloads. To evaluate the effectiveness of the proposed GC
scheme, we measured the read and write latency of the SSD for each workload. While
we acknowledge that most commercial SSDCs now use interconnects, to the best of our
knowledge, no academic research has yet addressed this approach. Therefore, we compared
the performance of our proposed method with a conventional approach that uses an
unconditional copy-back scheme, as explained in this paper.

Table 4 summarizes the average latency for both the conventional GC scheme, which
unconditionally copies back ECC results, and our proposed scheme, which replaces this
process with a local copy-back. As shown in Table 4, the proposed GC scheme improved
average latency by up to 26.9%, demonstrating the effectiveness of the proposed scheme. It
is important to note that the MySQL, Dbench, and SQLite workloads do not include any
read operations, so corresponding measurement data are not available.

Table 4. Average latency of read/write requests.

Avg. Read Latency (ms) Cassandra Dbench MySQL SQLite MongoDB RocksDB

Conventional 1.729 - - - 0.826 0.856
Proposed 1.712 - - - 0.824 0.855

Avg. Write Latency (ms) Cassandra Dbench MySQL SQLite MongoDB RocksDB

Conventional 20.714 8.981 1.159 1.151 1.118 1.467
Proposed 15.137 6.811 1.076 1.097 1.067 1.461

Proposed/Conventional
Improvement Ratio (%) Cassandra Dbench MySQL SQLite MongoDB RocksDB

Avg. Read latency 0.983 - - - 0.242 0.117
Avg. Write latency 26.924 24.162 7.161 4.692 4.562 0.409

As shown in Table 4, the average write latency improvements vary across workloads,
with Cassandra showing the most significant improvement, followed by Dbench, MySQL,
SQLite, MongoDB, and RocksDB. To understand the reasons behind these differences, we
analyzed the host request patterns for each workload, as illustrated in Figure 6. Cassandra,
Dbench, MySQL, and RocksDB workloads display highly dynamic request patterns, and
SQLite and MongoDB workloads show relatively static host request patterns.

Electronics 2024, 13, 4838 10 of 16

Electronics 2024, 13, x FOR PEER REVIEW 10 of 17

knowledge, no academic research has yet addressed this approach. Therefore, we com-
pared the performance of our proposed method with a conventional approach that uses
an unconditional copy-back scheme, as explained in this paper.

(a) Cassandra

(b) Dbench

(c) MySQL

(d) SQLite

Figure 6. Cont.

Electronics 2024, 13, 4838 11 of 16
Electronics 2024, 13, x FOR PEER REVIEW 11 of 17

(e) MongoDB

(f) RocksDB

Figure 6. Host request patterns.

To gain deeper insights, we measured several key metrics: the number of read/write
requests from the host, the number of pending requests, and the number of requests gen-
erated by the GC process. Figure 7 presents the results across all workloads. Cassandra
exhibits a highly dynamic pattern of read/write requests, with occasional spikes that lead
to a significant increase in pending requests. In contrast, MongoDB follows a more peri-
odic pattern, where moderate request volumes are generated over a period, followed by
intervals of inactivity. This cycle repeats regularly. Because the request load in MongoDB
remains well within the SSDC’s capacity, the number of pending requests remains mini-
mal. In other words, read/write requests from the host are promptly serviced as they are
queued in the task queues when using MongoDB. The proposed scheme effectively re-
duces the GC load and has a more pronounced impact on improving SSD latency, partic-
ularly when the host request pattern is more dynamic.

(a) Cassandra

Figure 6. Host request patterns.

To gain deeper insights, we measured several key metrics: the number of read/write
requests from the host, the number of pending requests, and the number of requests
generated by the GC process. Figure 7 presents the results across all workloads. Cassandra
exhibits a highly dynamic pattern of read/write requests, with occasional spikes that
lead to a significant increase in pending requests. In contrast, MongoDB follows a more
periodic pattern, where moderate request volumes are generated over a period, followed by
intervals of inactivity. This cycle repeats regularly. Because the request load in MongoDB
remains well within the SSDC’s capacity, the number of pending requests remains minimal.
In other words, read/write requests from the host are promptly serviced as they are queued
in the task queues when using MongoDB. The proposed scheme effectively reduces the GC
load and has a more pronounced impact on improving SSD latency, particularly when the
host request pattern is more dynamic.

Interestingly, the proposed GC method does not lead to significant improvements in
latency for RocksDB benchmark, which shows occasional surges of host requests. This is
because the number of copy-back operations in RocksDB is notably lower compared to the
other benchmarks as shown in Figure 8. In RocksDB’s case, journal data occupy almost
70% of the entire data. Journal data refer to the log information used by Linux file systems
to ensure data integrity and recoverability in the event of a system crash or power failure.
The total amount of journal data is fixed, and old journal data are periodically overwritten
by new journal data. Therefore, GC target page that stores journal data only needs erase
operation without copy-back operation. This is why RockDB has a very low copy-back
count and the proposed scheme does not show significant improvement.

Electronics 2024, 13, 4838 12 of 16

Electronics 2024, 13, x FOR PEER REVIEW 12 of 17

generated by the GC process. Figure 7 presents the results across all workloads. Cassandra
exhibits a highly dynamic pattern of read/write requests, with occasional spikes that lead
to a significant increase in pending requests. In contrast, MongoDB follows a more peri-
odic pattern, where moderate request volumes are generated over a period, followed by
intervals of inactivity. This cycle repeats regularly. Because the request load in MongoDB
remains well within the SSDC’s capacity, the number of pending requests remains mini-
mal. In other words, read/write requests from the host are promptly serviced as they are
queued in the task queues when using MongoDB. The proposed scheme effectively re-
duces the GC load and has a more pronounced impact on improving SSD latency, partic-
ularly when the host request pattern is more dynamic.

(a) Cassandra

(b) Dbench

(c) MySQL

(d) SQLite

Figure 7. Cont.

Electronics 2024, 13, 4838 13 of 16Electronics 2024, 13, x FOR PEER REVIEW 13 of 17

(e) MongoDB

(f) RocksDB

Figure 7. Number of host requests, GC requests, and pending requests.

Interestingly, the proposed GC method does not lead to significant improvements in
latency for RocksDB benchmark, which shows occasional surges of host requests. This is
because the number of copy-back operations in RocksDB is notably lower compared to
the other benchmarks as shown in Figure 8. In RocksDB’s case, journal data occupy almost
70% of the entire data. Journal data refer to the log information used by Linux file systems
to ensure data integrity and recoverability in the event of a system crash or power failure.
The total amount of journal data is fixed, and old journal data are periodically overwritten
by new journal data. Therefore, GC target page that stores journal data only needs erase
operation without copy-back operation. This is why RockDB has a very low copy-back
count and the proposed scheme does not show significant improvement.

However, a higher copy-back count does not always correspond to a greater perfor-
mance improvement. For example, SQLite exhibits a significantly higher copy-back count
than MySQL, yet their improvement rates are similar. As shown in Figure 7d, SQLite ex-
periences minimal pending requests due to GC, meaning that host requests are typically
processed immediately. As a result, the proposed GC scheme has a relatively small impact
on SQLite’s performance, which is reflected in the lower improvement rate shown in Table
4. In contrast, Figure 7c illustrates that MySQL frequently experiences pending requests
due to GC, with a higher volume of such requests. Consequently, the latency improve-
ments from our algorithm are more pronounced, as they apply to host requests that are
delayed by GC. This explains why MySQL, despite having fewer copy-backs, achieves a
performance improvement similar to SQLite’s.

Figure 7. Number of host requests, GC requests, and pending requests.

Electronics 2024, 13, x FOR PEER REVIEW 14 of 18

(f) RocksDB

Figure 7. Number of host requests, GC requests, and pending requests.

Interestingly, the proposed GC method does not lead to significant improvements in
latency for RocksDB benchmark, which shows occasional surges of host requests. This is
because the number of copy-back operations in RocksDB is notably lower compared to
the other benchmarks as shown in Figure 8. In RocksDB’s case, journal data occupy almost
70% of the entire data. Journal data refer to the log information used by Linux file systems
to ensure data integrity and recoverability in the event of a system crash or power failure.
The total amount of journal data is fixed, and old journal data are periodically overwritten
by new journal data. Therefore, GC target page that stores journal data only needs erase
operation without copy-back operation. This is why RockDB has a very low copy-back
count and the proposed scheme does not show significant improvement.

However, a higher copy-back count does not always correspond to a greater perfor-
mance improvement. For example, SQLite exhibits a significantly higher copy-back count
than MySQL, yet their improvement rates are similar. As shown in Figure 7d, SQLite ex-
periences minimal pending requests due to GC, meaning that host requests are typically
processed immediately. As a result, the proposed GC scheme has a relatively small impact
on SQLite’s performance, which is reflected in the lower improvement rate shown in Table
4. In contrast, Figure 7c illustrates that MySQL frequently experiences pending requests
due to GC, with a higher volume of such requests. Consequently, the latency improve-
ments from our algorithm are more pronounced, as they apply to host requests that are
delayed by GC. This explains why MySQL, despite having fewer copy-backs, achieves a
performance improvement similar to SQLite’s.

Figure 8. Number of copy-backs. Figure 8. Number of copy-backs.

However, a higher copy-back count does not always correspond to a greater perfor-
mance improvement. For example, SQLite exhibits a significantly higher copy-back count
than MySQL, yet their improvement rates are similar. As shown in Figure 7d, SQLite
experiences minimal pending requests due to GC, meaning that host requests are typically
processed immediately. As a result, the proposed GC scheme has a relatively small impact
on SQLite’s performance, which is reflected in the lower improvement rate shown in Table 4.
In contrast, Figure 7c illustrates that MySQL frequently experiences pending requests due
to GC, with a higher volume of such requests. Consequently, the latency improvements
from our algorithm are more pronounced, as they apply to host requests that are delayed by
GC. This explains why MySQL, despite having fewer copy-backs, achieves a performance
improvement similar to SQLite’s.

Electronics 2024, 13, 4838 14 of 16

An interesting observation regarding the Cassandra workload is that the performance
improvement is significantly more pronounced for write requests. To investigate this
further, Figure 9 presents a graph that separates Cassandra’s read and write requests. While
read requests follow a relatively monotonic pattern, write requests are highly irregular,
with sudden surges in volume. This suggests that the accumulation of pending requests
in Cassandra, as observed earlier, is primarily driven by these sharp increases in write
requests, while read requests remain stable and do not exhibit similar fluctuations.

Electronics 2024, 13, x FOR PEER REVIEW 15 of 18

An interesting observation regarding the Cassandra workload is that the perfor-
mance improvement is significantly more pronounced for write requests. To investigate
this further, Figure 9 presents a graph that separates Cassandra’s read and write requests.
While read requests follow a relatively monotonic pattern, write requests are highly irreg-
ular, with sudden surges in volume. This suggests that the accumulation of pending re-
quests in Cassandra, as observed earlier, is primarily driven by these sharp increases in
write requests, while read requests remain stable and do not exhibit similar fluctuations.

Figure 9. Read and write request patterns of Cassandra.

Table 5 compares the peak latency of the conventional GC scheme with that of the
proposed GC scheme. As shown, the proposed scheme reduces peak latency by up to
50.0%. Similar to the pattern observed for average latency, the improvement in maximum
latency correlates with the irregularity of host request patterns. When listing the work-
loads by the extent of improvement, the order is as follows: Cassandra, Dbench, MySQL,
SQLite, MongoDB, and RocksDB. Excluding RocksDB, which has an exceptionally low
copy-back count, this suggests that greater irregularity in host request patterns leads to a
more significant improvement in peak latency.

Figure 9. Read and write request patterns of Cassandra.

Table 5 compares the peak latency of the conventional GC scheme with that of the
proposed GC scheme. As shown, the proposed scheme reduces peak latency by up to
50.0%. Similar to the pattern observed for average latency, the improvement in maximum
latency correlates with the irregularity of host request patterns. When listing the workloads
by the extent of improvement, the order is as follows: Cassandra, Dbench, MySQL, SQLite,
MongoDB, and RocksDB. Excluding RocksDB, which has an exceptionally low copy-back
count, this suggests that greater irregularity in host request patterns leads to a more
significant improvement in peak latency.

Table 5. Peak latency of read/write requests.

Max. Read Latency (ms) Cassandra Dbench MySQL SQLite MongoDB RocksDB

Conventional 181.257 - - - 2.832 21.686
Proposed 90.625 - - - 2.474 20.625

Max. Write Latency (ms) Cassandra Dbench MySQL SQLite MongoDB RocksDB

Conventional 1055.123 977.507 29.450 3.776 3.602 51.816
Proposed 758.686 836.451 25.372 3.341 3.200 50.637

Proposed/Conventional
Improvement Ratio (%) Cassandra Dbench MySQL SQLite MongoDB RocksDB

Max. Read latency 50.002 - - - 12.641 4.893
Max. Write latency 28.095 14.430 13.847 11.520 11.160 2.275

To account for operation uncertainties in our experimental results, we conducted a
total of five trials for our algorithm, calculating the standard deviation for the experimen-
tal results of each workload. As shown in Table 6, the standard deviation for average
latency is nearly zero. In contrast, there is a tendency for a larger standard deviation in
maximum latency.

Electronics 2024, 13, 4838 15 of 16

Table 6. Standard deviation of read/write latency.

Standard Deviation Cassandra Dbench MySQL SQLite MongoDB RocksDB

Avg. read latency 0.003 - - - 0.000 0.000
Avg. write latency 0.430 0.395 0.002 0.001 0.000 0.001
Max. read latency 1.758 - - - 0.057 0.676
Max. write latency 6.893 6.227 1.199 0.117 0.133 1.053

5. Conclusions

In this paper, we have addressed the latency issues associated with GC operations in
SSDs that utilize NAND flash memory, particularly in NoC architectures. Our proposed
GC scheme intelligently minimizes unnecessary data transfers by selectively determining
the data flow based on the presence of errors, thereby reducing the overhead typically
incurred during GC.

Through extensive experimentation, we demonstrated that our approach can signif-
icantly enhance SSD performance, achieving an average latency improvement of up to
26.9% and a peak latency reduction of up to 50.0%, particularly benefiting workloads
characterized by dynamic request patterns. The insights gained from this study underscore
the importance of optimizing data traversal paths in the presence of error correction needs,
which has been largely overlooked in previous research.

Our results were based on an eight-channel SSD model with 64 pages per block.
Increasing the number of channels would expand the interconnect size and increase the
number of slices, which, in turn, would lead to a greater improvement from the proposed
GC scheme. This is because the scheme effectively reduces the impact of interconnect
delays. In contrast, as NAND flash memory technology advances, manufacturers focus on
increasing memory density, which often results in a higher number of pages per block. A
larger number of pages per block is expected to reduce the frequency of GC, and as a result,
we anticipate a smaller improvement factor from the proposed GC scheme. Given these
trends, it would be valuable for future work to explore how the proposed GC scheme can
be adapted to accommodate these developments in SSD architecture.

Author Contributions: Conceptualization, S.A., D.I., D.Y. and Y.H.; methodology, S.A., D.I., D.Y.
and Y.H.; software, S.A., D.I. and D.Y.; validation, S.A., D.I., D.Y. and Y.H.; formal analysis, S.A.,
D.I., D.Y. and Y.H.; investigation, S.A., D.I. and D.Y.; resources, S.A., D.I. and D.Y.; writing—original
draft preparation, S.A., D.I., D.Y. and Y.H.; writing—review and editing, S.A., D.I., D.Y. and Y.H.;
visualization S.A., D.I., D.Y. and Y.H.; supervision, Y.H.; project administration, Y.H. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Narayanan, D.; Thereska, E.; Donnelly, A.; Elnikety, S.; Rowstron, A. Migrating Server Storage to SSDs: Analysis of Tradeoffs. In

Proceedings of the 4th ACM European Conference on Computer Systems, Nuremberg, Germany, 1–3 April 2009; pp. 145–158.
2. Deng, Y. What Is the Future of Disk Drives, Death or Rebirth? ACM Comput. Surv. (CSUR) 2011, 43, 1–27. [CrossRef]
3. Micheloni, R.; Marelli, A.; Eshghi, K.; Wong, G. SSD Market Overview. In Inside Solid State Drives (SSDs); Springer:

Berlin/Heidelberg, Germany, 2013; pp. 1–17.
4. Guo, J.; Hu, Y.; Mao, B.; Wu, S. Parallelism and Garbage Collection Aware I/O Scheduler with Improved SSD Performance. In

Proceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS), Orlando, FL, USA, 29 May–2 June
2017; pp. 1184–1193.

5. Bux, W.; Iliadis, I. Performance of Greedy Garbage Collection in Flash-Based Solid-State Drives. Perform. Eval. 2010, 67, 1172–1186.
[CrossRef]

https://doi.org/10.1145/1922649.1922660
https://doi.org/10.1016/j.peva.2010.07.003

Electronics 2024, 13, 4838 16 of 16

6. Google. Google: Taming the Long Latency Tail—When More Machines Equals Worse Results. Available online: http://
highscalability.com/blog/2012/3/12/google-taming-the-long-latency-tail-when-more-machines-equal.html (accessed on 12
March 2012).

7. Dean, J.; Barroso, L.A. The Tail at Scale. Commun. ACM 2013, 56, 74–80. [CrossRef]
8. Gupta, A.; Pisolkar, R.; Urgaonkar, B.; Sivasubramaniam, A. Leveraging Value Locality in Optimizing NAND Flash-Based SSDs.

In Proceedings of the FAST 2011, San Jose, CA, USA, 15–18 February 2011; pp. 91–103.
9. Yadgar, G.; Yaakobi, E.; Schuster, A. Write Once, Get 50% Free: Saving SSD Erase Costs Using WOM Codes. In Proceedings of the

13th USENIX Conference on File and Storage Technologies (FAST 15), Santa Clara, CA, USA, 16–20 February 2015; pp. 257–271.
10. Ae, J.; Hong, Y. Efficient Garbage Collection Algorithm for Low Latency SSD. Electronics 2022, 11, 1084. [CrossRef]
11. Zhang, Q.; Li, X.; Wang, L.; Zhang, T.; Wang, Y.; Shao, Z. Lazy-RTGC: A Real-Time Lazy Garbage Collection Mechanism with

Jointly Optimizing Average and Worst Performance for NAND Flash Memory Storage Systems. ACM Trans. Des. Autom. Electron.
Syst. (TODAES) 2015, 20, 1–32. [CrossRef]

12. Cheng, W.; Wang, X.; Zhang, S.; Li, J. Lifespan-Based Garbage Collection to Improve SSD’s Reliability and Performance. J. Parallel
Distrib. Comput. 2022, 164, 28–39. [CrossRef]

13. Kim, J.; Kang, S.; Park, Y.; Kim, J. Networked SSD: Flash Memory Interconnection Network for High-Bandwidth SSD. In
Proceedings of the 55th IEEE/ACM International Symposium on Microarchitecture (MICRO), Chicago, IL, USA, 1–5 October
2022; pp. 388–403.

14. Kim, J.; Jung, M.; Kim, J. Decoupled SSD: Rethinking SSD Architecture Through Network-Based Flash Controllers. In Proceedings
of the 50th Annual International Symposium on Computer Architecture (ISCA ′23), Orlando, FL, USA, 17–21 June 2023;
Association for Computing Machinery: New York, NY, USA, 2023; Article 61, pp. 1–13.

15. Mielke, N.; Alam, S.; Goodman, A. Bit Error Rate in NAND Flash Memories. In Proceedings of the IEEE International Reliability
Physics Symposium, Phoenix, AZ, USA, 27 April–1 May 2008; pp. 9–19.

16. Cai, Y.; Haratsch, E.F.; Mutlu, O.; Mai, K. Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and
Analysis. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 12–16
March 2012; pp. 521–526.

17. Chang, W.; Lim, Y.; Cho, J. An Efficient Copy-Back Operation Scheme Using Dedicated Flash Memory Controller in Solid-State
Disks. Int. J. Electr. Energy 2014, 2, 13–17. [CrossRef]

18. Pang, S.; Wang, X.; Zhang, Y.; Chen, L.; Liu, J.; Wu, D. PcGC: A Parity-Check Garbage Collection for Boosting 3-D NAND Flash
Performance. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2023, 42, 4364–4377. [CrossRef]

19. Rostedt, S. Ftrace Linux Kernel Tracing. In Proceedings of the Linux Conference Japan, Tokyo, Japan, 5–6 October 2010.
20. Brunelle, A.D. Block I/O Layer Tracing: Blktrace; Hewlett Packard Company: Cupertino, CA, USA, 2006; p. 57.
21. Lee, J.; Kim, Y.; Shipman, G.M.; Oral, S.; Wang, F.; Kim, J. A Semi-Preemptive Garbage Collector for Solid State Drives. In

Proceedings of the IEEE International Symposium on Performance Analysis of Systems and Software, Austin, TX, USA, 4–6 April
2011; pp. 12–21.

22. Lee, J.; Kim, Y.; Shipman, G.M.; Oral, S.; Kim, J. Preemptible I/O Scheduling of Garbage Collection for Solid State Drives. IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 2013, 32, 247–260. [CrossRef]

23. Zhang, Q.; Li, X.; Wang, L.; Zhang, T.; Wang, Y.; Shao, Z. Optimizing Deterministic Garbage Collection in NAND Flash Storage
Systems. In Proceedings of the 21st IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Seattle,
WA, USA, 13–16 April 2015.

24. Kishani, M.; Ahmadian, S.; Asadi, H. A Modeling Framework for Reliability of Erasure Codes in SSD Arrays. IEEE Trans. Comput.
2020, 69, 649–665. [CrossRef]

25. Micron. NAND Flash Memory MT29F4G08ABADAH4 16Gb Asynchronous/Synchronous NAND Features Datasheet. Avail-
able online: https://www.micron.com/products/nand-flash/slc-nand/part-catalog/mt29f4g08abadah4-ait (accessed on 15
July 2020).

26. Sysbench Manual. Available online: http://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf (accessed on 22
December 2020).

27. MySQL 8.0 Reference Manual. Available online: https://dev.mysql.com/doc/refman/8.0/en (accessed on 22 December 2020).
28. Cooper, B.F.; Silberstein, A.; Tam, E.; Ramakrishnan, R.; Sears, R. Benchmarking Cloud Serving Systems with YCSB. In Proceedings

of the 1st ACM Symposium on Cloud Computing (SOCC 10), Indianapolis, IN, USA, 10–11 June 2010.
29. Apache Cassandra Documentation v3.11.13. Available online: https://cassandra.apache.org/doc/3.11.13/ (accessed on 22

December 2020).
30. MongoDB Documentation v6.0. Available online: https://www.mongodb.com/ko-kr/docs/v6.0/ (accessed on 13 July 2021).
31. RocksDB Documentation. Available online: http://rocksdb.org/docs/getting-started.html (accessed on 13 July 2021).
32. Phoronix Test Suite v10.8.4 User Manual. Available online: https://github.com/phoronix-test-suite/phoronix-test-suite/blob/

master/documentation/phoronix-test-suite.pdf (accessed on 21 June 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://highscalability.com/blog/2012/3/12/google-taming-the-long-latency-tail-when-more-machines-equal.html
http://highscalability.com/blog/2012/3/12/google-taming-the-long-latency-tail-when-more-machines-equal.html
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.3390/electronics11071084
https://doi.org/10.1145/2746236
https://doi.org/10.1016/j.jpdc.2022.02.006
https://doi.org/10.12720/ijoee.2.1.13-17
https://doi.org/10.1109/TCAD.2023.3281517
https://doi.org/10.1109/TCAD.2012.2227479
https://doi.org/10.1109/TC.2019.2962691
https://www.micron.com/products/nand-flash/slc-nand/part-catalog/mt29f4g08abadah4-ait
http://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
https://dev.mysql.com/doc/refman/8.0/en
https://cassandra.apache.org/doc/3.11.13/
https://www.mongodb.com/ko-kr/docs/v6.0/
http://rocksdb.org/docs/getting-started.html
https://github.com/phoronix-test-suite/phoronix-test-suite/blob/master/documentation/phoronix-test-suite.pdf
https://github.com/phoronix-test-suite/phoronix-test-suite/blob/master/documentation/phoronix-test-suite.pdf

	Introduction
	Background
	Conventional SSD Organization
	Garbage Collection in SSDs
	NoC-Based SSD Controller

	Proposed Garbage Collection Scheme
	Adaptive Data Path Selection for Garbage Collection Efficiency
	Efficient Data Handling Through Task Queue Architecture

	Evaluation
	Experimental Setup
	Trace File Analysis
	Experimental Results

	Conclusions
	References

