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Abstract: Accurate production forecasting of tight gas reservoirs plays a critical role in effective
gas field development and management. Recurrent-based deep learning models typically require
extensive historical production data to achieve robust forecasting performance. This paper presents a
novel approach that integrates transfer learning with the neural basis expansion analysis time series
(N-BEATS) model to forecast gas well production, thereby addressing the limitations of traditional
models and reducing the reliance on large historical datasets. The N-BEATS model was pre-trained
on the M4 competition dataset, which consists of 100,000 time series spanning multiple domains.
Subsequently, the pre-trained model was transferred to forecast the daily production rates of two gas
wells over short-term, medium-term, and long-term horizons in the S block of the Sulige gas field,
China’s largest tight gas field. Comparative analysis demonstrates that the N-BEATS transfer model
consistently outperforms the attention-based LSTM (A-LSTM) model, exhibiting greater accuracy
across all forecast periods, with root mean square error improvements of 19.5%, 19.8%, and 26.8%
of Well A1 for short-, medium-, and long-term horizons, respectively. The results indicate that
the pre-trained N-BEATS model effectively mitigates the data scarcity challenges that hinder the
predictive performance of LSTM-based models. This study highlights the potential of the N-BEATS
transfer learning framework in the petroleum industry, particularly for production forecasting in
tight gas reservoirs with limited historical data.
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1. Introduction

Tight gas, a form of unconventional natural gas, is trapped within rock formations
characterized by matrix permeability of less than one millidarcy (mD) and porosity below
10%, often found in sandstone or limestone [1–3]. Unlike conventional reservoirs, where gas
moves freely through porous media, the low permeability of tight gas reservoirs restricts
flow. Hydraulic fracturing, a method involving high-pressure fluid injection to create
fractures held open by proppants, is commonly employed to enhance gas flow [4–6]. With
proven reserves exceeding 20 trillion cubic meters in China as of 2021, tight gas has become
a critical energy resource, necessitating accurate production forecasting to optimize field
development and exploitation strategies [7,8]. In addition, reliable forecasts are crucial for
optimizing production techniques such as hydraulic fracturing or infill well drilling.

Production forecasting methods are typically classified into three categories: empir-
ical production decline-curve analysis (EDCA), numerical simulation, and data-driven
approaches [9–14]. Each method offers distinct advantages and limitations due to their un-
derlying theoretical assumptions. EDCA, for example, focuses on the relationship between
production rates and time without accounting for critical reservoir properties like pressure,
permeability, or porosity. These empirical models are derived from historical production
trends and used to estimate future production rates. EDCA is simple to apply and requires
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limited production data, but its accuracy depends heavily on long-term production history
and the quality of available data. Numerical simulation techniques, on the other hand,
involve constructing detailed reservoir models that incorporate geological characteristics,
fluid flow dynamics, and production mechanisms. For example, Zhang et al. developed
an embedded discrete fracture model (EDFM) for tight reservoirs, accounting for gravity
and stress sensitivity [15]. Their results showed that fracture distribution and morphology
significantly impact well productivity. Fujita et al. proposed a rapid flow simulator based
on the concept of diffusive time of flight (DTOF) for shale gas reservoirs, enhancing flow
characterization through efficient calculation of drainage volumes [16]. Li et al. introduced
a nonlinear flow model for tight sandstone reservoirs, demonstrating improved production
accuracy compared to traditional methods [17]. Despite offering high accuracy and detailed
insights, numerical simulation methods often require extensive data and computational
resources, which may not always be feasible.

Deep learning approaches, particularly recurrent neural networks (RNNs) like long
short-term memory (LSTM) networks and gated recurrent units (GRU), have emerged as
promising tools for production forecasting [18–20]. These methods treat forecasting as a
time series problem, capturing intricate temporal dependencies and patterns in historical
data. Recently, the integration of attention mechanisms with RNNs has shown promising
results, allowing for more accurate long-term forecasts by focusing on the most relevant
segments of the time series data. An LSTM model enhanced with an attention mechanism
has been specifically developed for petroleum production forecasting [21]. This fusion
has demonstrated substantial improvements in prediction accuracy and robustness. Com-
parative studies reveal that attention-based networks outperform traditional models in
prediction accuracy for petroleum production forecasts. However, the performance of these
methods heavily relies on the availability of extensive historical data, presenting challenges
in data-scarce environments like tight gas reservoirs.

To address data limitations, transfer learning has been proposed as a viable solu-
tion [22–25]. By leveraging pre-trained models from related domains, transfer learning
enables the application of learned knowledge to new tasks with limited data. The N-
BEATS model, introduced by Oreshkin et al. (2019), stands out as a state-of-the-art deep
learning architecture for time series forecasting, excelling in benchmark datasets like M4
and tourism datasets by effectively capturing temporal patterns without requiring feature
engineering [26]. Prior research, such as Alali and Horne’s work on oil rate forecasting in
the Volve field, demonstrated the N-BEATS model’s ability to transfer knowledge from the
M4 dataset, outperforming LSTM models even under sparse data conditions [27]. Their
study emphasized the model’s capability to produce accurate forecasts without input
variables like reservoir pressure, making it especially useful for green fields with limited
historical data.

While this earlier work focused on oil production, our study extends the N-BEATS
framework to tight gas reservoirs, which present distinct challenges, such as ultralow
permeability, sparse production history, and pronounced seasonal fluctuations. Gas pro-
duction is subject to greater seasonal variability than oil production, influenced by demand
changes and operational constraints during extreme weather. By adapting the N-BEATS
model through transfer learning for forecasting tight gas production in the S block of the
Sulige gas field, we address these unique complexities. This work pioneers the application
of N-BEATS to gas production, showcasing its ability to capture both long-term trends and
short-term variations in a challenging domain, thus advancing data-driven methods for
tight gas reservoir forecasting.

The remainder of this paper is organized as follows: Section 2 provides an overview
of the study area and details the data preparation process. In Section 3, we introduce the
two deep learning models used in this study: the attention-based LSTM and the N-BEATS
model, while also outlining the production prediction framework incorporating transfer
learning. Section 4 presents an in-depth analysis of the results for short-, medium-, and
long-term forecasting. Finally, Section 5 summarizes the key findings and conclusions.
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2. Data Preparation
2.1. Background of the Study Area

The study area, known as S block, is situated in the central region of the Sulige
gas field, within the Ordos Basin, and is adjacent to Wushenqi, as shown in Figure 1.
Structurally, S block lies in the middle of the Yishan slope. The average matrix porosity of S
block is 6.2%, while the porosity of the gas-bearing intervals ranges from 5% to 15%. The
average permeability is 0.14 mD. As of 2023, in the S block there are over 1500 fractured
gas producers, with more than 80% of them being vertical wells [28].
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Figure 1. The study area in the Sulige gas field.

For this study, two vertically fractured wells, A1 and A2, were selected from the S
block. Both wells have daily production records from 2011 to 2016. The key reservoir
properties of these wells are summarized in Table 1.

Table 1. Reservoir properties of gas wells.

Well Name Vertical
Depth (m)

Reservoir
Thickness (m)

Permeability
(mD)

Porosity
(%)

Gas Saturation
(%)

A1 3668 2.9 0.22 8.1 72
A2 3649 3.5 0.49 10.6 55

Due to confidentiality restrictions concerning actual production data, we normalized
the production data using Min-Max normalization. The formula is as follows:

ynorm =
y − ymin

ymax − ymin
(1)

where y represents the actual data, ynorm denotes the normalized value, and ymin and ymax
are the minimum and maximum values of the production data, respectively. The chosen
normalization method was selected for its simplicity and effectiveness in preserving the
distribution shape of the original data while making it suitable for models that rely on
numerical stability.



Electronics 2024, 13, 4750 4 of 17

Figure 2 illustrates the normalized daily gas production over time for Wells A1 and
A2, with the production data scaled linearly to the range [0, 1].
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(b) Daily production data of Well A2.

Figure 2 illustrates the seasonal fluctuations in daily gas production for both wells,
showing a decline during the summer followed by an increase in the winter. This pattern is
attributed to lower natural gas demand in the summer, leading to reduced production and
a subsequent rise in production as demand increases during the winter months.

2.2. Data Smoothing

Production data from gas wells often contain random noise and seasonal fluctuations,
which can compromise the accuracy of prediction models. To mitigate these issues, data
smoothing techniques are employed to reduce noise and stabilize the time series. One effec-
tive method is exponential smoothing, which assigns exponentially decreasing weights to
older data points [29]. The method is particularly well-suited for time series data exhibiting
trends and seasonal variations, such as tight gas production, where smoothing facilitates
better identification of underlying patterns. By assigning exponentially decreasing weights
to older observations, the method ensures that recent data points have a greater influence,
which is crucial for capturing real-time production trends and reducing the impact of
abrupt fluctuations or outliers. The formula for exponential smoothing is as follows:

St = αyt + (1 − α)St−1 (2)

where St is the smoothed value at time t, yt is the actual value at time t, St−1 is the
smoothed value at the previous time step, and α is the smoothing factor, ranging between 0
and 1. The smoothing factor α, which determines the weight assigned to recent data points
versus historical values, was selected based on its ability to balance short-term trends and
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long-term patterns. A smaller α gives more weight to historical data, reducing noise but
potentially overlooking rapid changes, while a larger α prioritizes recent data, capturing
fluctuations but possibly amplifying noise. In this study, α was determined empirically
by testing multiple values during the preprocessing stage. The final selection was guided
by aligning smoothed data with actual production trends without over-smoothing critical
transitions. This approach ensures that key production patterns are preserved while
irrelevant noise is filtered out.

Figure 3 compares the daily gas production data before and after smoothing for Wells
A1 and A2, demonstrating the impact of smoothing on data stability.
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Other potential smoothing techniques, such as moving average smoothing or Gaussian
smoothing, were considered but not applied. Moving average smoothing, while effective
in reducing high-frequency noise, often distorts trend information in data with seasonal
components. Similarly, Gaussian smoothing, although useful for localized data smoothing,
might over-smooth abrupt changes in production, which are vital for accurate forecasting.
Exponential smoothing strikes a balance by retaining critical trends and seasonal variations
while minimizing noise, thereby serving as the most suitable technique for the dataset used
in this study.

3. Deep Learning Model for Production Prediction

In this study, two deep learning models, an attention-based long short-term memory
(A-LSTM) model and a neural basis expansion analysis for time series (N-BEATS) transfer
model, were employed for production prediction. The primary distinction between the
two models lies in their architecture and mechanisms for handling sequential data. The
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LSTM model leverages hidden states to retain information from previous steps, enabling
the network to learn long-term dependencies. The integration of attention mechanisms
enhances this capability by dynamically weighting past data, allowing the model to focus
on the most relevant points within the input sequence, which improves performance over
vanilla LSTMs in capturing long-range dependencies.

Conversely, the N-BEATS model employs a fully connected architecture with blocks
designed to capture different patterns within the data. Each block contributes to the final
prediction, enabling a robust, pattern-focused approach. The N-BEATS model used in this
study was pre-trained on the M4 competition dataset, which consists of over 100,000 time
series from various domains. After pre-training, the model was transferred to forecast daily
gas production rates, demonstrating the advantages of transfer learning.

3.1. Long Short-Term Memory

The LSTM, a variant of the recurrent neural network (RNN), addresses the vanishing
gradient problem encountered in traditional RNNs, making it suitable for time series
forecasting [30]. LSTMs feature three main components: the forget gate, the memory
selection phase, and the output phase. During the forget phase, the model selectively
decides which information from the previous node should be discarded by reading the
current input and previous neuron information, with a forget gate determining what to
ignore. In the memory selection phase, the network decides what information to retain and
update, using a sigmoid layer to regulate new information and a tanh layer to generate
a candidate value to add to the memory state. Finally, in the output phase, the network
decides the current output by scaling the memory state using the tanh function, and the
transformed value is passed as the output of the current time step [31].

In the forget phase of LSTM, the model selectively discards information from the
previous time step. It reads both the current input and the previous state, determining
which aspects of the past state should be ignored using a forget gate ft. In the memory
selection phase, the input is processed, with a sigmoid layer acting as an input gate to
determine what new information should be stored. A tanh layer generates a new candidate
value to be added to the state. The output phase decides which information from the
current state will contribute to the next time step, scaling the cell state via the tanh function
and producing the final output.

ft = σ
(

W f · [ht−1, xt] + b f

)
(3)

it = σ(Wi · [ht−1, xt] + bi) (4)
∼
Ct = tanh(WC · [ht−1, xt] + bC) (5)

Ct = ft · Ct−1 + it ·
∼
Ct (6)

ot = σ(Wo · [ht−1, xt] + bo) (7)

ht = ot · tanh(Ct) (8)

where W represents the weight matrices and b represents the bias vectors. The variables
f , i, C, and o correspond to the forget gate, input gate, memory cell, and output gate,
respectively. The function σ denotes the sigmoid activation function.

3.2. Attention-Based LSTM

Standard LSTMs can struggle with long-range dependencies, especially in long se-
quences, as all inputs are treated with equal importance over time. The attention-based
LSTM (A-LSTM) enhances time series forecasting by selectively focusing on the most
important elements of the input sequence. After the LSTM processes the input, an attention
mechanism calculates attention scores by comparing the current hidden state with previous
ones. The attention layer, comprising an encoder and decoder, calculates similarity scores
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to assign attention weights [32,33]. These weights determine which parts of the input se-
quence are most relevant, improving the model’s ability to capture long-term dependencies
and variability, as shown in Figure 4.
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Internally, the attention mechanism operates with an encoder-decoder structure. The
encoder processes the input sequence and generates feature representations, while the
decoder produces outputs based on these representations and the current hidden state, as
shown in Figure 5. Attention weights are calculated by comparing the encoder’s hidden
states with the decoder’s current state, allowing the model to prioritize relevant data points.
These weights are then applied to the feature representations to generate attention values,
which serve as inputs to the decoder. By focusing on key elements of the sequence, A-LSTM
improves the model’s ability to capture long-term dependencies, enhancing prediction
accuracy, especially in complex or highly variable time series data.
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The calculations for the attention mechanism are defined by the following equations:

αi = So f tmax(Simi) =
exp(Simi)

∑Lx
j=1 exp

(
Simj

) (9)

Simi = Score(Hi−1, hi) = Hi−1Whi (10)

Ci = ∑Lx
i=1 αihi (11)

Hi = f (Hi−1, yi−1, Ci) (12)
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where αi represents the attention weight at the ith input position, Simi represents the
similarity score at the i-th input position, Hi−1 is the decoder hidden state from the previous
time step, hi is the encoder hidden state at the ith input position, W is the trainable weight
matrix, yi−1 is the decoder output from the previous time step, and Ci is the context vector
at the current time step.

By explicitly modeling which parts of the sequence are most relevant, A-LSTM im-
proves accuracy in forecasting tasks, particularly when the sequence contains significant
variability or long-term dependencies.

3.3. N-BEATS

N-BEATS is a deep learning model tailored for time series forecasting, utilizing a
block-wise architecture to handle sequential data, as shown in Figure 6. Each block in
the N-BEATS structure performs two main functions: backcasting and forecasting. The
backcast aims to reconstruct the historical portion of the time series, while the forecast
predicts future values. After each block makes its backcast, the residual error between
the original input and the backcast is calculated, and this residual is passed to the next
block. The iterative process allows successive blocks to refine the residuals and improve
the overall prediction.
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Unlike traditional recurrent neural networks, N-BEATS does not use recurrent layers.
Instead, it relies on fully connected layers, followed by a basis expansion layer, which is
responsible for learning different components like trends and seasonality. This flexible,
non-parametric approach allows the model to capture a wide range of patterns without as-
suming a specific structure in the data. The simplicity of its design, combined with its ability
to model non-linear trends, makes N-BEATS highly effective for time series forecasting.

3.4. N-BEATS Transfer Model

As shown in Figure 7, the N-BEATS model was pre-trained on the M4 dataset, which
comprises over 100,000 time series from various domains and frequencies, including data
commonly encountered in business, finance, and economic forecasts, sampled from hourly
to yearly frequencies. It was designed for the M4 competition, a significant event in the
forecasting field aimed at advancing and comparing prediction methods. Known for its
scale and diversity, this dataset serves as a primary resource for developing and testing
both traditional and modern forecasting models. By leveraging transfer learning through
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shared N-BEATS model parameters and weights learned from the M4 sequences, we apply
this approach to predict production of the gas wells in the Sulige gas field.
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3.5. Sliding Window Technique

In this study, both models utilize sliding window techniques, which involve two key
parameters: window size and prediction horizon [34]. The window size determines how
many previous time steps are considered, while the prediction horizon specifies the number
of future time steps to be forecasted. For instance, as illustrated in Figure 8, if the window
size is set to 3 and the prediction horizon is 1, production data from the previous 3 days
is used to predict the production for the 4th day. Afterward, the sliding window shifts
forward by one day, using data from days 2 to 4 to predict production on the 5th day. This
iterative process continues, with the sliding window advancing one step at a time until the
entire time series data is segmented, and predictions are made.
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When applying sliding window techniques, it is essential to determine the appropriate
window size and sliding step length according to the specific requirements of the problem.
The window size must be large enough to capture sufficient historical information without
being overly large, which could lead to information dilution. To identify the optimal
window size for the N-BEATS and A-LSTM models, we employed a sliding (or rolling)
10-fold cross-validation strategy for the gas production data. The training dataset, compris-
ing 1600 days of production data for Well A1, was divided into 10 folds, each containing
160 days. For each fold, the data was further split into a training set and a validation set.
Various window sizes (3, 5, 7, 9) were systematically tested, and the corresponding RMSE
values were calculated for each window size using the A-LSTM model. As shown in
Figure 9, a window size of 5 delivered the lowest RMSE, indicating superior predictive
performance compared to other tested sizes.
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Although the optimal window size of 5 was determined using the A-LSTM model,
this size was also applied to the N-BEATS model. The decision to use the same window
size was motivated by the need for consistency in evaluating and comparing the two
models under identical input configurations. This approach ensures a fair and meaningful
comparison of their forecasting performances, eliminating potential biases arising from
differing window size settings. Additionally, the chosen window size aligns well with
the dataset’s characteristics, which feature moderate variability and seasonal fluctuations,
further supporting its suitability for both models.

3.6. Evaluation Metrics

To evaluate the performance and accuracy of prediction models, selecting appropriate
evaluation metrics is crucial. Some metrics are scale-dependent, while others are not. In
this study, we employ both scale-dependent metrics and percentage-based error metrics,
as they share the same units as the original data, allowing for convenient and meaningful
comparisons. The most commonly used scale-dependent evaluation metrics are mean
absolute error (MAE) and root mean square error (RMSE) [35].

MAE measures the average deviation between predicted and actual values by taking
the arithmetic mean of absolute errors, thus reflecting prediction accuracy on the same
scale as the original data. RMSE, on the other hand, provides a more sensitive measure
of error by giving greater weight to larger deviations, which helps assess the model’s
overall fit or error distribution. Errors expressed in percentage terms can offer clearer
insight into model performance. Mean absolute percentage error (MAPE), for instance,
calculates the average absolute error as a percentage of actual values, providing an intuitive
interpretation of the model’s relative accuracy. The coefficient of determination (R2) is a
widely used metric that quantifies how well the independent variables explain the variance
in the dependent variable.

MAE =
1
N ∑N

i=1 |yi − ŷi| (13)

RMSE =

√
1
N ∑N

i=1 (yi − ŷi)
2 (14)

MAPE =
1
N ∑N

i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣× 100% (15)

R2 = 1 − ∑N
i=1

(
yi − ŷi)

2

∑N
i=1 (yi − y)2

(16)
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where N represents the total number of data samples, yi denotes the true value at the ith
position, ŷi represents the predicted value at the ith position, and y is the mean of the
true values.

In this study, we assess the accuracy of gas well production forecasts using RMSE,
MAE, MAPE, and R2. Lower values of RMSE, MAE, and MAPE suggest superior model
performance and higher precision in forecasting production. Conversely, higher error
values indicate reduced predictive accuracy. The R2 value, ranging from 0 to 1, serves as an
additional indicator of model quality, with values closer to 1 denoting a stronger fit to the
observed data.

4. Results and Discussion

In this section, we conducted a detailed analysis of two gas wells, A1 and A2, located
in the S block of the Sulige gas field. We applied the A-LSTM model and the N-BEATS
transfer model to forecast the natural gas production for these wells across three-time
horizons: short-term, medium-term, and long-term. The last 10% of production data were
reserved for short-term prediction, the next 20% for medium-term, and the following 30%
for long-term forecasting. Table 2 provides a detailed breakdown of production specifics
for these wells and the corresponding dataset partitions used for each evaluation period.
By comparing these forecasts, we assessed the accuracy and performance of both models in
predicting well production.

Table 2. Production data for two wells and dataset partitioning.

Well Name Production
Time (Days)

Short-Term
Prediction

(Days)

Medium-Term
Prediction

(Days)

Long-Term
Prediction

(Days)

A1 2000 200 400 600
A2 1870 187 347 561

4.1. Hyperparameter Tuning

Hyperparameters define the operational characteristics of a machine learning model
and must be set before training begins. Each ML algorithm involves a range of hyper-
parameters that need to be optimized for the best performance. Initially, we used grid
search to determine optimal values for key hyperparameters in the A-LSTM model, such
as learning rate, number of neurons, layers, and training epochs. However, the initial
fit to the production data of the two wells was suboptimal. As a result, we resorted to
manual fine-tuning, iteratively adjusting network parameters. Several experiments were
conducted to determine the optimal number of iterations, gradually increasing from 100 to
500, while monitoring the convergence of both training and cross-validation losses. The
model exhibited its best performance after 100 iterations. The final hyperparameters are
listed in Table 3. The N-BEATS transfer model was pre-trained on the M4 time series dataset
using the hyperparameters listed in Table 4. The model featured 4 layers and 20 stacks, and
training was conducted on a GPU machine. For the loss function, we used symmetric mean
absolute percentage error (sMAPE), which calculates the average symmetrical difference
between predicted and actual values, making it effective for time series data.

The selection of MSE for A-LSTM and sMAPE for N-BEATS reflects their alignment
with the data characteristics and model objectives. MSE is ideal for A-LSTM as it calculates
errors based on absolute values, which is appropriate for normalized data within the [0, 1]
range. This normalization ensures consistent loss computation without being influenced
by scale differences, making MSE particularly effective for datasets with uniform units and
reducing the impact of outliers. On the other hand, sMAPE evaluates relative differences
between predicted and actual values, making it better suited for the diverse value ranges
and seasonal fluctuations inherent in tight gas production data. This relative error measure
allows N-BEATS to excel in capturing subtle variations and abrupt changes, leveraging its
architectural strengths in both global and local temporal pattern recognition.
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Table 3. Key parameters of the A-LSTM model.

Parameter Values

Hidden nodes in in a single LSTM layer 96
Attention layer 1
Learning rate 0.0005

Batch size 128
Optimizer Adam

Activation function ReLU
Loss function MSE

Table 4. Key parameters of the N-BEATS transfer model.

Parameter Values

Number of stacks 20
Number of blocks 3

Number of layers in a block 4
Layer width 64

Expansion coefficient 11
Learning rate 0.0001

Optimizer Adam
Loss function sMAPE

Activation function ReLU

Note: sMAPE = 200
N ∑N

i=1
|yi−ŷi |
|yi |+|ŷi |

.

After pretraining, we employed a transfer learning approach to forecast the gas rates.
By transferring the learned model parameters and weights from the M4 series, we applied
the pretrained model to predict the gas rates of Wells A1 and A2, demonstrating the transfer
learning model’s robustness and adaptability.

4.2. Comparative Analysis

To perform long-term, medium-term, and short-term production forecasts for Wells A1
and A2 in the S block of the Sulige gas field, we utilized the A-LSTM and N-BEATS transfer
models. To ensure experimental consistency, we standardized the number of iterations,
batch sizes, and learning rates for both models. The performance metrics for predicting
natural gas production in these wells are summarized in Table 5.

Table 5. Comparison of the N-BEATS transfer model with A-LSTM across three forecast periods.

Well Model RMSE MAE MAPE (%) R2

A1

A-LSTM-L 235 144 20.6 0.86
A-LSTM-M 258 161 23.4 0.83
A-LSTM-S 266 175 26.1 0.81

N-BEATS-L 172 106 5.9 0.92
N-BEATS-M 207 137 6.1 0.91
N-BEATS-S 214 142 7.1 0.86

A2

A-LSTM-L 231 132 17.1 0.86
A-LSTM-M 247 157 22.3 0.85
A-LSTM-S 272 183 28.4 0.78

N-BEATS-L 225 120 6.5 0.89
N-BEATS-M 238 132 6.9 0.88
N-BEATS-S 257 173 8.2 0.81

Note: L—Long-term prediction; M—Medium-term prediction; S—Short-term prediction.

As shown in Table 5 and Figures 10–13, the N-BEATS transfer model consistently
outperforms the A-LSTM model across long-term, medium-term, and short-term forecasts
for both Wells A1 and A2. The N-BEATS transfer model demonstrates lower MAPE and
higher R2 values, indicating greater accuracy in predicting natural gas production.
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Figures 11–13 show the residuals between the actual daily gas production rates of
Well A1 and the predicted values over the three forecast periods. The trends observed
in these figures are consistent with the results in Table 5, confirming that the N-BEATS
transfer model provides superior accuracy in production forecasting compared to the
A-LSTM model.

For the long-term production forecast of Well A1, Figure 11 presents a comparison of
residuals produced by the N-BEATS transfer model and the A-LSTM model. The visual
analysis highlights the consistently lower residuals achieved by the N-BEATS transfer
model, indicating its superior capability in capturing the dynamics of daily gas production.
This comparative view reinforces the quantitative findings, showcasing the enhanced
accuracy and robustness of the N-BEATS model over the A-LSTM model in production
forecasting. This performance is largely due to its ability to capture non-linear patterns
and seasonality in the time series, which are particularly important in long-term forecasts,
where variability tends to be more pronounced.

These comparative analyses demonstrated that the superior performance of the N-
BEATS transfer model over the A-LSTM arises from both the unique characteristics of
the tight gas production data and the architectural advantages of N-BEATS. Tight gas
production data often exhibit seasonal fluctuations and non-linear trends due to factors
such as changing seasonal demand and operational dynamics. N-BEATS excels in address-
ing these complexities by explicitly separating trend and seasonal components through
specialized blocks for backcasting and forecasting. This contrasts with A-LSTM, which
relies on implicit feature extraction and sequential processing, making it less effective in
disentangling intricate seasonal patterns. Another critical advantage of N-BEATS lies in
its ability to transfer knowledge from large external datasets, as demonstrated by its pre-
training on the M4 dataset. This transfer learning capability allows N-BEATS to generalize
effectively to tight gas production data, addressing challenges of data sparsity, a scenario
where A-LSTM’s dependency on extensive historical data often limits its performance.

The findings of this study have significant industrial implications, particularly in
enhancing gas field management practices. By demonstrating the superiority of the transfer
learning-based N-BEATS model over traditional recurrent models, the study provides a
robust framework for accurate production forecasting in tight gas reservoirs. This capa-
bility enables operators to optimize resource allocation and operational planning, such as
managing well shut ins. The model’s ability to perform effectively with limited historical
data addresses a critical challenge in newly developed reservoirs, reducing the dependency
on extensive field data collection. Furthermore, accurate forecasting across short-, medium-,
and long-term horizons aids in financial planning and risk assessment, empowering stake-
holders to make informed decisions about investment and field development strategies.
These advancements can significantly improve production efficiency, reduce operational
costs, and enhance the sustainability of gas field operations.

However, the proposed work has several limitations that could be addressed in fu-
ture research. One limitation is the reliance on a high-quality pre-training dataset, such
as the M4 competition dataset, which may affect the generalizability of the model to
diverse geological formations and gas fields. Future efforts could focus on improving
model transferability by incorporating gas production data sources. While the exponen-
tial smoothing method handles noise well, extreme production fluctuations or anomalies
(e.g., maintenance disruptions) remain challenging; advanced anomaly detection tech-
niques will be explored. Another limitation is model interpretability, as deep learning
models are often perceived as black boxes. Explainable AI techniques could provide
valuable insights into the model’s decision-making process for better industry adoption.

5. Conclusions

In this study, a N-BEATS transfer model was developed to improve the prediction
of tight gas production by leveraging transfer learning within the N-BEATS framework.
This model was specifically designed to capture both trend and seasonality in production
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data. Through an in-depth analysis of two production wells in the S block of the Sulige
gas field, the proposed model successfully captured the complex and dynamic patterns of
gas production sequences. Compared to the A-LSTM model, the N-BEATS transfer model
consistently demonstrated superior accuracy across short-term, medium-term, and long-
term forecasting tasks, with improvements in RMSE and MAE scores by 19.5%, and 18.9% of
Well A1, respectively, for short-term predictions. Additionally, for medium-term and long-
term forecasts, the N-BEATS model consistently maintained a lower error margin, achieving
up to 20% greater accuracy across all forecast periods in MAPE compared to A-LSTM. In
addition, the proposed N-BEATS transfer learning model offers transformative potential for
decision-making in real-world tight gas production scenarios. Its ability to generate accurate
production forecasts equips operators with critical insights for optimizing operations
such as infill drilling and resource allocation. The model’s effectiveness with limited
historical data is particularly advantageous for newly developed fields, enabling earlier
and more reliable predictions than traditional approaches. Additionally, by accommodating
seasonal variations and abrupt production changes, the model supports more adaptive
field management. These capabilities enhance investment decision-making and production
optimization, ultimately contributing to more sustainable and efficient development of
tight gas resources.
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