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Abstract: In this study, we applied and optimized a fast non-local means (FNLM) algorithm to reduce
noise in pediatric abdominal virtual monoenergetic images (VMIs). To analyze various contrast agent
concentrations, we produced contrast agent concentration samples (20, 40, 60, 80, and 100%) and
inserted them into a phantom model of a one-year-old pediatric patient. Single-energy computed
tomography (SECT) and dual-energy computed tomography (DECT) images were acquired from
the phantom, and 40 kilo-electron-volt (keV) VMI was acquired based on the DECT images. For the
40 keV VMY, the smoothing factor of the FNLM algorithm was applied from 0.01 to 1.00 in increments
of 0.01. We derived the optimized value of the FNLM algorithm based on quantitative evaluation
and performed a comparative assessment with SECT, DECT, and a total variation (TV) algorithm. As
a result of the analysis, we found that the average contrast to noise ratio (CNR) and coefficient of
variation (COV) of each concentration were most improved at a smoothing factor of 0.02. Based on
these results, we derived the optimized smoothing factor value of 0.02. Comparative evaluation shows
that the optimized FNLM algorithm improves the CNR and COV results by approximately 3.14 and
2.45 times, respectively, compared with the DECT image, and the normalized noise power spectrum

result shows a 1071 mm?

improvement. The main contribution of this study is to demonstrate
the effectiveness of an optimized FNLM algorithm in reducing noise in pediatric abdominal VMI,
allowing high-quality images to be acquired while reducing contrast dose. This advancement has
significant implications for minimizing the risk of contrast-induced toxicity, especially in pediatric
patients. Our approach addresses the problem of limited datasets in pediatric imaging by providing
a computationally efficient noise reduction technique and highlights the clinical applicability of the
FNLM algorithm. In addition, effective noise reduction enables high-contrast imaging with minimal
radiation and contrast exposure, which is expected to be suitable for repeat CT examinations of

pediatric liver cancer patients and other abdominal diseases.

Keywords: fast non-local means algorithm; virtual monoenergetic image; optimize the smoothing
factor; quantitative evaluation of image quality; pediatric abdominal computed tomography image

1. Introduction

In recent years, computed tomography (CT) has become widely used in clinical prac-
tice because of its ability to provide high-quality three-dimensional (3D) image acquisition
within a short acquisition time, low cost to the patient, and high diagnostic accuracy for
abdominal examinations [1]. According to a 2024 report by the Organization for Economic
Co-operation and Development (OECD), in 2021, more than 80 million CT examinations
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were performed annually in the United States, while in South Korea, CT examinations
accounted for the highest number of medical diagnostic devices used [2].

Abdominal CT is commonly employed for the anatomical evaluation of the surgical
area and to assess treatment effectiveness in pediatric liver cancer patients. However,
pediatric patients are more sensitive to radiation due to their immature cells; thus, high
radiation doses can potentially cause side- or long-term effects. Furthermore, pediatric
patients have thinner body walls, which reduces the radiation filtering effect and increases
radiation exposure to deeply located organs, thus requiring special consideration [3]. These
concerns regarding radiation exposure have led to recommendations for replacing liver
examinations in pediatric patients with ultrasound and magnetic resonance imaging (MRI)
scans. However, CT scans are essential for evaluating pediatric liver cancer patients
undergoing liver transplantation [4,5].

To reduce radiation exposure in pediatric liver examinations, CT scans of pediatric
patients with liver cancer have been conducted using lower tube voltages and currents
than adult protocols, focusing primarily on end-artery and hepatic vein assessment [6].
However, reducing the radiation dose can lead to lower image contrast and diminished
diagnostic accuracy. Additionally, liver CT examinations require higher contrast agent
doses to enhance blood vessel visibility, which aids in diagnosis by improving the detection
of microvessels. However, the use of contrast agents can cause nephrotoxicity, particularly
in pediatric patients, as repeated use increases the risk of kidney dysfunction [7]. This
limitation of contrast agents can reduce image contrast and complicate vascular assessments,
especially in pediatric liver transplant cases that require high contrast enhancement [8].

To address these challenges, photon-counting detectors (PCDs) have been introduced
as hardware solutions [9,10]. By allowing the selection of specific energy ranges, PCD
technology enhances image contrast for targeted tissues or materials. Furthermore, images
acquired using low-energy photons improve contrast while reducing the radiation dose,
resulting in images with higher diagnostic value. However, the commercialization of PCDs
remains limited due to various factors, such as size and cost [11].

The virtual monoenergetic image (VMI) approach based on dual-energy CT (DECT) is
a software-based technique used to address the limitations of hardware-based PCD. DECT
acquires images in low- and high-energy data and uses the attenuation differences of X-rays
at different energies to distinguish between materials [12]. Based on this characteristic, a
VMI generated from a DECT-acquired image at various energy levels can select a specific
energy range to increase contrast in vascularized areas, thereby improving the diagnostic
accuracy of lesions. In particular, for liver CT examinations, iodine is widely used as a
contrast agent, and a VMI with a low single-energy level (i.e., 40-50 kilo-electron-volt (keV))
is close to the K-edge of iodine (33.2 keV), which is beneficial for observing liver lesions,
thus increasing the diagnosis rate [13,14].

Preliminary studies have shown that a 40 keV VMI acquired with DECT provides
images with higher Hounsfield unit (HU) values than single-energy CT (SECT) images at
the same contrast concentration, achieving a 20% reduction in contrast concentration [15].
Additionally, one study found that VMI imaging at 40 keV improved diagnostic reliability
and increased laceration clarity when evaluating pancreatic imaging [16]. When compared
with SECT, the 40 keV VMI has higher HU values in the contrast region; however, image
quality is degraded by statistical noise caused by an insufficient number of photons at lower
energy levels [17,18]. In one study, the CNR values of a 40 keV VMI and single-energy CT
were measured and found to be about 3.68 and 4.27, respectively, indicating a decrease in
image quality in VMI images acquired in the low energy range [19]. Therefore, effective
noise reduction by applying a denoising algorithm to 40 keV VMI acquired by DECT
can reduce the contrast agent dose and concentration, as well as the radiation dose to
the patient.

To reduce noise in CT images, algorithms, such as median, Gaussian, and Wiener filters,
have been proposed and proven useful [20,21]. However, conventional noise reduction
algorithms decrease the sharpness of image edges and cause a blurring effect, reducing
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resolution. To address these issues, non-local means (NLM) algorithms have been proposed
to reduce noise by using the intensity and relative distance of pixels in the image to preserve
the sharpness of the edge; however, conventional NLM algorithms are computationally
intensive, resulting in difficulties in clinical applications where fast image acquisition is
essential [22]. To solve this problem, the proposed fast NLM (FNLM) algorithm simplifies
processing by converting the process of calculating weights from two dimensions to one,
shortening the computation time, and its usefulness has been proven [23,24]. Many studies
have been conducted on image quality evaluation and noise reduction in VMIs; however,
most of these studies have focused on adults, and relatively few studies have performed
quantitative evaluation by comparing them with existing algorithms.

Therefore, the purpose of this study was to apply the FNLM algorithm to pediatric
abdominal 40 keV VMIs acquired by DECT to derive optimization values and to quanti-
tatively evaluate the usefulness of the FNLM algorithm by comparative evaluation with
conventional algorithms.

The remainder of this paper is organized as follows: Section 2 describes the materials
and methods of the study, including the contrast sample preparation and phantom setup,
image acquisition parameters, modeling of the fast non-local means noise reduction al-
gorithm, and image quality evaluation. Section 3 describes the optimization of the fast
non-local means noise reduction algorithm, its comparative evaluation with conventional
algorithms, and a visual evaluation. Section 4 discusses the significance of our results, and
Section 5 summarizes the contributions and future research directions of our study.

2. Materials and Methods
2.1. Preparation of Contrast Agent Samples and Pediatric Abdominal Phantom Setup

In this study, a one-year-old pediatric phantom (Model No. 704), ATOM (CIRS,
Norfolk, VA, USA), was used to simulate a pediatric patient. To prepare five contrast agent
concentration samples, saline was diluted to a contrast agent concentration of 300 mg/mL.
A reference sample with an iodine concentration of 11.5 mg/mL and an average Hounsfield
unit (HU) value of 341 was set to a 100% concentration. Four additional samples were
prepared by decreasing the concentration at 20% intervals and then placed in polypropylene
microtubes (14 mm diameter, 40 mm length) to prepare 20, 40, 60, and 80% contrast agent
samples. The phantom weighed less than 15 kg, and the prepared contrast agent samples
were inserted into the upper abdomen of the pediatric phantom. Figure 1 shows the
phantom used in the experiment.

(b)

Figure 1. ATOM phantom images for CT image acquisition: (a) ATOM phantom with iodine contrast

agents of various concentrations (100, 80, 60, 40, and 20%) and (b) set up phantom positions.

2.2. The Acquisition Parameters of Computed Tomography Images

For image acquisition, we used a Somatom Definition Force (Siemens Healthcare,
Forchheim, Germany) and a picture archiving and communication system (GE Centricity
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RA 1000, GE Healthcare, Chicago, IL, USA). The syngo.via VB40A software (Siemens
Healthcare, Forchheim, Germany) was used to obtain the reconstructed VMI. The CT scan
parameters are presented in Table 1. To perform both SECT and DECT scans, the CT dose
index volume was set to 0.8 mGy. For the SECT scan, the tube voltage was set to 70 kV; for
the DECT scan, images were acquired with the high tube voltage fixed at 150 kV, and the
low tube voltage was increased in 10 kV increments from 70 kV to 100 kV.

Table 1. Acquisition parameters of computed tomography (CT) for single-energy CT (SECT) and
dual-energy CT (DECT) images.

Scan Parameter Value
CTDIvol (mGy) 0.8
Pitch 1
Rotation time (sec) 0.25
Reconstruction method ADMIRE (strength 3 + Br40)
Slice thickness/increment (mm) 3/3
kV 70
SECT
mAs 89
A tube 70, 80, 90, 100
Scanmethod kV .
B tube 150 (Sn filter)
DECT
A tube 40,22,16, 14
mAs
B tube 10,11,10,7

2.3. Fast Non-Local Means Noise Reduction Algorithm Modeling

The NLM noise reduction algorithm has demonstrated significant effectiveness for
noise reduction [25]. Moreover, the NLM effectively addresses issues commonly encoun-
tered with local filtering techniques, such as signal distortion and blurring. This is because
the NLM noise reduction algorithm compares the overall geometric composition using
the Euclidean distance as a weight, rather than applying a sliding technique to the entire
image, as in the Gaussian and Wiener filters. The NLM noise reduction algorithm is defined

as follows: .

&' nm(i) = Z@) ZieN(i) w(i, j) f(x)(j) )

where f(x) represents original noisy image and i represents an arbitrary point in the image
(§'npm) restorted by NLM. Z(i) denotes the normalization coefficient, N(i) denotes the
search window, which indicates the normalization constant corresponding to the region
adjacent to i, and w(i, j) denotes the distance weight according to the similarity between
the square kernels centered on arbitrary point i and j.

The lp-norm (Euclidean distance) is used to calculate the distance weight between the
kernels. The Euclidean distance between the two kernels is calculated as follows:

Euclidean distance = ||k; — k]'||§ (2)

where k; represents the kernel included in the pixel to be filtered and k; represents another
kernel within the search window.
Based on the Euclidean distance, the weight w(i, j) is calculated as follows:

Gn ((S) ”kl - k]”%,a)

. 1
w(i,j) = Z(i>exp<— 2 (©)

where G, denotes a Gaussian distribution with a standard deviation of magnitude a, J
denotes the adjacent area, and  denotes a constant smoothing factor. Each weight «w must
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be within the range of 0 < w < 1, and the sum of the weights for each kernel must be 1.
Therefore, Z(i) is defined according to Equation (4), as follows:

2
z(i) =Y, ex;a(G”((s)”’Zz_ g ””’)

(4)

The FNLM noise reduction algorithm modifies the calculation of w(i, j) in the NLM
noise reduction algorithm from two dimensions (2D) to one dimension (1D). The modified
w(m,n) is defined as follows:

w(i,j) = Z11.)s<f<x><i+P> — F(x)(i— P)) 5)

where P denotes the size of the local kernel when vectorization is performed from 2D to
1D, and S can be obtained using Equation (6), as follows:

—J{x)n 2
5(p) = ;;_Oexp<_||f<x><n> O +7)|2>

(6)

where y denotes j — 7, and p denotes I + 7.

The FNLM noise reduction algorithm improves the time resolution compared to the
NLM noise reduction algorithm [24]. This enhancement was achieved by simplifying the
process by using one-dimensional computations.

2.4. Image Quality Evaluations

In our study, VMI was compared and evaluated using 40 keV imaging, an energy
level that has been empirically validated as effective in abdominal diagnosis. This energy
level was selected because of its proven ability to provide superior contrast enhancement,
substantiating the superiority observed in our previous study. To optimize the smoothing
factor of the FNLM noise reduction algorithm, we enlarged the region of interest (ROI) at
the center of the five contrast agent concentration samples and averaged the results. For a
quantitative evaluation of the optimized FNLM, we used MATLAB software (ver. 2023a;
MathWorks, Boston, MA, USA) to calculate the contrast to noise ratio (CNR) and coefficient
of variation (COV) [26,27]. Figure 2 shows the ROI: the yellow and red boxes indicate the
materials and background regions for the noise level evaluation, the blue box represents the
region for the visual evaluation, and the white box indicates the region for the normalized
noise power spectrum (NNPS) evaluation.

=

NNPS

20 %

O

(b)

Figure 2. Computed tomography scans acquired ATOM phantom images: (a) region of interest for
quantitative and visual evaluation, (b) single-energy computed tomography image, and (c) dual
-energy computed tomography image.
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The CNR indicates the ratio of contrast and noise between the ROI and the background
region of the same image. Equation (7) is as follows:

CNR = 15r — Spx| 7)
\/ 0%+ 03y

where Sg and Spg represent the average signal intensities in the ROI and background,
respectively; or and opk are standard deviations in the ROI and background, respectively.
The COV was calculated to assess the degree of deviation in the phantom images, as in
Equation (8):

cov = ‘%R ®)

where oy, is the standard deviation of the signal intensity and y is the average value in
the ROL

Moreover, for comparative evaluation, the optimized FNLM was compared with SECT,
DECT, and total variation (TV) algorithm images. The TV algorithm can effectively reduce
noise without losing high-frequency signals. The algorithm determines specific settings for
a particular region based on the pixel values in the ROI and reflects the interrelationships
between composition changes across the overall image [28]. The TV algorithm formula is
as follows:

g(xy) = f(xy) +n(xy) )

where f(x,y) represents the ideal image, n(x, y) represents the electrical noise introduced
during image acquisition, and g(x, y) signifies the resulting degraded image.

In addition, the gradient used to calculate the difference between the pixel value in
the ROI and its neighboring pixels is defined as follows:

flmm)py =Y 0 Y [V F(m,n)]
=Y S (Fmm) — Flm—1,m)) 4 (f () — flm,n— 1))

where f(x,y) represents the image function, with M and N indicating the number of rows
and columns of the image f(m, n), respectively, while V denotes the gradient operator.

In general, the /;-norm is considered to be an effective operator for extracting edges.
However, the [-norm is highly sensitive to noise, which means that it has a high risk of
incorrect signal processing in that it selects noisy signals over edge signals. Therefore,
we used the /;-norm as the gradient operator. Based on Equation (10), we designed a TV
denoising algorithm, which is represented by the following Equation (11):

(10)

M N
S(fmmimm) =Y N VFmm)+ T1m ) — fommy D)

where <y represents a control parameter with two terms on the righthand side of the
equation, and in our study, we set ¢ = 0.1. Moreover, YM | "N ||V f(m,n)| can be used to
determine the optimal solution. J1(m,n) — f(m,n), represents the regulation fidelity term
that indicates the accuracy of the image information.

Lastly, we used an adaptive average filter method, which applies the weighted value
of the ROI and neighborhood pixel value through iterative utilization of Equation (11).

To quantitatively evaluate image quality, we calculated the CNR, COV, and NNPS.
The NNPS parameter analyzes the noise variations in an image across the spatial frequency
range of interest [29]. The NNPS calculations were based on measurements in air. The
equation for calculating NNPS is as follows:

NPS(u,v)

NNPSormatizea(1,v) = ; 2
(large area signal)

(12)
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where 1 and v denote the pixel signal along the X- and Y-axes, respectively.

3. Results
3.1. The Optimization of the Fast Non-Local Means Noise Reduction Algorithm

A quantitative evaluation was conducted to determine the optimized smoothing factor
for the FNLM noise reduction algorithm. The CNR and COV were calculated as evaluation
factors to optimize the smoothing factor for the FNLM. Figure 3 shows the graph of the
average CNR and COV at each contrast concentration with increasing smoothing factors.
The CNR evaluation showed the highest value (40.2996) at a smoothing factor of 0.02
across all contrast concentrations and then rapidly decreased with a steep slope, eventually
converging to a constant value. The COV evaluation showed the lowest value of 0.0055 at a
smoothing factor of 0.02 for all contrast concentrations and then increased significantly from
0.02, eventually converging to a constant value. When analyzing the CNR and COV, the
FNLM algorithm achieved the lowest COV at a smoothing factor of 0.02, minimizing noise
variability while providing the highest value of CNR, resulting in improved image contrast.
Therefore, based on these results, we derived a smoothing factor of 0.02 as the optimal
value, which achieves the highest CNR and lowest COV simultaneously to determine the
optimized value.

27 4

Contrast to noise ratio (CNR)
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(a)

(b)

Figure 3. Quantitative evaluation results according to the smoothing factor of the fast non-local
means algorithm in a virtual monoenergetic image: (a) contrast to noise ratio and (b) coefficient
of variation.

3.2. The Comparative Evaluation of the Optimized Fast Non-Local Means Noise Reduction
Algorithm with Conventional Algorithms

A comparative evaluation was conducted using SECT, DECT, and TV algorithms to
evaluate the usefulness of the optimized FNLM. For comparison, the average CNR and
COV values were measured at contrast agent concentrations of 20, 40, 60, 80, and 100%.
Figure 4 shows the CNR and COV values for the optimized FNLM noise reduction, SECT,
DECT, and TV algorithms. The CNR evaluation results show that the optimized FNLM
noise reduction algorithm had the highest value of 40.2996, while the TV algorithm, DECT,
and SECT had improvements of approximately 17.9663, 12.8084, and 9.3019, respectively.
Additionally, the COV evaluation results show that the FNLM algorithm had the lowest
COV value of 0.0055, while the TV algorithm, SECT, and DECT had values of approximately
0.0097, 0.0105, and 0.0135, respectively.
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Figure 4. Comparative evaluation results of single-energy computed tomography, dual-energy
computed tomography, the total variation noise reduction algorithm, and the optimized fast non-local
means: (a) contrast to noise ratio and (b) coefficient of variation.

Moreover, we evaluated the NNPS of SECT, DECT, TV and optimized FINLM algo-
rithms. Figure 5 shows the NNPS results. The results showed that the FNLM algorithm
showed the greatest improvement, while DECT performed the least effectively. In particu-
lar, the optimized FNLM algorithm showed an average improvement of 10~! mm? in the
NNPS compared with the DECT image.

Normalized noise power spectrum
(NNPS, mn?’)

10—t
00 02 04 06 08 10 12 14 16 18 20

Spatial frequency (Ip/mm)

Figure 5. Comparative evaluation result of normalized noise power spectrum evaluation with
single -energy computed tomography, dual-energy computed tomography, the total variation noise
reduction algorithm, and the optimized fast non-local means.

3.3. The Visual Evaluation of the Optimized Fast Non-Local Means Noise Reduction Algorithm
with Conventional Algorithms

A visual evaluation was performed to compare SECT, DECT, TV, and the optimized
FNLM algorithm. Figure 6 shows the magnified region of the blue box in Figure 2 in
the resulting image. The selected region contained a 100% contrast agent concentration
sample, and the phantom was used to analyze the contrast of the contrast agent sample.
The visual evaluation showed that the SECT image had a lower noise value than the DECT
image, low contrast between the contrast sample and the phantom, and unclear sample
edges. The DECT image showed a higher contrast between the contrast sample and the
phantom than the SECT image; however, more noise was observed. The TV algorithm
increased the overall brightness in both the phantom and contrast regions. Moreover, the
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TV algorithm exhibited a relatively low noise reduction performance compared with the
optimized FNLM algorithm. Additionally, the TV algorithm resulted in less smooth edges
between the contrast sample and the phantom. The optimized FNLM algorithm effectively
reduced noise without brightness distortion and produced the smoothest edges between
the phantom and the contrast agent samples.

(c) (d

Figure 6. A magnified image of a contrast agent sample at 100% concentration for comparative visual

evaluation: (a) single-energy computed tomography image, (b) dual-energy computed tomography
image, (c) the total variation noise reduction algorithm, and (d) the optimized fast non-local means
noise reduction algorithm.

4. Discussion

Abdominal CT is essential for patients with liver cancer; however, ultrasound and MRI
are recommended for pediatric patients with liver cancer because of the risk of radiation
exposure [30]. Abdominal CT scan is essential for pediatric patients with liver cancer
undergoing liver transplantation, and contrast agents should be used to enhance liver
vessel visualization [31]. However, contrast agents can cause nephrotoxicity, increasing the
risk of side effects in pediatric patients who require repeated follow-up examinations [32].
To address this problem, a DECT-based VMI technique was proposed [33]. The VMI
technique creates a virtual low-energy image with a low- and high-energy range acquired
by DECT, providing high contrast with a low contrast agent dose [34]. However, DECT-
based VMI can cause noise in images because of image acquisition in the low energy range,
which can reduce the diagnostic accuracy in pediatric hepatic vascular imaging. In this
study, the FNLM algorithm was applied and optimized to solve these noise problems, and
its usefulness was confirmed by comparative evaluation with SECT, DECT-based VMI, and
TV algorithms.
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To optimize the FNLM algorithm, we measured the CNR and COV at various con-
trast concentrations (20, 40, 60, 80, and 100%). Both factors showed the most significant
improvement at a smoothing factor of 0.02, and the rate of improvement slowed down
after that. Based on these results, we derived an optimal smoothing factor of 0.02 for the
FNLM algorithm on VMI. To confirm the usefulness of the optimal FNLM algorithm, we
performed a comparative evaluation with SECT, DECT-based VMI, and TV algorithms.
In the CNR and COV evaluation, the optimized FNLM algorithm performed the best,
significantly improving CNR and COV by approximately 3.14 and 2.45 times, respectively,
compared with DECT images. Additionally, the NNPS evaluation showed that the VMI
image with the optimized FNLM algorithm was the most improved, with a 10~! mm?
improvement compared with the DECT image.

Visual evaluation confirmed that DECT images exhibited a higher contrast difference
between the contrast agent sample and phantom compared with SECT images and that
SECT images had lower contrast and less noise than DECT images. When comparing the TV
algorithm with the optimized FNLM algorithm, we found that the TV algorithm retained
noise, and an overall brightness increase was observed. The image obtained using the
optimized FNLM algorithm effectively reduced the noise without distorting the signal, and
the edges of the contrast agent samples were clearer. This indicates that the TV algorithm
reduces noise by minimizing total variation (“sudden changes in the image”), leading to an
overall smoothing effect by diminishing fine texture and gradient information [35]. The
FNLM algorithm preserves detailed structures and edges more effectively because this
approach uses a nonlinear filtering technique to reduce noise based on the similarity of
the surrounding pixels. Because the FNLM algorithm selectively averages only similar
patches, sharper edges are maintained compared with the TV algorithm, which can result in
blurred boundaries [36]. Therefore, compared with the TV algorithm, the FNLM algorithm
demonstrated superior performance in terms of noise reduction and structure preservation.
These characteristics suggest that the FNLM algorithm can be widely applied in various
fields owing to its flexibility and ability to adjust the parameters.

Several previous studies have shown that a 40 keV VMI provides the highest CNR
because of the K-edge characteristics of the iodine contrast agent [37]. Another study
confirmed that VMI images at 40 keV showed the highest attenuation; however, these
images were noisier than images at other energy ranges [38]. In this study, the application
of the FNLM algorithm effectively reduced the noise in a 40 keV VMI, allowing high-
quality images to be acquired with a lower contrast dose. This reduction in the contrast
dose is especially beneficial for pediatric patients because it minimizes the risk of contrast-
induced toxicity.

Recent advances in deep learning have had a significant impact on medical imaging,
particularly abdominal imaging [39]. One study demonstrated that a deep learning model
can be effectively applied to pediatric patients with chronic liver disease with appropriate
training [40]. However, training these models requires large datasets; in particular, deep
learning-based denoising of CT images requires obtaining low-dose and standard-dose
CT image sets from the same patient [41]. However, obtaining such large datasets of
pediatric abdominal CT images is complex, and obtaining sufficient datasets for training is
challenging because repeated scans are limited to pediatric patients owing to the risk of
radiation exposure. To address this lack of datasets, FNLM algorithms are expected to be
more applicable in clinical settings because they can effectively denoise only a single image
and are computationally efficient.

Careful management of the radiation dose is essential in repeat abdominal CT scans
of pediatric patients with liver cancer. When using DECT, the radiation dose is reduced by
approximately 37% compared with SECT and can be reduced by approximately 47% de-
pending on the protocol. This reduces radiation exposure and improves the life expectancy
of pediatric patients [42]. Furthermore, DECT is more specialized than SECT for observing
incidental lesions in other tissues, such as the spleen and kidneys, and DECT-acquired
iodine maps can be generated to enhance the visualization of tumor nodules [43]. Addition-



Electronics 2024, 13, 4684

11 0f 13

ally, compared with MRI data, DECT can provide information on tissue composition, such
as blood, iodine, calcification, and fat, and is particularly appropriate for iodine-specific
imaging [44]. These advantages of DECT minimize radiation exposure in patients by
avoiding unnecessary additional imaging or follow-up examinations. In one study, when
DECT was used to image the abdomen of pediatric patients over eight years of age and the
concentration of iodinated contrast was reduced, the image quality was not significantly
different from that of SECT. This suggests that for pediatric abdominal diseases, DECT
can be used to obtain diagnostically meaningful images with reduced doses of iodinated
contrast [45].

Therefore, DECT-based liver cancer screening has been shown to significantly re-
duce effective contrast agent doses, which is particularly beneficial for pediatric patients
who require repeated examinations. Furthermore, the results of this study can be ap-
plied to CT imaging of pediatric liver cancer patients, as well as in patients with various
abdominal diseases.

Recent research has been conducted on multimodal medical fusion imaging systems.
This approach extracts complementary and useful features from data from different modal-
ities. In one study, an NLM-based algorithm was integrated into a fusion imaging system
to reduce noise and improve sharpness in images, resulting in higher quality fused im-
ages [46]. Based on these findings, we plan to apply NLM-based algorithms in a multimodal
framework to reduce noise in multimodality images and evaluate the impact of NLM-based
algorithms. These studies are expected to serve as preliminary research to demonstrate
how the properties of NLM-based algorithms in fusion imaging systems change important
image qualities, such as contrast, sharpness, and information preservation. By analyzing
the improvements that NLM-based algorithms contribute to medical image quality, we
believe that we can provide the basis for a robust clinical imaging solution. Furthermore,
we expect our future studies to demonstrate that NLM-based algorithms can improve
individual image quality as well as overall medical modality imaging quality.

In conclusion, effective noise reduction with minimal radiation and contrast doses
is essential for pediatric abdominal CT. This approach ensures diagnostic accuracy while
reducing radiation exposure and contrast-induced toxicity. Many studies have focused on
improving the quality of DECT-based images; however, most have been conducted in adult
patients, and relatively few have addressed noise reduction in pediatric VMIs. This study
is significant because it confirms the utility and applicability of noise reduction algorithms
in pediatric VMIs and provides a framework for further research.

5. Conclusions

Minimizing radiation exposure and contrast agent doses is critical in pediatric abdom-
inal CT scans, especially in pediatric patients with liver cancer who require repeat CT scans.
Our study showed that the FNLM algorithm can significantly improve noise reduction at
lower radiation and contrast agent doses without degrading image quality. This approach
is beneficial for pediatric patients who require minimal exposure to radiation and contrast
agent toxicity. Previous research has focused on improving image quality with DECT in
adult patients; however, relatively few studies have addressed noise reduction in pediatric
VMI imaging. This study demonstrates that the FNLM algorithm can effectively reduce
noise while maintaining diagnostic quality, providing a solution for pediatric patients with
liver cancer and other pediatric abdominal imaging needs. These results provide a frame-
work for further research on the application of advanced noise reduction algorithms in
pediatric imaging, potentially contributing to safer and more efficient diagnostic practices
in clinical settings.
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