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Abstract: Non-intrusive load disaggregation is a technique that monitors the total electrical load of
an entire building or household. It uses a single power metering device to measure the total load.
Then, it employs algorithms to break it down into the individual usage of different electrical devices.
To address issues in load disaggregation models such as long training times, feature interference
caused by the activation of other loads, and accuracy deficiencies caused by behavioral interference
from users’ electricity usage habits, this paper proposes a VMD-Nystrémformer-BiTCN network
architecture. The variational mode decomposition (VMD) filters the raw power data, reducing errors
caused by noise and enhancing the accuracy of decomposing the load. A deep learning network
utilizes a modified attention model, Nystromformer, to reduce feature entanglement and accuracy
degradation caused by habitual behavior interference during load disaggregation, while ensuring
precise accuracy and improving network operational speed. The training network uses a bidirectional
temporal convolutional network (BiTCN) and incorporates a residual network to expand the receptive
field, allowing it to receive longer load sequence data and acquire more effective load information,
thereby improving the disaggregation effectiveness for target appliances.

Keywords: deep learning; non-intrusive load monitoring; variational mode decomposition filtering;
attention mechanism

1. Introduction

Monitoring household appliance electricity consumption in contemporary society
holds significant practical importance. This practice not only helps users optimize their
electricity usage and save energy but also supports the government in effectively managing
power demand during peak periods, thus maintaining grid stability. The International Elec-
trotechnical Commission (IEC) states that smart electrification is the best way to address
energy issues [1,2]. According [3] to a research report by Vassieleva et al., 80% of consumers
are interested in reports on electricity consumption based on individual appliances. Know-
ing the electricity usage of each appliance helps consumers identify the appliances with the
highest energy consumption and encourages them to consciously optimize their energy us-
age. Understanding consumption trends and energy-intensive appliances can help reduce
the power consumption of residential or commercial buildings by 12% [4]. Residents, as
an important part of demand-side management of electricity, possess high load flexibility
and significant demand response potential. However, the diversity in household electricity
usage behaviors and the variety of decision-makers make it extremely challenging to fully
tap into this demand response potential.

In 1982, Professor Hart [5] defined the concept of non-intrusive load monitoring
(NILM) by analyzing the total energy consumption of a given segment to obtain the energy
consumption and status of individual loads within that segment. With the advancement of
computer technology, the technical approach to NILM has gradually been refined. Scholars
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have categorized NILM into load identification techniques and load disaggregation tech-
niques based on whether they determine appliance on/off states or decompose appliance
energy consumption [6,7]. Using regression methods to model NILM, individual appliance
energy consumption is disaggregated from the total power, a method referred to as load
disaggregation. By feeding data into the model for computation and mapping the results
for output, the energy consumption values of appliances are obtained [8,9]. Compared to
traditional load monitoring techniques, non-intrusive load disaggregation technology is
low-cost, easy to implement, and convenient to operate, helping power grid companies
establish a more comprehensive energy management system at a lower cost. Brazilian
scholars, Lima et al., suggested that non-intrusive load disaggregation technology can help
policymakers understand user behavior patterns, thereby facilitating electricity pricing
reforms [10]. Zhao Ying from East China Jiaotong University [11] used load disaggregation
technology to assist users in optimizing their electricity usage behavior under a time-of-use
pricing policy, achieving energy savings and cost reduction. With the introduction of the
smart-home-ecosystem concept, resident electricity usage behavior analysis, based on non-
intrusive load disaggregation technology, has emerged as a novel field. By analyzing user
electricity usage patterns, one can infer the user’s lifestyle. Chen Weiyu and colleagues,
from Zhejiang University, proposed [12] that load disaggregation technology can be used
for equipment fault monitoring. They developed an electrical safety monitoring scheme
based on leakage current. Alcala and others [13] proposed using load disaggregation
technology to monitor the health and safety of elderly individuals living alone. Addition-
ally, by promoting rational electricity usage through peak shifting, energy savings can be
achieved while reducing residents’ electricity expenses. In summary, the application of
non-intrusive load disaggregation technology can benefit power users, grid companies,
and society as a whole.

In the task of load disaggregation, the accuracy of disaggregation is undoubtedly the
most important aspect. Recently, with the rapid development of deep learning technology,
many innovative models and methods have been proposed by scholars to improve disaggre-
gation accuracy. Kelly et al. [14] proposed a sequence-to-sequence (525) mapping method,
where the output sequence aligns with the input sequence. Typical models corresponding
to this method include the denoising autoencoder (DAE). The S2S model represents one of
the early successful applications of deep learning in load disaggregation, marking a shift
from traditional methods (such as hidden Markov models and cluster analysis) to deep
learning approaches. By utilizing deep neural networks, S2S models can automatically
learn and capture complex characteristics of load signals, which is a significant break-
through in the NILM field. Zhang et al. [15] introduced a sequence-to-point (S2P) mapping
method, where a sequence input corresponds to a single output point. Typical models
corresponding to this method include S2P and bidirectional LSTM models. The S2P model’s
more straightforward input-output mapping relationship allows it to better handle noise
and anomalies in the data. Compared to the S2S model, the S2P model is more concise,
facilitating training and deployment while reducing computational and storage require-
ments. Reference [16] proposes the enhancement of model performance through integrated
methods. The combination of transfer learning and convolutional neural networks, along
with the newly introduced WeCV voting mechanism, effectively improves the accuracy of
appliance energy consumption disaggregation. Reference [17] introduced the WaveNet
neural network, a typical one-to-one output model inspired by causal one-dimensional
convolutional neural networks in the context of real-time applications. This approach
builds causal connections between layers of deep neural networks, achieving faster con-
vergence and higher cost efficiency. Reference [18] proposes an innovative time bar-chart
method that effectively combines appliance operation modes with time features. It aims to
improve the accuracy of appliance classification by the temporal modeling of power signals,
particularly excelling in scenarios with multiple appliances. Reference [19] proposed a
disaggregation algorithm based on deep recurrent neural networks, which selects electrical
parameters most influential to the power consumption of each target appliance through
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information fusion methods. The selected parameters are then input into a multi-feature
space for model computation, and the final results undergo post-processing to eliminate
irrelevant sequences, enhancing real-time performance. References [20,21] introduced
transfer learning methods, expanding the model’s generalization ability, reducing the time
required for training models from scratch, and accelerating model deployment and applica-
tion. This reference [22] reviews the non-intrusive load monitoring methods based on deep
neural networks (DNN), focusing on appliance disaggregation from low-frequency data.
It provides an overview of NILM methods, compares the performance of various models,
studies the differences between different models, and suggests potential future directions
and issues worth further researching for NILM. Reference [23] proposed a subtask network,
integrating load disaggregation and load identification techniques to enhance overall model
performance. Reference [24] introduced the attention mechanism into NILM, significantly
enhancing feature extraction for appliance activation data and improving disaggregation
accuracy. Reference [25] proposed a novel integration of the attention mechanism with
disaggregation tasks by compressing two-dimensional convolutions into one-dimensional,
and then converting them back to two-dimensional, achieving accurate disaggregation
while reducing computational costs. Thanks to the in-depth research by numerous scholars,
deep learning has shown outstanding performance in the field of load disaggregation. The
introduction of the attention mechanism, in particular, has not only significantly improved
disaggregation accuracy but also demonstrated its unique advantages in handling complex
tasks. These academic research outcomes lay a solid theoretical foundation and provide
strong support for the optimized model proposed in this paper.

2. Materials and Methods
2.1. Problem Definition

Non-intrusive load disaggregation refers to the process of extracting the power con-
sumption data of individual appliances from the total household energy consumption.
Suppose the user has N electrical appliances, each with only two states (on and off), and the
energy consumption of the appliances does not vary significantly while they are operating.
Then, the total energy measured at time f can be expressed as:

P(t) = ) si(t)pi(t) +n(t) ©)

M=

l
—

1

Here, N represents the total number of electrical appliances in the user’s home. p;(t)
denotes the power consumption of the i-th appliance at time ¢, while s;(t) represents the
on/off state of the same appliance at time ¢. n(t) stands for the noise present at the time .
To obtain the power consumption of each appliance at a time ¢, power-monitoring modules
need to be installed between each appliance and the power supply, which undoubtedly
increases the cost of the smart grid. Non-intrusive load monitoring avoids the need to install
sensors at each individual load point, greatly reducing equipment installation costs. This
allows for the estimation of p;(f) based solely on the given total power consumption P(t).

Load disaggregation, as an important component of non-intrusive load monitoring
(NILM), aims to analyze the power consumption of specific appliances, whose consumption
patterns often exhibit highly nonlinear characteristics, making traditional linear analysis
methods ineffective for accurate parsing and disaggregation. Deep learning offers an
efficient and accurate solution through its powerful data processing and pattern recognition
capabilities, as well as its innate advantages in modeling nonlinear data. To formalize
this problem, it can be described as finding an arbitrary function. This function can
accurately map the observed aggregate energy consumption to the unique consumption
profiles of individual appliances. The objective of load disaggregation is to infer the

energy consumption patterns of individual appliances ;(t) by analyzing the total energy
consumption data P(t). NILM(P(t)) represents the entire framework of non-intrusive

load disaggregation, requiring only the total power P(t) for research. In it, Z(t) represents
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each appliance, for which a corresponding deep learning model must be established to
perform disaggregation, and then these are aggregated to form a holistic NILM system. In
NILM, the energy consumption data of appliances are typically time-series data, involving
multiple time points. Using vectors can conveniently represent this data structure, where
the power consumption at each unit of time (such as minutes or hours) can be a component
of the vector. This process can be expressed as follows:

pfrige(t) N
NILM(P(t)) = a(t) = Z’:f;’f(tz @ |t 12# s(£)p;(t) +n(t) 2
ishwasher j=1,j#i

Therefore, the process of energy disaggregation involves establishing a mapping
relationship between aggregate power consumption and the consumption of individual
appliances. This implies the need to develop different models for various appliances since
each mapping corresponds only to a specific appliance. Furthermore, the uniqueness of the
load characteristics of each appliance further emphasizes the individuality of these models.

Ultimately, the modeling problem for load disaggregation is summarized as follows:
For a set of N appliances with known individual power consumption p;(t) and total
measured power consumption P(t), the process of non-intrusive load monitoring can
be conceptualized as an optimization problem. Specifically, for a given time point ¢, the
task is to find an N dimensional vector that the error Z(t) between the disaggregated
power obtained through deep learning and the actual power is minimized, as shown in the
following Equation (3):

©)

Z(t) = argmin

2.2. VMD-Nystromformer—BiTCN Model

This paper proposes the VMD-Nystromformer-BiTCN load disaggregation model,
which employs VMD filtering as the data processing component to preprocess raw data. By
incorporating the Nystromformer attention model as the feature extraction and variable-
selection layer, the model performs weighted feature extraction of the power signals.
Additionally, the BiTCN network is used as the deep learning network to train the power
signals. Residual networks are introduced to enhance features and prevent overfitting,
thereby improving the model’s disaggregation accuracy.

VMD generally outperforms EMD in load disaggregation, offering greater adapt-
ability without the need for pre-selecting bases or determining decomposition levels like
wavelet filtering. Instead, it automatically determines decomposition parameters through
optimization. VMD can also adjust regularization parameters to balance accuracy and
resistance to mode mixing, demonstrating flexibility and controllability when dealing with
non-stationary appliance power signals. In contrast, the Nystromformer enhances the
operational speed and computational efficiency of attention mechanisms without compro-
mising accuracy. Before the emergence of TCN, processing sequence data relied on RNNs
such as GRU and LSTM, which are difficult to parallelize and limited by dependencies on
time steps, restricting efficiency when handling large-scale data. TCN overcomes these
limitations through convolution operations, enabling parallel computation and suitability
for large-scale data processing, especially in performing load disaggregation tasks. The
BiTCN further enhances processing efficiency by expanding the receptive field without
increasing the number of convolution layers.

2.2.1. VMD Filtering

In 2014, Konstantin Dragomiretskiy et al. proposed [26] the VMD (variational mode
decomposition) method, a novel, adaptive, completely non-recursive mode variance and



Electronics 2024, 13, 4663

50f 20

signal processing technique. This method can use the alternating direction method of
multipliers (ADMM) to optimize complex signals into several modal components (intrinsic
mode functions, IMF) arranged from low to high frequencies. It has good time-frequency
localization capabilities and better noise robustness.

The model initially chose VMD filtering because, when collecting appliance data at
low frequencies, a signal outlier amplified due to the large time gap between consecutive
samples adversely affects the training outcomes. For example, a spike in current may exist
only momentarily. However, with a sampling frequency of 1/6 Hz, this point’s data might
show a 12 s fluctuation. This fluctuation does not align with the normal operational power
characteristics, therefore making filtering necessary.

Compared to other filtering methods, VMD filtering can better suppress mode mixing
by introducing regularization terms and variational optimization than EMD (empirical
mode decomposition) filtering, resulting in a cleaner power signal after denoising. VMD
filtering identifies optimal modal functions through variational optimization, generally
providing better decomposition accuracy than EMD. Compared to wavelet filtering, VMD’s
adaptability is stronger. VMD does not require pre-selecting different wavelet bases or
determining decomposition levels for different appliances. Instead, it automatically deter-
mines them through the optimization process. VMD filtering can balance decomposition
accuracy and enhance anti-mode mixing ability by adjusting regularization parameters.
Furthermore, it offers flexibility, controllability, and effective handling of non-stationary
signals, such as the power signals of appliances.

In power signal filtering, the VMD signal filtering process is the process of obtaining
the optimal solution to the variational problem. By shifting the modal functions’ spectra,
we can obtain the respective computed center frequencies; then, using Gaussian smoothing
to demodulate the data signal, we obtain the bandwidth of each IMF. Subsequently, by
matching the optimal center frequencies and finite bandwidths of each IMF, we separate
the IMFs, partition the signal’s frequency domain, extract the effective parts of the signal,
and eventually obtain the optimal solution to the variational problem. The decomposition
model is shown by the following equation:

)
2 (4)

k

{gclxg/lc} { kgl

k
f= Y u
k=1
In the formula, uj represents the different modal components of the target appliance

obtained after VMD decomposition; wjy represents the center frequencies of the modal
components; d; is the gradient operator; 6(¢) represents the switching states of the appliance;
t is the sampling time of the appliance power; and f is the original power signal. To find
the optimal solution to the variational problem, the constrained variational problem needs
to be converted into an unconstrained variational problem. This introduces the Lagrange
multiplier A(t) and the quadratic penalty term a. The augmented Lagrangian function
expression is given by the following:

L{{uc}, {wi} A) =

2 K(S(t) + ;t)uk(t)] ——

o [ (50 + L Yoo ®
+H £~ & (0 s (M0.50) - £ (o)
- ) k=1
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Then, after converting the parameters in the time domain to the frequency domain,
and subsequently performing a secondary optimization within the non-negative frequency
range, the various modal components can be obtained:

u Ew) 1+2a(w wie)? (6)
=flw) = ¥ fiw)
i€R,i#k

e Jo. @l (w w)|*dw
k Jo” I (w ) Pdw

using the alternating direction method of multipliers (ADMM) to iteratively update the
values of ]!, w™, A7 to obtain the optimal solution of Equation (5), thereby decom-
posing the orlgmal load power signal. In load disaggregation processing of power signals,
VMD (variational mode decomposition) decomposes the power signals into a series of
modal functions with different frequency characteristics. Based on the characteristics of the
intrinsic mode functions (IMF), and through iterative training, the IMFs related to noise
can be identified. By setting thresholds, selectively discarding certain IMFs, or weighting
the IMFs, the identified noisy IMFs can be removed or suppressed. The remaining IMFs are
then reconstructed to obtain the denoised power signal. This approach effectively removes
noise while retaining the significant electrical power features in the data.

(7)

2.2.2. Nystromformer

This attention mechanism is inspired by the human visual attention mechanism. When
people observe objects, they focus on certain parts of the objects and ignore unimportant
information. In load disaggregation tasks, attention can help the model focus on the most
relevant and important power features in the input data. It allows the model to dynamically
attend to different parts of the information during prediction, which helps capture long-
distance dependencies in the input data, and thereby improves the model’s understanding
of the data. Traditional attention mechanisms apply linear transformations of Query (Q),
Key (K), and Value (V) to the input data to compute attention scores. These attention
scores are then processed through a softmax function to obtain attention weights. These
weights represent the importance of each value, indicating which parts the model should
focus on. The standard scaled-dot attention in matrix form is written as follows:

Attention(Q, K, V) = softmax (QKT) 1% (8)

In the above formula, the complexity of the model is O(n?). In non-intrusive load
monitoring tasks, the data collected for each appliance is vast. The traditional attention
model has a complexity of O(n?), which means that as N increases to maintain global
feature input, this will lead to excessively long model training times. Therefore, this paper
adopts a novel attention mechanism model that maintains the accuracy of traditional
attention to reduce appliance training time and increase the feasibility of edge computing.

In the above formula, QKT must be computed first before calculating the softmax,
which prevents us from using the associative property of matrix multiplication. The QKT
matrix is an inner product of vectors, resulting in both time and space complexity of O (n?).
To address this issue, Nystromformer proposes [27] the following solution to reduce the
computation complexity of attention while maintaining precision.

The softmax function of the QK matrix in the model cannot be directly computed. The
best approach is to make it equivalent to a matrix that can be computed separately. The
softmax matrix used in self-attention is as follows:

_ QKT\ T[As Bs
S = softmax(\/%> = [Fs Cs] 9)
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Here, Ag € R™*™M Bg e Rm*(n=m) Fo e Rn=m)xm and Cg e RI=m)>x(n=m) Aqjsa
sample matrix obtained by selecting m columns and m rows (landmark) from S. First, per-
form singular value decomposition (SVD) on the sample matrix As. Let As = UAVT. The
formula is as follows:

& | As Bs | _ |As| 4+
S_{Fs . AgBS]_[FS]AS (As Bs] (10)

A{ is the Moore-Penrose pseudoinverse of Ag. Cg is approximated by FsA{ Bs.
Next, for a given query vector ¢; and key vector k;, let

Kg(qi) = softmax(quT> (11)

Vi

kT
kG (kj) = softmax <Q]> (12)
Vg

where k(g;) € R1*", xg (k) € R™1. We can then construct this as follows:
1
Or(ai) = A2V [ (@) 1 (13)
N = A2 T e~ (K
b (k) = AU kg (k)| (14)

with ¢z(g;) and $5 (kj) available in hand, the matrix S for standard Nystrém proximation
is calculated as follows:

S = [softmax (?};) softmax (?};) 1 (15)
q q mxn

The n x m matrix represents selecting m columns from an n x n matrix, while the
m X n matrix represents selecting m rows from the n x n matrix. This representation is

Ag

nxm

an application of (10) for softmax matrix approximation in self-attention. [?ﬂ in (10)

corresponds to the first n X m matrix in (15) and [A s B 5] in (10) corresponds to the last
m X n matrix in (15).

The model uses an iterative method to approximate the Moore-Penrose pseudoinverse
through efficient matrix-matrix multiplications. Ultimately, its QKV matrices will be
equivalent to the following;:

softmax| ——— | | Z* | softmax| ———
(M Vi

In the complexity analysis of the Nystrom approximation, several key steps’ time
complexity is primarily considered. First, landmark selection uses the segment means
method, which has a time complexity of O(n). This means that the efficiency of the algo-
rithm for selecting landmarks is linearly related to the size of the input data, which can be
accomplished through a simple linear scanning process. This is crucial for large-scale data
processing, as it ensures that landmark selection does not become a performance bottleneck.

Next, the iterative approximation calculation of the pseudoinverse requires O (m?)
time in the worst case. Regarding matrix multiplication, the calculations involve first
computing softmax (QKT) x Z and softmax QKT) x V, followed by the multiplica-

Vi Vi
tion of these two results. The overall time complexity for this series of operations is
O(nm?* + mnd, + m® + nmd,). Overall, the analysis indicates that the Nystrém approxima-

SV = 1% (16)
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tion method is efficiently designed in terms of time complexity concerning the input size
and the number of landmarks, maintaining good efficiency when handling large datasets.
Thus, the total time complexity is O(n + m3 + nm? + mnd, + m® + nmd,). The principle
can be referenced in the following flowchart (Figure 1):

Q-

v

oIl

Figure 1. Nystromformer complexity flowchart.

In terms of memory, the cost of storing the landmark matrices Q and K is O (mdy), while the
cost of storing the four Nystrém approximation matrices is O (nm + m? + mn + nds). Therefore,
the total memory usage of the model proposed in this paper is O (md, + nm + m?* + mn + nd, ).

This undoubtedly greatly reduces the training time of the load disaggregation part
in NILM. Considering the current sample training time, using Nystromformer to replace
the traditional attention model can reduce computational maintenance costs as well as
provide a feasible solution for lightweight models and rapid training of unknown devices
in edge computing.

2.2.3. BiTCN Architecture

The main network trained in this paper adopts an extended network of the TCN,
known as BiTCN (bidirectional temporal convolutional network). The BiTCN retains
the dilated convolution and residual connections of the TCN but replaces the causal
convolutions with a bidirectional temporal convolutional neural network structure. This
bidirectional transmission of information allows the network to extract power feature
information more effectively.

TCN stands for temporal convolutional network, a neural network architecture used
for processing time-series data. It utilizes convolution operations to capture local patterns
and long-term dependencies in time-series data. The advantage of TCN is its ability to
map sequences of any length to output sequences of the same length. This feature makes it
particularly suitable for tasks like load disaggregation that deal with large amounts of one-
dimensional appliance power data. In a one-dimensional convolution, the receptive field
of the later layers becomes increasingly larger, allowing more load features to be extracted.
Such a network structure significantly enhances the ability to learn subtle fluctuations in
load power, making the model more precise in learning load characteristics.

However, such a TCN structure limits the receptive field, requiring an unlimited
number of network layers to expand the receptive field, which in turn brings a series of
problems such as gradient explosion, overfitting, and inefficiency. To address this, the
TCN network incorporates dilated convolutions, which expand the receptive field without
increasing computational complexity. The receptive field of each layer increases exponen-
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tially with network depth through the progressive increase in the dilation factor. Dilated
convolutions effectively extend the receptive field of the network model and improve its
performance. As a result, the network can obtain more data information for analysis, thus
better learning the global features of electrical appliances when processing power signals.
A larger receptive field allows the model to capture more effective information, enhancing
its capacity for data learning and analysis, and generating more accurate predictive results.
The structure is illustrated in the following Figure 2:

Output Layer
Hidden Layer Add Dilated

Convolution

Output Layer
Dilation Rate = 8

Hidden Layer
Dilation Rate = 4

O O O i Hidden Layer
g g e Dilation Rate = 2
Hidden Layer /l /l
~ ~ -~ r Hidden Layer
Hidden Layer O O O O O O O Dilation Rate = 1
Input Layer

Figure 2. Dilated convolution architecture diagram.

Hidden Layer

Xra Xr

To tackle the issues of gradient vanishing and gradient explosion, we built deeper
neural networks through residual connections. This allows information to be transmitted
more directly, which in turn facilitates the training of deeper networks.

Before the emergence of TCN, sequence models were predominantly based on RNN
models (such as GRU and LSTM). However, RNNs face computational challenges in
parallelization because each time step depends on the output of the previous time step.
This dependency restricts the efficiency of training and inference on large-scale data. When
dealing with millions of power data points, the learning efficiency of RNNs limits their
feasibility for edge computing. In contrast, TCNs can effectively manage large amounts of
appliance data for load disaggregation tasks through convolutional operations, enabling
efficient parallel computation that is ideal for processing large-scale data.

Besides using one-dimensional fully convolutional layers to ensure that the output
length matches the input length, TCNs introduce a causal convolution structure in the
temporal domain. Causal convolutions ensure that the network computes the current
output value using only input data from past time steps. Building a network with causal
convolution layers requires either a large convolution kernel or a very deep network
to achieve a sufficiently large receptive field. To capture long-term dependencies more
effectively and avoid the computational burden associated with large kernels or deep
network structures, this paper introduces the bidirectional temporal convolutional network
(BiTCN). BiTCN combines forward and backward causal convolutions, as illustrated in the
following Figure 3:

Output Layer

dilation = 8

0000000800000 00 @ i

0000 000@000 @O0 O i
g /// /// \\\ \

g 1 4 N - \ Hidden Layer

O/ O/‘O/\O \Q \O 4 dilation = 1

‘/ ‘ i ‘ \. \‘ \‘ \. Input Layer

Figure 3. BiTCN architecture diagram.
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Its structure is capable of simultaneously processing the forward and backward in-
formation flow of time-series, thereby enhancing the ability to model complex temporal
dependencies. Additionally, the results from the forward and backward convolutions are
combined, usually through concatenation or weighted summation. This approach allows
for the reduction in the number of network layers without altering the receptive field range
when processing large amounts of power data, ensuring that the global characteristics of
the power data from appliances are preserved.

2.2.4. Overall Network Model Structure

In the task of non-intrusive load disaggregation, the collected power signals are first
processed through variational mode decomposition (VMD), decomposing the signals into
multiple modes. Modes identified as noise are discarded, while modes highly correlated
with the original signal are retained and summed to obtain the filtered signal. This method
effectively filters out noise and singular points caused by external interference in the original
signal, thus providing high-quality input data for subsequent deep learning models.

The deep learning network features a Nystromformer-BiTCN structure. The initial
Nystromformer layer serves as a variable-selection layer to screen features from the ap-
pliance power signals. The goal is to select the variables that are most relevant to the
response variable, reducing the impact of noise and irrelevant information. This process
improves the model’s prediction accuracy and generalization capability in load disaggre-
gation. This also reduces the computational burden during the training and prediction
processes, enhancing the computational efficiency of load disaggregation. Identifying the
most important features for model prediction allows the model to more effectively extract
features related to the appliance’s power state, which enhances the model’s interpretability.

Subsequently, the structure combines bidirectional temporal convolution and dilated
convolution within BiTCN layers, reducing the limitations of the receptive field to simul-
taneously incorporate past and future power data. This enables the load disaggregation
model to learn global power characteristics more effectively. The point-wise weighted
training approach allows the model to capture fine power fluctuations. Additionally, the
inclusion of residual networks helps prevent overfitting, improving the model’s general-
ization, and making it applicable to different types of electrical appliances. Hence, BiITCN
is used as the feature-learning layer to extract and train the power characteristics of ap-
pliances. Along with the variable-selection layer, the original data processed through a
residual network with a low dropout rate is also input into the BITCN network.

Implementing a residual network with a slightly lower dropout rate incorporates the
original data as an additional feature input to the BiTCN network. Although minimal, the
dropout rate acts as a regularization measure to help prevent overfitting. When training
electrical equipment, residual connections may cause complex interactions between appli-
ance features across layers. A slight dropout can mitigate these interactions, enhancing
model robustness. It also prevents the variable-selection layer alone from overshadow-
ing detail features, alleviating the gradient vanishing problem. Additionally, incorporat-
ing dropout further reduces inter-layer dependency, aiding better gradient propagation
during training.

Finally, the output from BiTCN is used as the input for the weighted output layer
of Nystromformer. Nystromformer, as the weighted output layer, introduces weight
parameters, allowing flexible adjustment of the model’s emphasis on different features from
various appliances. This helps the model adapt better to diverse appliance disaggregation
tasks, thereby improving its performance and generalization across different types of
electric appliances. The structure diagram is as follows Figure 4:
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Figure 4. The VMD-Nystromformer-BiTCN model.

3. Results
3.1. Dataset Selection

The dataset selected for this study is the publicly available UK Domestic Appliance-
Level Electricity (UK-DALE) dataset. The UK-DALE dataset collects power usage data from
various households in the UK at a sampling frequency of 1/6 Hz. This dataset includes
total power data from five households collected between November 2012 and January
2015. In this experiment, we use the appliance power data from House 2, which include
54 appliances. We selected five appliances with distinct and representative features as
follows: kettle, dishwasher, microwave, washer—dryer, and refrigerator.

The kettle represents appliances with a simple on/off switch.

The dishwasher represents appliances with a regular multi-state process, exhibiting
clear periodicity, including stages such as water intake, washing, rinsing, and draining,
each with different power characteristics.

The microwave has an uncertain heating level but stable power usage during operation.

The washer—dryer represents appliances with complex and variable states, with an
unpredictable number of operation modes.

The refrigerator demonstrates continuous operation, typically remaining on for ex-
tended periods under normal circumstances.

A one-year period was selected, totaling 5,300,000 readings. The input data consists of
the total load power data features and the active power data of each appliance.

The experimental environment was based on the ASUS TUF Gaming A15 laptop from
Asus Taiwan, featuring a 13th Gen Intel® Core™ i9-13900 H processor (2600 MHz), 32 GB
of memory, and an NVIDIA GeForce RTX 4060 GPU. The software platform includes the
Windows 11 operating system, Python 3.7 (64-bit), PyTorch 2.1.1 + cul21 deep learning
framework, and the PyCharm Professional integrated development environment.
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3.2. Normalization

Data normalization involves processing the data using a specific algorithm to con-
strain it within a given range, usually [0, 1] or [—1, 1]. This helps to avoid numerical
instability, especially when using optimization algorithms like gradient descent. It also
ensures that model parameters are updated more uniformly, accelerating the model’s
convergence speed.

In disaggregation tasks, the power consumption of different appliances can vary
significantly. Normalization helps prevent certain feature values from dominating the
training process due to their magnitude, thus reducing the model’s dependency on a
specific data range and enhancing its generalization ability across different datasets.

In this paper, Min—-Max normalization is used.

= S tmin_ (17)

Scale the data to the [0, 1] range. After obtaining the model’s output, denormalize the
normalized output data to restore it to the original data scale. Normalization is used only
to improve the stability and efficiency of model training, while the final prediction results
need to be interpreted and applied on the original data scale.

The denormalization formula is as follows:

x=x"- (xmax - xmin) + Xmin (18)

3.3. Evaluation Metrics

Mean Absolute Error (MAE)
The mean absolute error (MAE) is used to quantify the average absolute difference
between the predicted signal and the actual values. The formula for MAE is as follows:

1< R
MAE = T;|xt—xt| (19)
where variable X; represents the power prediction value at time index ¢, and x; is the actual
power measurement at the same moment.
Normalized Signal Aggregate Error (SAE)
SAE measures the relative error between the total actual energy consumption and the
predicted energy consumption. It is defined as follows:

N ~
Xl =7

1
SAE =1 — (20)

Yor
1

where r represents the actual total energy consumption, and 7 is the predicted value derived
from the model.

3.4. Model Experimental Parameters

When the power signal is input into the model, it first undergoes VMD filtering. The
parameter K represents the number of modes for VMD, i.e., how many modes the signal
will be decomposed into. Considering the constraints of computational resources, we
choose to set the range of the mode number (K) between 2 and 20. This setup ensures
that, without exceeding the operational limits of the hardware, the frequency bandwidth
covered is sufficient for effective signal decomposition. In the process of selecting the mode
number, we iterate through values of K, conducting tests for each one to determine the
optimal mode number. Specifically, we perform VMD decomposition for each mode count,
then compare the noise-added signal with the original signal, selecting the mode count
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that results in the smallest reconstruction error as the most optimal choice. This process
is tailored for each electrical appliance, ensuring specificity and accuracy in parameter
selection. Moreover, theoretically, the penalty parameter alpha and other related parameters
of VMD can be optimized through the adaptive and iterative characteristics of the algorithm.
Therefore, in practical applications, we adopt the default values of these parameters to
simplify the operational process of the model, relying on VMD’s internal optimization
mechanism to adjust these values for efficient and effective signal decomposition. This
approach fully utilizes the adaptive characteristics of VMD and combines experimental
optimization of mode numbers, ensuring an optimal balance between computational
costs and decomposition effects during signal processing. The parameter o« controls the
smoothness of the data in VMD, and T is the temporal smoothness parameter in VMD.
These two parameters iterate to their optimal values, with default settings « = 0.1 and T = 1.
Instead of setting a maximum iteration count maxItermaxlter, VMD convergence tolerance
toltol is set at tol = 1 x 10717

After filtering, the model produces an output with the same length and dimensions
as the input, which then enters the Nystromformer model. Because the self-attention
mechanism is generally more effective in high-dimensional spaces, providing more in-
formation for weighting and combination, the model first uses an embedding layer to
increase its dimensionality to 128. Finally, during output, a fully connected layer reduces
the dimensionality back to one dimension. The parameter num_landmark, denoted by ‘m’,
which approximates the number of the original self-attention matrix, is set to 16, reflecting
Nystromformer’s role in enhancing model computation speed. Due to the computing
mechanism of the Nystromformer model, the ideal choice for the number of landmarks, m,
typically favors powers of two, which helps optimize memory usage and computational
efficiency. In our experiments, when m = 8, we observed a significant decrease in model
accuracy, indicating that this number of landmarks was insufficient to capture enough
sequence information, thereby impacting the performance. Increasing m to the model’s de-
fault value of 64 theoretically could enhance the model’s approximation and representation
capabilities. However, such an increase closely approaches the next input size of the BiTCN,
diluting the originally intended advantage of reducing computational costs. To find a
balance between computational efficiency and model performance in the current hardware
environment, we chose m = 16 as the final parameter. This not only avoids significant
drops in accuracy but also maintains an advantage in computational cost, demonstrating
adaptability and balance in maintaining model efficiency and effectiveness.

Simultaneously, the filtered data, through a residual connection layer, are input into
the BiTCN network. Due to the non-negativity of power signals, the ReLU function is
chosen as the activation function in the residual network, with dropout = 0.1. This paper
employs a seven-layer deep BiTCN network, with a convolution kernel size of two, and the
default dilated convolution size for each layer. In the end, the data is input into another
Nystromformer model with the same settings to obtain the load disaggregation results.

3.5. Experimental Results
3.5.1. Load Disaggregation Experiment

Load disaggregation involves processing total load power data through a model and
recalculating it to obtain a new load power curve, thereby deriving the load power curve
of individual electrical devices.

The results shown are disaggregation outcomes for different devices using various
models. These models include the two classic models S2S and S2P from NILMTK, the
traditional TCN model, a model combining convolutional networks and self-attention
mechanisms (CNN + attention), and our proposed model. The visual representations of the
various models are shown in Figure 5:
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Figure 5. Disaggregation diagram. (a) Overall output diagram of kettle. (b) Detailed section of output
for kettle. (c) Overall output diagram of microwave. (d) Detailed section of output for microwave.
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(e) Overall output diagram of dishwasher. (f) Detailed section of output for dishwasher. (g) Overall

output diagram of Washer—dryer. (h) Detailed section of output for washer—dryer. (i) Overall output

diagram of fridge. (j) Detailed section of output for fridge.

The model loss values are shown in Table 1:

Table 1. Comparative analysis of various models of appliances.

Electrical Appliance Method MAE SAE
525 9.120 0.071

Data 5.919 0.117

Kettle CNN+AT 3.771 0.014
TCN 8.587 0.130

Proposed model 4.102 0.027

525 13.153 0.338

Data 12.547 0.223

Dishwasher CNN+AT 7.980 0.166
TCN 14.788 0.351

Proposed model 6.282 0.050

525 23.448 0.142

Data 20.490 0.140

Fridge CNN+AT 18.747 0.085
TCN 24.158 0.250

Proposed model 15.951 0.041

525 8.375 0.143

Data 6.791 0.128

Microwave CNN+AT 10.155 0.225
TCN 14.307 0.345

Proposed model 9.547 0.081

S25 14.261 0.347

Data 7.331 0.062

Washer-dryer CNN+AT 6.148 0.021
TCN 14.101 0.301

Proposed model 5.847 0.011

3.5.2. Model Performance Experiment

1500

1000

MAE

500

Figure 6. Model performance comparison.

To demonstrate the performance of the model, we exported the iterative process of the
kettle into a chart. By comparing the convergence speed among different models under the
same number of iterations, we aim to prove the efficacy of our model. The comparative
experiment is shown in Figure 6:

20

model performance comparison

80
Number of iterations




Electronics 2024, 13, 4663

16 of 20

3.5.3. Computational Complexity Experiment

To emphasize how the Nystromformer (N) attention mechanism improves efficiency
compared to traditional attention (AT) mechanisms, we selected the duration of a batch
during the training process as a reference. We evaluated both models on datasets of 10,000
and 50,000 data points, selecting different input dimensions (“input_dim” represents the
size of the vector output by the embedding layer, indicating the shape of the data that the
solution needs to receive and process) and batch sizes(batch_size refers to the number of
data samples processed together in each training iteration. batch_size affects the training
efficiency and final performance of the model). By comparing the traditional model with
the Nystromformer, we validated its value in enhancing efficiency. The experimental results
are shown in Tables 2 and 3:

Table 2. 1,000,000 num_samples comparative experiment.

input_dim batch_size AT/S N/S
64 512 5.6372 0.3538
64 1024 7.9471 0.2650
64 2048 17.7878 0.1590
128 512 6.3941 0.7133
128 1024 9.1442 0.4528
128 2048 19.6548 0.7602

256 521 8.8686 1.4699

256 1024 12.6667 1.8864

256 2048 221321 1.6901
Table 3. 5,000,000 num_samples comparative experiment.

input_dim batch_size AT/S N/S
64 512 29.5172 1.7062
64 1024 41.4305 1.2604
64 2048 93.5694 0.7981
128 512 33.0614 3.2071
128 1024 57.5537 3.0335
128 2048 107.8937 4.7777

256 521 65.7316 8.5694
256 1024 80.0067 11.6822
256 2048 114.5828 8.6851

3.5.4. Model Denoising Experiment

We conducted denoising experiments under the interference of transient impulse
currents and noise to demonstrate the role of VMD filtering in our model. The experiments
which compared our model with VMD included comparison against our model without
VMD. The impulse current was added to the power value when a certain appliance was
turned on, based on the power characteristics of the dataset. To mimic real-world conditions,
noise was chosen to be 50 Hz white noise, and based on the dataset’s sampling frequency,
noise values at 1/6 Hz were added to the original data when the appliance was turned on.
The experimental results are shown in Figure 7 as follows.
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Figure 7. Denoising experiment comparison diagram. (a) Fridge denoising experiment diagram.
(b) Kettle denoising experiment diagram. (c) Microwave denoising experiment diagram. (d) Dish-
washer denoising experiment diagram. (e) Washer—dryer denoising experiment diagram.
Next, data within the on/off cycle of each appliance are selected to calculate their
mean absolute error (MAE), The results obtained are shown in Table 4:
Table 4. Denoising contrast experiment MAE value.
Types of Electrical Appliances MAE Before Filtering MAE After Filtering
Kettle 49.45 21.07
Microwave 25.41 14.82
Dishwasher 53.87 29.01
Washer—dryer 38.28 17.13
Fridge 4412 12.02

4. Discussion
4.1. Load Disaggregation

Kettle: The waveform of the kettle is relatively simple yet distinct and does not have
fixed operating times. The TCN model demonstrates detailed learning of the waveform
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but fails to accurately track its power values. This issue is prevalent in the subsequent
four models as well. The model incorporating attention mechanisms shows significant
improvement compared to the classic 525 and S2P models. The CNN+AT model, which
includes a variable-selection layer, performs the best in this set of experiments. Our
proposed model, which uses a lighter network, has a performance very close to it, making
it a good model.

Dishwasher: The power waveform of a dishwasher is more complex and varies
with different washing modes, making it difficult for convolutional networks to handle
effectively. The MAE values for 525, S2P, and TCN models are high. After incorporating
attention mechanisms and applying weighted output to the features, the learning effect
improved significantly. Our proposed model, which includes a variable-selection layer,
performs the best in this set of experiments, with MAE and SAE values of 6.282 and
0.050, respectively.

Fridge: The fridge is typically always on, with complex waveform transformations,
and interference occurs when other appliances are turned on or off. Consequently, the SAE
and MAE values for all models are not as good as for other appliances. The S2P, 525, and
TCN models are significantly affected by the operation of other appliances, resulting in
decreased accuracy. The models with incorporated attention mechanisms like CNN+AT
and ours show improvements. Our proposed model demonstrates a higher precision
in learning appliance characteristics, achieving the best MAE and SAE values of 15.951
and 0.081.

Microwave: The waveform of a microwave is the simplest compared to other ap-
pliances, making the key factor the model’s ability to accurately determine its activation.
The S2P model has the best MAE at 6.791, but it misjudges activation states when the
microwave is not in use, lowering its SAE score compared to our proposed model. In
contrast, our model achieves the best SAE score of 0.081 in the comparative experiment,
indicating higher precision in overall power value disaggregation.

Washer—dryer: In the UK-Dale dataset, the Washer-dryer is not frequently used and
has relatively regular activation times. Its accuracy reflects the model’s anti-interference
capabilities and its ability to learn characteristics. All models are sensitive to fixed activa-
tion times and features, but the S2S, S2P, and TCN models show interference from other
appliance features when the Washer—dryer is not in use. Models incorporating attention
mechanisms have relatively higher anti-interference abilities, improving accuracy. Our
proposed model achieves the best MAE and SAE values of 5.847 and 0.011, respectively.

4.2. Analysis of Model Performance Experiment

In the same number of iterations, it can be observed that TCN exhibits the best
convergence speed in testing. This is attributed to its relatively simple model structure.
However, the fast convergence seen in the decomposition experiments does not yield good
loss values, leading to insufficient model accuracy. Among them, CNN+AT has the slowest
convergence speed, due to the increased computational cost caused by its traditional
attention mechanism, whereas the model in this paper, which also incorporates an attention
mechanism, can converge more rapidly. S2P is a classic model in NILM experiments
and performs well when processing appliance data. The model in this paper achieves
higher accuracy while maintaining similar performance, demonstrating the superiority of
its structure.

4.3. Analysis of Computational Complexity Experiment

Experimental results can be seen in the table, where the traditional attention mecha-
nism and Nystromformer use the same input dimension, batch, and number of samples.
Adjusting different values during training shows that the Nystromformer significantly
outperforms traditional attention, especially when the scale of data are increased. This
demonstrates that using the Nystromformer indeed effectively reduces the computational
complexity of the model.
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4.4. Analysis of Model Denoising Experiment

The graph shows that after the introduction of noise, the results from the non-filter
model tend to reflect the noisy data more, while the introduction of VMD filtering signifi-
cantly suppresses both impulse currents and white noise. From the table of MAE values, it
is evident that the model with filtering also outperforms the non-filter model in terms of
loss values.

5. Conclusions

The model proposed in this paper uses VMD filtering to maintain high decomposition
accuracy while preventing poor filtering effects due to mode aliasing caused by filtering.
This provides reliable noise suppression for deep learning disaggregation models, effec-
tively removing noise and peak power signals, and improving the data’s smoothness and
reliability. The Nystromformer model, acting as the variable-selection layer, reduces the
mingling of features in load disaggregation and, as the final weighted layer of the network,
minimizes interference from user behavior habits, thereby improving the model’s predic-
tion accuracy and significantly increasing computational speed. The integration of residual
connection layers with the BITCN network alleviates the vanishing gradient problem dur-
ing model training and enables the model to better capture fine power signal features,
enhancing the disaggregation accuracy. Due to computational costs, the Nystromformer
achieves the best results with M = 16 at this number of model layers. However, based
on its principles, a deeper network might be more suitable for this attention mechanism.
As computer hardware gradually upgrades, using deeper convolutional networks and
larger receptive fields could potentially enhance the model’s learning performance. Overall,
this model ensures effective disaggregation while also improving the training speed and
reducing the computational training costs. It makes the training process for new types
of appliances more convenient and introduces a new direction and approach for edge
computing training of unknown appliances.
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