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Abstract: Biometrics play an important role in modern access control and security systems. The
need of novel biometrics to complement traditional biometrics has been at the forefront of research.
The Facial Blood Flow (FBF) biometric trait, recently proposed by our team, is a spatio-temporal
representation of facial blood flow, constructed using motion magnification from facial areas where
skin is visible. Due to its design and construction, the FBF does not need information from the eyes,
nose, or mouth, and, therefore, it yields a versatile biometric of great potential. In this work, we
evaluate the effectiveness of novel temporal partitioning and Fast Fourier Transform-based features
that capture the temporal evolution of facial blood flow. These new features, along with a “time-
distributed” Convolutional Neural Network-based deep learning architecture, are experimentally
shown to increase the performance of FBF-based person identification compared to our previous
efforts. This study provides further evidence of FBF’s potential for use in biometric identification.

Keywords: biometrics; motion magnification; facial blood flow

1. Introduction

In recent decades, the importance of biometric identification has been increasing
steadily. The biometric characteristics of people and their use in recognition systems are now
popular for the authentication of individuals [1]. Most mobile devices employ traditional
biometric traits, including fingerprints and face, for the verification of the identity of their
user. The face and the visual facial characteristics have always been used for identity
verification with great success [2-5]. A constraint in common face recognition systems
is that they may be sensitive to facial expression variations [4], especially when faces are
captured in the wild. Fingerprints have also been widely used in person identification in
current mobile phones and police forensics [6-8], but their operation relies on the proximity
of the sensing probe to the acquired fingerprint.

The research community always seeks novel biometric technologies in order to comple-
ment traditional biometric systems and increase their accuracy [9]. Apart from traditional
biometric traits, which have been thoroughly tested and deployed, new biometric modal-
ities have also been devised and explored, such as palm [10], vein [11], ear [12], eye
blinking [13], and EEG [14]. These biometrics are either deployed in stand-alone identi-
fication applications, or are used as part of multi-modal biometric systems [1]. In such
multi-modal cases, the novel biometric traits are usually complementary to traditional
biometrics, aiming to enhance end-to-end system performance.

Video amplification was first introduced by Wu et al. [15] and aimed at amplifying,
and making visible to the human eye, small motions in videos captured using an ordinary
camera. In [15,16], it was demonstrated that, by applying video amplification on facial
image sequences, it is possible to visualize the flow of facial blood. In [17], a complex
steerable pyramid decomposition was employed and motion amplification was applied
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solely on the phase component of the decomposition. This enabled motion amplification to
focus on the edge information that is prevalent in the phase component. Due to its ability
to reveal imperceptible information, motion magnification has been applied to various
fields, ranging from computer vision and biomedical imaging to civil and mechanical
engineering [18-21].

The widespread use of masks in public places during the COVID-19 pandemic opened
another possible application domain for motion magnification. Facial masks cover most
facial areas that are normally used by efficient face recognition systems. In a situation
where part of the face is covered, it would be most useful to devise a facial biometric
trait that focuses on the less textured facial areas and does not rely on the visibility of
conventional facial landmarks, such as eyes, nose, mouth, and eyebrows. In addition, any
new facial biometric should be robust to facial expression variations. For the above reasons,
we will not be comparing traditional face biometrics with the proposed facial blood flow
biometric trait.

Facial blood flow has seen a lot of medical applications recently [22-24]. Inspired
by the application of video magnification to the visualization of subtle facial motion,
we embarked on exploring the use of facial blood flow patterns as a biometric trait. To
that end, we sought evidence that suggests that facial blood flow can act as a biometric.
In [25], Buddharaju et al. explored the possibility of performing face identification using
thermal infrared cameras. In their study, they support, based on medical evidence and
their conducted experiments, that the facial network of veins and arteries can have great
variability among individuals, and thus it can act as a distinguishing trait. In addition, they
showed that the extraction of such facial traits can have repeatability in individuals over
multiple days and, as such, they can serve as a biometric.

In our previous work, we investigated the use of facial blood flow (FBF) as a potential
biometric trait. The method we developed uses commercial RGB cameras (24 bit color cam-
eras with HD resolution (1920 x 1080 pixels) and 25-30 fps) and performs image processing
and motion magnification to detect and visualize facial blood flow patterns that can be used
for biometric identification. In [26], we proposed a baseline method that used facial blood
flow (FBF) for person identification. In that method, FBF was extracted from a person’s
face using a commercial RGB camera. We used motion amplification [15] to enhance and
reveal the actual blood flow in common RGB video streams. Our method in [26] was a
contactless method that did not utilize any traditional facial features, i.e., eyes, nose, mouth,
eyebrows. Instead, it extracted small facial areas that are not commonly obstructed by
facial hair, and it used the motion-amplified video to extract spatio-temporal blood flow
information. That approach was shown to work well as a distinctive biometric [26]. Unlike
the work in [25], our method does not need a high-grade infrared camera to capture the
vein-artery structure of the face. Instead, our approach uses a low-cost commercial RGB
camera to capture three facial areas and use image processing to construct the FBE. In [27],
we improved our baseline method by taking into account the temporal evolution of FBF
within a period, which was not explicitly considered in [26]. The importance of temporal
evolution was stressed before in the literature [28,29]. Furthermore, we adopted a deep
Convolutional Neural Network (CNN) architecture, which improved the accuracy of the
baseline system.

In this paper, we propose an improved new framework, based on several additional
features that exploit the temporal evolution of FBF, i.e., temporal partitioning and FFT-
based features. Further, we examine a number of different deep learning architectures for
the classification task. Our ablation study over different features and network architectures
yields that the final proposed system achieves efficient person identification. The proposed
system features a “time-distributed” CNN architecture to capture the temporal evolution
of FBF.
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2. A Facial Blood Flow Biometric System

This section describes the individual subsystems of the proposed facial blood flow
biometric system. The proposed system is depicted in Figure 1. In the following subsections,
each individual module of the system is described in detail.

\F/?(;::)I Ph:::::;zed Eulerian positive Facial ROI Feature Deep Learning Person
Input amplification amplification extraction Extraction Classifier \dentification

Figure 1. The proposed person identification system based on facial blood flow (FBF).

2.1. Video Capture

The proposed system uses an RGB camera in order to capture the facial blood flow
(FBF) of a person. FBF is a periodical phenomenon with the period equal to the subject’s
heart rate. The common human pulse rate at rest varies between 60 to 120 bpm (beats per
minute), which translates to frequencies between 1 Hz and 2 Hz. Thus, a commercial RGB
camera with 30 fps (i.e., 30 Hz) video capture will be sufficient to capture several frames
from each cycle of facial blood flow. Although video resolution is less important, modern
commercial cameras offer HD quality video capture, which is most suitable for our target
application. More details regarding the data collection process are provided in Section 3.

2.2. Facial Blood Flow Motion Amplification

The next step in the system is to perform motion amplification in the input video.
Motion amplification is a remarkable algorithm that amplifies subtle movements in an RGB
video. The algorithm detects and amplifies motion, and adds amplified versions of the
motion to the original video in order to enhance it visually [15]. Motion amplification is the
means by which facial blood flow (FBF) is calculated. Therefore, motion amplification is
extremely important in our system. In other biometrics (conventional face recognition, gait
recognition, or iris recognition), due to the fact that their respective features are directly
visible, motion amplification is not required.

In [15], Wu et al. proposed an Eulerian motion amplification approach, where each
image frame from the input video is decomposed into a multi-scale Laplacian pyramid
and motion amplification is applied to each scale before reconstruction. In order to amplify
movements that exist around object boundaries, i.e., image edges, Wadhwa et al. [17]
proposed a phase-based motion amplification scheme, where each frame from the input
video is decomposed into a complex steerable pyramid, where the amplification is applied
to the phase component of the decomposition only. This approach exploits the well-known
fact that edge information in images is best represented by the phase information in the
Fourier domain [30]. This approach achieves superior motion amplification around object
edges and boundaries, as opposed to the Eulerian motion amplification, which is more
efficient in enhancing motion that exists within the texture of an object.

The motion amplification algorithm will not only amplify subtle motion taking place
within the object, but will also amplify the subject’s global motion. Hence, if the subject
is moving as a whole, its global movement will also be amplified, producing output that
is not useful for our application. Therefore, an important requirement for the efficient
function of motion amplification is that the captured subject must be as still as possible,
exhibiting minimal global movement. For that reason, in our application we capture human
subjects who have been advised to stay as motionless as they can. In practice, however, it is
unavoidable that there will be some slight global movement during capturing. Due to that,
if motion amplification was used directly on the original video, the output would not be
particularly informative regarding subtle facial movements. To avoid such problems, we
apply pre-processing in order to filter out unavoidable small global motions before motion
amplification is applied.

As a first processing step, we use the phase-based motion amplification [17] with a
negative amplification factor «, in the range of [—1, 0), in order to reverse any unwanted
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global motion. The actual value of « was determined experimentally. As explained earlier,
the phase-based motion amplification is more sensitive to edge movements that are due
to unwanted small global movements, which are observed when the subject is moving
as a whole. Therefore, applying negative amplification using the phase-based motion
amplification algorithm will stabilize the subject within the video as much as possible
without affecting the subtle movements in the facial texture area, which is where the facial
blood flow can be observed.

Subsequently, we use the Eulerian video magnification method by Wu et al. [15] to
amplify the facial blood flow. The Eulerian video magnification method tends to magnify
the image value oscillations, thus it has proven [15] to be ideal for amplifying blood
circulation. In contrast to [15], where a new (motion-enhanced) video sequence was created,
i.e., the amplified motion is added to the original video, in order to create a highlighted
video, our focus is only on the extraction of the amplified facial blood flow. Consequently,
we extract the amplified motion, without adding it to the original video, as in [15]. In
order to keep computational complexity low, we apply motion amplification to a grayscale
version of the input video. The result of this procedure is the calculated facial blood flow
of a subject, represented in the form of an image sequence Q(x,y,t), where x,y denote
the image coordinates and f the frame index. Here, we should stress that without motion
magnification, the signal Q(x, y, t) is zero, therefore there are no extracted features to model.
Finally, in our approach we only use grayscale data. The reason is that different color planes
would produce different apparent motions, which would lead to inaccurate facial blood
flow calculation. Therefore, using aggregate information in the form of grayscale pixel
intensities is a safer option.

2.3. Extraction of Facial Regions of Interest

To verify the validity of FBF as a biometric, we rely on facial areas that do not contain
facial landmarks, which are used in conventional face biometry. Traditional facial recog-
nition biometric approaches use the entire face, including the eyes, nose, and mouth, the
shape of which are specific to each individual and, therefore, have significant discrimi-
natory capacity. Instead, in our approach, we consider the use of facial areas that do not
include discriminatory landmarks, but are certain to involve substantial blood flow that
can be revealed. With that in mind, we focused on three selected areas of interest: (a) the
lower forehead area, (b) the skin area below the left eye, and (c) the skin area below the
right eye. These areas feature mainly facial skin without landmarks, and are ideal for
FBF acquisition. This selection of facial areas is supported by the findings in the work
of Buddharaju et al. [25], which is an exploration of the facial areas containing veins and
arteries that can be used for person identification. As it can be seen, the forehead and
the two left and right cheek areas contain multiple veins and arteries, a fact that makes
them particularly suitable for the observation and representation of facial blood flow. This
finding is also supported in the work by von Arx et al. [31], where a complete atlas of the
facial blood vessels is presented. Another advantage of our chosen facial areas is that they
are always visible or can easily become visible and easy to capture. The special situation
where only the forehead area is visible is examined as a separate experiment. Such a
situation arises when faces are partly covered by a mask.

To detect these regions, we use the Zhu-Ramanan face detector [32] to isolate the
facial area. Then, we fit an Active Appearance Model (AAM) [33] with 68 facial features
using the implementation of Bulat and Tzimiropoulos [34]. Using the facial features,
inferred by the AAM, we select an area of 71 x 201 pixels above the eyes and eyebrows to
extract the forehead area. The left and right facial areas are determined by positioning two
71 x 101 rectangles below the eyes.

The exact positions of the left and right facial areas are calculated by exploiting the posi-
tions of key points on the eyes and eyebrows. In Figure 2d, we depict the eyebrows” highest
and rightmost points using blue and green points, respectively. Using this information we
can infer the point where the forehead commences above the eyebrows. The x-coordinate of
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the eyebrows” highest point and the y-coordinate of the eyebrows’ rightmost point are used
to form the starting point of the forehead, which is shown as a yellow cross in Figure 2d.
The width and height of the forehead rectangle are fixed, thus extending the rectangle over
both eyebrows. In a similar fashion, we exploit the leftmost eyebrows’ point as a reference
point (green point in Figure 2e), and proceed down by 120 pixels so as to detect the bottom
left corner of the rectangle for the left facial area. Equally, using the rightmost eyebrow
point, we can set a rectangle containing the right facial area (see Figure 2f). Figure 2 shows
an example of the rectangle positioning procedure. The sizes of the rectangles were set
based on experimentation. An alternative approach would be to deploy image registration
algorithms to fully automate rectangle positioning. Nonetheless, in order to keep the setup
as simple as possible, and not introduce distortions due to image transformation, we kept
these sizes constant and asked the participants to sit at fixed distance from the camera.
This ensured that minimal registration problems would appear. The AAM for the facial
structure can provide sufficient information to tackle the face registration problems that
would arise if the algorithm is applied in less controlled environments [35]. Snapshots from
the three extracted videos from the three areas are depicted in Figure 3.

() (b) (©) (d) (e) ()

Figure 2. (a) Original face image. (b) Face detection using [32]. (c) Active Appearance Model (AAM)
fit using [34]. The three control points (two from the AAM and another inferred from the other two)
are highlighted. (d) Detection of the forehead region using two control points. (e,f) Detection of the
left and right facial regions using the left and right control points, respectively. (The subject in this
figure has agreed to have his image included in the paper for demonstration purposes.)

(@) Forehead

(b) Left area (c) Right area

Figure 3. Snapshots from the three extracted areas for the subject in Figure 2. It is clear that these
areas do not contain any traditional facial biometric traits.

2.4. Temporal and Spectral Feature Extraction

The next step is to extract efficient feature structures that will enable robust person
identification. In order to achieve faster and more practical identification, we limit the
duration of the clips that will be presented to the deep learning classifier to T = 1 s, so
as to capture at least one cycle of blood circulation. Nonetheless, as it is not always easy
to discern the start, end, or other stages within the facial blood cycle, synchronization
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issues may occur. This highlights the importance of extracting features that are robust to
phase variations within the observed periodic phenomenon. In [26,27], we proposed two
baseline methodologies, which we extend here and show that they can lead to increased
performance.

2.4.1. Temporal Features

In [26], we proposed to average all frames in each video clip, creating the average frame
that was used for training and recognition. Although that approach provided robustness to
phase variations, it ignored the temporal evolution of the FBF within the clip. Thus, in this
paper, we propose a temporal partitioning, i.e., divide each clip into five sub-clips of equal
duration T;, and calculate the average FBF for each sub-clip separately. Assuming that we
have a video sequence Q(x,y,t), where x, y are the spatial co-ordinates and ¢ represents
the temporal evolution, the proposed features thmp(x, Yy, k) can be described as follows

(see Figure 4):
1 G

Ftemp(x/]// k) TS 2 Q(x ]// )/ 1 S k S 5 (1)
b= (k=

Temporal evolution of frames

N 4

242444444 ////// ////////////

Time Time Time Time Time
Average Average Average Average Average

Figure 4. Division of a video clip into five sub-clips. Temporal averages are calculated for each
sub-clip.

The average image and the temporal averages for the FBF biometric, extracted from
the forehead region of two subjects, are depicted in Figure 5 and Figure 6 respectively. These
templates clearly show the different FBF patterns in different individuals and, therefore,
they demonstrate the discriminatory capacity of the FBF biometric.

2.4.2. Transform-Domain Phase-Invariant Features

In [27], we proposed to use the 1D-Discrete-Cosine Transform (DCT) along the tempo-
ral axis of the sequence Q(x,y,t), i.e.,

1

k
Fpcr(x,y, k) ZQX% COS{T(tﬂLZ)]/OSkST 2)

The above DCT features provided a viable solution, since the DCT is real-valued and
approximately phase-invariant.
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20 40 60 80 100 120 140 160 180 200
x

(a) Subject A (b) Subject B

Figure 5. Temporal features for the FBF biometric extracted from the forehead region. The averaged
image template [26] is shown for for subject A and B. Lighter colors represent greater values while
darker colors represent smaller values (best seen in color).

Time Average 1

Time Average 2 Time Avera Time Average 2

50 100 150 200 50 100 150 200
x X

50 100 150 200
x
Time Average 3

Time Average 4 Time Average 4
1

100 150 50 100 150
x

Time Average 5

50 100 150 200

(@) Subject A (b) Subject B

Figure 6. Temporal features for the FBF biometric extracted from the forehead region. The proposed
temporal averages of (1) is shown for subject A and B. Lighter colors represent greater values while
darker colors represent smaller values (best seen in color).

In the present work, however, we propose to use the abs-magnitude of the Fast-Fourier
Transform (FFT), since the FFT is always phase-invariant. In addition, because of the
magnitude FFT’s even symmetry, the negative frequency components of the transformation
can be dropped, yielding smaller-sized features. The proposed feature is given by:

T .
Y O(xy, t)e_1¥

t=0

FFFT(x/y/k) - ’ 0 S k S T (3)

As in the case of DCT features, the proposed FFT features are calculated by applying
the FFT transform along the temporal dimension of the input sequence. The two transform-
domain features are depicted in Figure 7 for the forehead region. In either case, the
extracted features are 3D matrices with the first two dimensions representing the image
spatial coordinates (pixel location), and the third dimension representing the transform-
domain content of each pixel (pixel value).

L 5

(a) DCT features (b) FFT features

Figure 7. Frequency-domain features for the FBF biometric extracted from the forehead region of
subject A. (a) DCT features, (b) FFT features calculated using (3).
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2.5. Deep Learning Architectures for Classification

The next step is to use a deep learning architecture in order to perform person identifi-
cation. As detailed in the previous subsection, the extracted feature data are in the form
of 3D cubes, which represent spatio-temporal features (from temporal partitioning) or
spatio-frequency features (DCT or FFT features for each pixel location). In either case, the
input is a 3D tensor of size M x N x K, where M x N is the image resolution and K is the
number of possible values for each feature.

Many deep learning architectures were investigated to model the evolution in time
or frequency of the input features, including 3D CNN [36] and Long Short-Term Mem-
ory (LSTM) modules [37]. Nonetheless, in our experiments the most successful was an
architecture that included “time-distributed” 2D CNN modules [38]. In other words, it
is a CNN structure, consisting of 2D filters that are applied on the spatial co-ordinates
x,y and remain unchanged over the z-axis, which describes time or frequency, depending
on whether the spatio-temporal or spatio-frequency 3D feature is used. The proposed
architecture is depicted in Figure 8. As seen, it consists of a smaller VGG16-like [39] struc-
ture of four “time-distributed” 2D convolutional layers, followed by two fully connected
layers for classification. More specifically, the first “time-distributed” 2D CNN contains
16 2 x 2 filters, and the second 32 2 x 2 filters, which are then followed by a 2 X 2 max
pooling layer. Consequently, there are two more CNN layers of 32 2 x 2 filters each and
a 2 x 2 max pooling layer. ReLUs are used after each CNN layer and the Dropout regu-
larization method [40] using a parameter value of 0.2 is used after each max pooling layer.
The features are flattened and presented to two fully connected layers (FCN or Dense),
the first with 64 nodes and the second, being the output layer, with 13 nodes, equal to the
number of people in the dataset. After the first FCN, Batch Normalization (BN) [41] is used
along with ReLU and the Dropout regularization method with a parameter value of 0.3.
The output of the last layer is presented to the Softmax activation function. The size of the
input is not fixed in order to accommodate the features from the three areas of interest,
which are of different size. The parameter values for Dropout, and the number and size of
filters at each layer, were determined based on experimentation.

Input Conv2D Conv2D MaxPool 2D  Conv2D Conv2D MaxPool 2D Dense 64 Output Layer
Layer 16 2x2 32 2x2 2x2 32 2x2 32 2x2 2x2 Dense 13
MxNxK
Dropout BN
Fef':zg;:es ReLU RelLU DrgPZOU‘ ReLU RelU 0.2 +RelLU Softmax
forehead or h +Flatten +Dropout
under-eye / 0.3
regions
oS

"Time-distributed" 2D Convolution

Figure 8. The proposed CNN structure with ‘time’-distributed 2D convolutions used in the convolu-
tional layers of the network. Conv2D refers to a “time-distributed” 2D convolutional layer, ReLU and
Softmax refer to the corresponding activation functions, Dropout refers to Dropout regularization [40],
BN refers to Batch Normalization. The numbers of filters and the sizes of the filters are indicated at
the top of the respective level.

The system should also combine features from three different facial areas in order to
perform person identification. In [27], we determined that the features should be processed
separately by the convolutive architecture, proposed in Figure 8, without the Dense layers
(pipeline) and the final features should be concatenated and be presented to a single fully
connected (Dense) stage for classification (Ensemble 1) (see Figure 9a). The Dense Layer
consists of 64 weights. Figure 9b depicts a second method (Ensemble 2), where the features
from each facial area are independently processed by the proposed convolutive architecture
and a separate Dense stage, before being concatenated to the final FCN stage. Each of these
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Dense stages has 64 nodes. The output dense layer has 13 nodes, equal to the number of
subjects in the dataset.

1 Al Dense
. » Pipeline DNN » » Pipeline DNN » lewer *
Dense OQutput Dense Output
Pipeline DNN LD Dense Pipeline DNN D Dense
2 Layer 2= Layer

N\ N —
" ey Dense
* Pipeline DNN » * Pipeline DNN » Layer *
_J - N

(a) Ensemble 1 (b) Ensemble 2

Figure 9. Two ensemble methods to combine the features from the three facial regions of interest.
Pipeline refers to the architecture of Figure 8 without the fully connected (Dense) layers.

3. Experiments
3.1. Dataset Implementation

To test the efficiency of the proposed facial blood flow (FBF) biometric, we cre-
ated a new dataset. A GoPro Hero 4 Black camera was used for video recording at
1920 x 1080 resolution and 30 frames per second. Facial image sequences from a total
of 13 subjects were recorded in a room with natural light. This was needed because the
motion magnification algorithm tends to magnify subtle, nearly invisible, movements and
oscillations produced by the flickering of artificial light, which would result in contami-
nated output. Subjects were asked to sit on a chair at a fixed distance (~1 m) from the
camera and to remain as motionless as possible during the recording. This guidance was
meant to prevent the occurrence of registration problems due to incidental body movement.
The camera was positioned at the same height for all subjects, almost at eyes level, in order
to minimize registration issues. Eighteen (18) recordings were captured from each subject,
each lasting 20 s. These recordings were captured for each subject over two different days.
This produced a total of 360 s of recording per subject, which was used for training. A
week later, three additional recordings per subject were captured on a single day. The
additional recordings amounted to a total of 60 s per subject, and were used for system
testing. Conducting the recordings over three different days strengthens our confidence
in the temporal robustness of the proposed biometric trait and in its appropriateness for
practical use. All recordings were segmented into 1-second clips, yielding 360 training clips
and 60 validation clips for each subject. The compiled data can be made available upon
request. An example of the captured video frames can be seen in Figure 2. Video capturing
has been performed in a controlled environment, ensuring that no artificial light was used
and that the subjects were instructed to remain as still as possible. Although this may seem
as a limitation of the method, it is a realistic constraint to have a controlled environment for
identity verification, e.g., in a police station or at border control.

The Movement Motion Attenuation and the Facial Blood Flow Amplification al-
gorithms were implemented using MATLAB code, provided by [17] and [15], respec-
tively. For the motion attenuation module, the value of « = —0.75 was used, as it
was experimentally seen to yield satisfactory results. The amplification factor was set
to « = 120, while the frequency range of amplification was set to 0.83-1 Hz, as suggested
in [15]. The face isolation and AAM fitting stages were based on the method in [34].
The proposed deep architectures were developed in Python using TensorFlow on a PC
with an NVidia RTX A6000 GPU, running Ubuntu Linux 20.04 (the code is available at
https:/ / github.com /mitia98 /FBF_person_id, accessed on 12 November 2024). Stochastic
Gradient Descent (SGD) was used to train the deep network, using categorical cross-entropy
as a cost function, whereas the learning rate was set to 0.01 and momentum was set to 0.9.
The network was trained for 30 epochs using a batch size of 64 samples.
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3.2. Results of Ablation Study

As it was shown in [26], using only forehead features for person identification yields
inferior performance in comparison to using the combination of all three proposed facial
areas. In the present work, we re-evaluate the use of the forehead area in conjunction
with our new FBF representations and the architecture shown in Figure 8. Results are
shown in Table 1. As seen, similar to [26], the forehead area alone still exhibits moderate
biometric performance.

Table 1. Identification accuracy for the validation dataset for the three different features and various
scenarios. Salt-n-pepper augmentation on FFT features and the combination of the three areas with
Ensemble 2 yields the best performance. Values in bold denote the best performance.

Forehead Only All Areas

Features Ensemble 1 Ensemble 2

No Augment.  With Augment.

Average Image [26] 68.76% 77.53% 79.72% 79.79%
DCT Features [27] 73.19% 82.61% 84.66% 84.78%
Temporal Partitioning 72.54% 84.51% 85.56% 85.6%
FFT Features 74.03% 85.02% 87.20% 89.04%

Subsequently, we evaluated the combination of the three facial areas, using the two
combination approaches, shown in Figure 9. In Table 1, we present the identification
accuracy achieved by the two combination methods. Clearly, the Ensemble 2 architecture
yields the best results regardless of the feature used. Therefore, it seems that the most
efficient strategy is to process each feature through individual FCNs before combining
features in the output (final) layer. In addition, it is clear from Table 1 that the inclusion of
the temporal element surely improves performance. All architectures that incorporate the
temporal element (DCT features, temporal partitioning and FFT features) perform better
than using the average image.

Finally, we experimented with data augmentation. We attempted three types of aug-
mentation that seemed suitable for our problem: Gaussian noise, salt-n-pepper noise, and
vertical flipping. Noise addition was considered because it was shown to improve network
generalization and reduce overfitting [42]. Out of the three options, only the addition
of salt-n-pepper noise to the final extracted features appeared to improve performance.
Specifically, the saturation of 10% of each image pixel to equal percentage of black and
white pixels seemed to yield performance improvement. This augmentation doubled the
available training data. Results are shown in Table 1 in terms of classification accuracy.

As seen in Table 1, augmentation with salt-n-pepper noise improved the performance
of all feature sets. Further, the proposed FFT features are consistently superior in all
scenarios, reaching a recognition rate equal to 89.04%. The temporal partitioning features
rank second in performance, followed by the DCT features [27] and the average image
feature of [26]. The performance achieved by our new features and architecture is an
improvement over the system in [27] and shows the potential of the FBF biometric trait
for effective person identification. The evolution of the loss function and accuracy over
30 epochs for the proposed “time-distributed” VGG network with the FFT features and
the Ensemble 2 strategy is depicted in Figure 10. The difference between the final training
and validation losses is a sign of overfitting, which is mainly due to the small size of the
training dataset. The confusion matrix for the proposed architecture and features is shown
in Figure 11. It is clear that the system does not overfit and in addition the classification
performance is robust since only minor mis-classifications are observed.
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Figure 10. The evolution of the loss function and accuracy over 30 epochs for the proposed “time-
distributed” VGG network with the FFT features and the Ensemble 2 strategy.
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Figure 11. The confusion matrix for the proposed “time-distributed” VGG network with the FFT
features and the Ensemble 2 strategy.

In Table 2, we present an ablation study with other deep architectures that were
examined in our investigation. The study was performed using the FFT features from all
regions of interest and the Ensemble 1 architecture in terms of accuracy and false positive
rate. The study included 2D-CNN VGG, 3D-CNN VGG, the “time-distributed” VGG of
Figure 8, stacked LSTM, and the “time-distributed” VGG with LSTM layers. The exact
details of these architectures are not presented here, due to limited interest, but they are
of similar size to the one presented in Figure 8, and therefore are a good basis for direct
comparisons. From the results presented in Table 2, it is clear that the inclusion of LSTM
modules did not improve performance. Instead, a more shallow “time-distributed” VGG is
more efficient.

Table 2. Comparison between different Ensemble 1 architectures, in conjunction with FFT features
extracted from all facial regions of interest. No data augmentation was applied. Values in bold denote
the best performance. The proposed “time-distributed” VGG architecture yields the best performance.

Model Accuracy False Positive Rate
2D-CNN VGG version 71.01% 2.6%
3D-CNN VGG version 81.26% 1.64%
Time Distr. CNN VGG version 85.02% 1.27%
Stacked LSTM 78.05% 1.62%
Time Distr. CNN VGG version + LSTM 79.59% 1.51%

Table 3 presents comparisons in terms of computational complexity. Complexity is
measured in terms of the required number of network parameters, the network size (in
MBs), and the average inference time per batch. The compared systems are the afore-
mentioned reference architectures, which use FFT features from all regions of interest,
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and the Ensemble 1 architecture. In terms of parameters and size, the “time-distributed”
CNN (VGG version), which achieved the highest identification performance, is the largest
network, with 55.7 million parameters requiring 435.6 MB of storage. In terms of inference
time, that architecture ranks in the middle. Although inference times were measured in a
high-specification machine, they are very small and can comfortably support a practical
real-time identification scenario. In particular, the per-sample inference time achieved
by the best-performing “time-distributed” CNN network is equal to 0.742/64 = 11.6 ms,
where the total inference time was divided by the number of samples (64) in the batch.
Such low inference times make our proposed application viable for use even on everyday
computational platforms (e.g., common PCs).

Table 3. Comparison in terms of computational complexity, presenting the number of parameters,
model size, and inference time (per batch) for each of the examined architectures. The proposed “time-
distributed” VGG architecture has the greatest number of parameters and model size, nonetheless it
does not require the greatest inference time per batch.

Model No. of Model Size Inference Time
Parameters (MB) per Batch (s)
2D-CNN VGG version ™ 54.7 0.733
3D-CNN VGG version 13.9M 109.3 0.736
Time Distr. CNN VGG version 55.7M 435.6 0.742
Stacked LSTM 14.89M 116.4 0.771
Time Distr. CNN VGG version + LSTM 14.03M 109.9 0.786

4. Conclusions

In this paper, we presented evidence of the validity of facial blood flow (FBF) as
a biometric trait. We examined two new features: the FFT features and the temporal
partitioning features, which yield improved performance over the performance achieved
using the DCT features we proposed in our past work. In the present paper, we also
proposed a new “time-distributed” CNN architecture that consolidates the performance
gains using the new features. The presented algorithms and experiments demonstrate
the effectiveness of FBF as a stand-alone or a complementary biometric trait and serve
as a well-founded proof-of-concept. The main limitation of the proposed biometric is
that it requires special capturing conditions for all subjects, i.e., no artificial light and no
movement from the subject. In addition, in this study we have not verified the efficiency of
FBF on a more ethnically diverse database.

In our future work, we will expand our experiments using larger datasets and multi-
modal features. More specifically, we are planing to study the performance of the FBF
biometric on a more diverse database, and also exploring the use of multi-spectral cameras.
In future research, 3D modeling can be used for very accurate compensation of incidental
head movements before blood flow calculation is performed.
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