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Abstract: PCBs (printed circuit boards) are the core components of modern electronic devices, and
inspecting them for defects will have a direct impact on the performance, reliability and cost of
the product. However, the performance of current detection algorithms in identifying minor PCB
defects (e.g., mouse bite and spur) still requires improvement. This paper presents the MDD-DETR
algorithm for detecting minor defects in PCBs. The backbone network, MDDNet, is used to efficiently
extract features while significantly reducing the number of parameters. Simultaneously, the HiLo
attention mechanism captures both high- and low-frequency features, transmitting a broader range
of gradient information to the neck. Additionally, the proposed SOEP neck network effectively fuses
scale features, particularly those rich in small targets, while INM-IoU loss function optimization
enables more effective distinction between defects and background, further improving detection
accuracy. Experimental results on the PCB_DATASET show that MDD-DETR achieves a 99.3% mAP,
outperforming RT-DETR by 2.0% and reducing parameters by 32.3%, thus effectively addressing the
challenges of detecting minor PCB defects.

Keywords: PCB; defect detection; lightweight; minor defects; RT-DETR

1. Introduction

Advancing PCB (printed circuit board) production technology is crucial for the rapid
development of electronic products and intelligent manufacturing [1]. As a physical carrier
and electrical connection component in precision instruments, PCBs” surface quality and
electrical properties are vital for performance in various fields, including the electronics,
automotive, medical device, and manufacturing industries. The demand for high-quality
PCBs is increasing with the shift towards intelligent, low-power, and high-precision equip-
ment. The trend towards miniaturization, high density, and precision in PCB manufacturing
also raises surface defects, complicating production and inspection [2]. Therefore, detecting
PCB surface defects and improving production quality is essential for advancing elec-
tronic device development. Currently, the main challenges in PCB defect detection are
the following:

(1) PCB defect detection is hard in burr and mouse bite defects as they are small targets,
and local features are challenging to extract. PCB minor defects (mouse bite, spur) usually
appear in a specific local area in the image (e.g., the link between the main road and the
arterial road), and there is a slight difference with the surrounding background. (2) The
extraction of crucial feature information of PCB minor defects could be better because PCB
micro-defect images occupy only a small proportion of space (e.g., “mouse bite” and “spur”
defects on a 640 x 640 pixel PCB image cover just 3 X 3 pixels) and have low contrast
with the background, so the deep network struggles to effectively eliminate redundant
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background information during feature extraction. This leads to reduced sensitivity of the
network to micro-defect information. (3) Some background information is easy to mistake
for important features, thus introducing unnecessary interference, leading to the severe
loss of defective target semantic information in feature fusion.

To address the aforementioned challenges, researchers have applied Automatic Optical
Inspection (AOI) techniques in PCB surface defect detection. For instance, Yang [3] pro-
posed an AOI-based PCB defect detection system that successfully identifies the majority of
defects. While AOI technology demonstrates effectiveness in defect detection, it falls short
of meeting industrial demands due to its high cost and the necessity for adaptability in
diverse manufacturing environments. In addition to AOI, some scholars have explored tra-
ditional image processing methods such as edge detection and threshold segmentation [4],
in conjunction with conventional machine learning algorithms [5] like backpropagation
(BP) neural networks and Support Vector Machines (SVMs), for PCB defect detection. How-
ever, the inherent difficulty in achieving perfect template matching in real-world images
limits the effectiveness of these machine learning approaches, particularly when it comes
to detecting minor defects on PCBs.

In recent years, with the extensive use of deep learning for surface defect detec-
tion, deep learning-based algorithms for PCB surface defect detection have evolved from
two-stage approaches (e.g., Faster-RCNN [6] and DetectoRS [7]) to one-stage methods
(e.g., SSD [8], EfficientDet [9] and YOLO [10]) and from anchor-based methods (e.g.,
RetinaNet [11] and YOLOv4 [12]) to anchor-free approaches (e.g., CenterNet [13], Rep-
Points [14], and YOLOX [15]). For example, Hu [16] proposed a PCB defect detection
algorithm based on Faster-RCNN, aiming to address the high computational costs and
susceptibility to noise associated with traditional machine learning algorithms. However,
the detection accuracy achieved by this approach was only 94.3%, which proved insufficient
for effectively identifying minor defects. Yuan et al. [17] proposed a novel YOLO-HMC
algorithm based on YOLOVS5, which incorporates a content-aware feature reassembly
module to aggregate contextual semantic information from PCB images. This approach
aims to identify small defects such as burrs and mouse bites. However, its limitations
in deep feature extraction hinder its effectiveness, resulting in the ability to detect only
minor defects that exhibit minimal differences from the background. Although CNNs
have good local feature extraction capability, they may be limited by local features when
dealing with complex backgrounds such as PCB images, resulting in low accuracy of tiny
defect detection.

Vision Transformer (ViT) [18] has been proposed as a replacement for convolutional
neural networks (CNNs) and is widely applied across various defect detection tasks.
Detection Transformer (DETR) utilizes the Transformer architecture for object detection.
Unlike CNN-based single-stage detectors [19], DETR removes the need for traditional
techniques like a priori frames and Non-Maximum Suppression (NMS) [20]. DETR provides
object detection and recognition in a fully end-to-end manner, making it a novel approach
in the field of object detection. For example, Huang [21] proposed a new PCB detection
algorithm, dab-deformable-DETR, which is effective in the detection of tiny PCB defects,
but DETR is limited in industrial applications due to its low processing efficiency, long
image processing time, and high computational cost.

In 2023, Lv introduced the Real-Time Detector Transformer (RT-DETR) [22], a real-
time, end-to-end object detection model. RT-DETR features an efficient hybrid encoder
that separates intra-scale interactions from cross-scale fusion, effectively managing multi-
scale features. The model employs an IoU-aware query selection mechanism to enhance
object query initialization and allows flexible inference speed adjustments by changing
the number of decoder layers without retraining. Research on defect detection using the
RT-DETR model is limited compared to the YOLO series: Yu et al. [23] utilized an enhanced
RT-DETR for railway rutting defect detection; Liu et al. [24] proposed the Bearing-DETR
lightweight deep learning model designed specifically for bearing defect detection. These
improvements in the RT-DETR model for defect detection have achieved positive results,
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effectively demonstrating its advantages in defect detection. This paper proposes Minor
Defect Detection—DETR (MDD-DETR). The contributions of this article are as follows:

(1) Aimed at the challenge of PCB defect detection, particularly for burr and mouse
bite defects, which are characterized by small targets and difficult-to-extract local features,
we redesign the backbone network and propose the Minor Defect Detection Network
(MDDNet) to capture PCB defect features effectively.

(2) To address the issue of incomplete extraction of critical feature information for
minor PCB defects, we introduce a novel module, AIFI-HiLo, designed to extract features
at different underlying frequencies. This module helps eliminate confusing background
information and enhances the extraction of essential feature information.

(3) The neck network is re-engineered to mitigate semantic information loss during
feature fusion for defect targets. We implement the Small Object Enhancement Pyramid
(SOEP) network to facilitate multi-level, multi-scale feature fusion, enabling the model to
better comprehend and differentiate between various defect types.

(4) Finally, the INM-IoU loss function is applied to optimize the network, significantly
improving the accuracy of PCB defect detection.

The remainder of this paper is organized as follows: Section 2 describes related work;
Section 3 presents the method design; Section 4 provides the experimental analysis; and
Section 5 concludes the paper and discusses future work.

2. Related Work
2.1. RT-DETR

In the detection of micro-defects on industrial components, particularly on printed
circuit boards (PCBs), various deep learning algorithms have been employed. Notably, the
two-stage object detection algorithm Faster R-CNN integrates a Region Proposal Network
(RPN) with Fast -RCNN [25]. However, when faced with small target defects, the RPN
may struggle to generate effective candidate bounding boxes that adequately cover these
defects, leading to a decline in the model’s ability to recognize small anomalies. On the
other hand, the YOLO (You Only Look Once) series, which treats object detection as a
regression problem, directly predicts bounding box coordinates and class probabilities
through a neural network. While this approach shows some effectiveness in identifying
small defects, it often requires additional post-processing steps to enhance precision and
recall. Such steps can increase computational costs. DETR uses the global self-attention
mechanism to solve the post-processing (NMS) operation problem and achieve true end-to-
end training and reasoning. However, in practical detection situations, especially within the
framework of assembly line applications, algorithms must ensure high accuracy to maintain
detection quality and be capable of swiftly processing images to meet the demands of real-
time operational efficiency. RT-DETR balances accuracy and real-time responsiveness,
combining the feature extraction benefits of a visual Transformer with rapid computation
speeds. Additionally, its end-to-end architecture enables swift deployment in industrial
settings, making it an optimal choice for PCB defect detection.

The RT-DETR architecture, illustrated in Figure 1, is composed of three key compo-
nents: the backbone network, the hybrid encoder, and the decoder. During training, images
are fed into the backbone network to extract features. It utilizes the multi-scale feature
outputs from its final three stages as inputs to the hybrid encoder. The hybrid encoder
extracts information within and across different scale features, followed by bidirectional
fusion to produce fused, concatenated features. Query features are selected from these
concatenated features to serve as the target query vectors for the decoder. The decoder then
produces the final predicted objects and their corresponding bounding boxes, which are
used for counting purposes. When dealing with PCB Minor Defect Detection, RT-DETR'’s
detection performance is insufficient. Therefore, this paper presents a novel PCB defect
detection algorithm, MDD-DETR, for more efficient defect detection.
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Figure 1. RT-DETR network structure.

2.2. PCB Defect Detection

Conventional PCB surface defect detection techniques, such as manual visual inspec-
tion, electrical testing, and infrared scanning, often suffer from omissions, false detections,
and low efficiency. As computer vision technology progresses, various methods for de-
tecting defects in printed circuit boards based on visual analysis have been investigated,
significantly improving the precision and effectiveness of defect identification while reduc-
ing labor expenses.

For example, Niu [26] and some researchers have introduced a PCB defect detection
algorithm based on an enhanced Faster R-CNN, utilizing deep convolution in place of
standard convolution to decrease the number of parameters and the improved k-means++
algorithm to obtain anchor points suitable for micro-defect target detection. Zeng [27] et al.
proposed a novel enhanced multi-scale feature pyramid network to merge feature maps,
employing dilated convolution operators with varying expansion rates to fully leverage
contextual information, thereby improving the detection performance for minor PCB target
defects. Tang [28] et al. enhanced YOLOV5 by adding a small target detection layer to focus
on small targets, improving detection accuracy. They also used deep separable convolu-
tion to reduce model size and the EloU loss function to optimize regression, enhancing
overall performance. Liu [29] and colleagues opted to adopt YOLOv4 as their foundational
framework, introducing an innovative loss function grounded in GIoU regression. Despite
improving the recall rate of target detection performance, the original YOLOv4 algorithm
still needs a redundant structure and high computational complexity. Lan [30] employs the
Cross-Scale Fusion Module (CEM) to connect the YOLOvV8 backbone network with the neck
network, enhancing the feature fusion and interaction capabilities of the neck network.

In recent research, Qin [31] proposed a novel PCB defect detection algorithm called
SDD-Net. This algorithm enhances multi-level feature fusion and representation capabili-
ties by integrating a residual feature pyramid network with a hybrid attention mechanism.
While it has demonstrated strong performance across multiple datasets, its detection
capabilities in complex backgrounds still need improvement. Additionally, Zhang [32]
incorporated a lightweight backbone network (LFEN) into a new PCB defect detector,
effectively balancing accuracy, computational cost, and detection speed. However, the
detection accuracy is only 95.90%, which poses challenges when addressing minor defects.

However, these studies focus on regular large-size defects, neglecting the challenges
of detecting defects in small or complex backgrounds. When faced with minor defects like
mouse bites and spur in PCBs, traditional detection models encounter difficulties.

3. Methodology
3.1. MDD-DETR Network Model

As shown in Figure 2, the model utilizes MDDNet as the backbone for image feature
extraction. For the processing of deep network features, we introduced the AIFI-HilL.o
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module, which integrates the HiL.o noticing mechanism and is able to extract features at
different low-level frequencies to optimize the extraction of critical micro-defect features.
We design a neck network called the SOEP. In the first bottom-up final path, the SPDConv
module is responsible for extracting small target features from AIFI-HiLo and fusing them
at the shallow level of the neck. Meanwhile, CREC collects gradient information from each
layer through more efficient connections in the second top-down path. To enhance the
focus on PCB micro-defect regions, we utilize an INM-IoU optimized loss function to help
the model learn micro-defect features more efficiently. Ultimately, by using a decoder with
additional prediction headers, we iteratively refine the object query to generate bounding
boxes and confidence scores.
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Figure 2. MDD-DETR network structure.

3.2. MDDNet

The contrast between PCB minor defects and the background is minimal, and the
extraction effect of minor defect features is poor. To capture the features of these minor
defects, MDDNet first extracts the features through three CBHS modules, which use a
convolutional layer with a scale of 3 x 3. Under the premise of guaranteeing the com-
plete extraction of the features of the minor defects, the number of module references is
effectively controlled, and no additional parameters are added; in order to balance the
computational accuracy, execution efficiency, and portability, with h-swish instead of swish
as the activation function, h-swish is denoted as

h — swish([x] = x - [RELU 6(x + 3) /6] 1)

where x is the input vector, and RELU 6 is the activation function.

Unlike the swish function, the h-swish function differentiates itself using the RELU6
activation function instead of the sigmoid function. RELUS is used as the approximation
function to approximate the swish; this function can be integrated into nearly all software
and hardware frameworks, effectively eliminating the accuracy loss associated with using
a linear function in place of the sigmoid function. Subsequently, features are extracted
through a maximum pooling layer, simplifying the model, improving its robustness, and
significantly reducing the computational burden and the number of parameters. Finally, a
series of MDD blocks are used for multi-channel output.

As depicted in Figure 3a, within the MDD block, the MDD module extracts local
features. It incorporates the Efficient Multi-scale Attention (EMA) [33] mechanism to
enhance the focusing ability of target features and aid the model in better comprehending
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the relationship between minor defects and their surrounding areas. These two components
collaboratively enhance the performance of MDDNet in PCB defect detection.
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Figure 3. MDD block.

MDD Module

As illustrated in Figure 3b, in the MDD module, firstly, the maximum pooling layer
output is used as input for F;_; € R&-1*H-1xWi-1 ysing a 3 x 3 deep convolution to
capture the contextual information. After the initial processing, it is obtained that X;_; is
divided into thirds by channel slicing and is provided to the three paths:

X;_1 = Split(DWConvzy3(F_q)) € RE>H>XW 2)
1 1 1
X = Xial3C0 1 X2 = XpalgC L X = X560, 3)

The first two branches are split into convolutional layers with different receptive fields
to cover the possible dimensions of defective features and to extract more comprehensive
defect-related information. Subsequently, depthwise convolution is used to conduct sep-
arate operations for each input channel, resulting in significantly fewer parameters than
traditional convolution operations. The three processed feature maps are concatenated to
achieve multidimensional differential feature fusion. The fused features undergo pointwise
convolution and residual fusion with the initial input features. Finally, a channel blending
operation is applied to the output feature map, enabling the model to capture complex
features more effectively and enhancing its generalization capability. This process can be
represented by Equations (4) and (5).

X = DWConvs3(Convses(X\7))), X' = DWConvs.5(Convs.s(X2))), (@)

F = Shuffle(Conlel(Concat(Xl(l),Xl(z),Xl(i)l)),Flfl) € RE<HxW, (5)
where Split denotes the channel slicing operation, Shuf fle denotes the channel mixing
operation, and Concat denotes the connecting operation.
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3.3. AIFI-HiLo

The multihead self-attention mechanism in AIFI employs uniform global attention
across all image blocks, which fails to account for the distinct features associated with
various underlying frequencies. This limitation hampers the model’s capacity to effectively
capture crucial details of small PCB defects. To address this issue, AIFI-HiLo is proposed.
HiLo (high-frequency attention and low-frequency attention) [34] captures local details
through high frequencies in the image, and low frequencies focus on the global structure.
To address this issue, the attention layer can decouple high- and low-frequency modes by
dividing the heads into two groups, where one group focuses on capturing high-frequency
information through self-attention within each local window.

The other model’s low-frequency information is captured by applying attention across
local windows. In the HiLo mechanism, the attention layer differentiates high and low
frequencies by assigning distinct roles to different heads. As illustrated in Figure 4, in the
upper pathway, specific heads are allocated for high-frequency attention (Hi-Fi) through
local window self-attention (for instance, 2 x 2 windows), enabling efficient extraction of
detailed high-frequency features compared to the standard MSA. Low-frequency attention
(Lo-Fi) is established in the lower pathway by using average pooling within each window
to extract low-frequency signals. The focus of the remaining attention head is on Lo-Fi,
which captures the global relationships between each query position in the input feature
map and the average-pooled low-frequency key for each window. This approach greatly
reduces Lo-Fi complexity by using shorter key and value lengths. Finally, the refined
high- and low-frequency features are concatenated and passed to subsequent layers for
further processing.

High Frequency Attention(Hi-Fi)
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Low Frequency Attention(Lo-Fi)
Figure 4. HiLo attention framework.

3.4. Loss Function Optimizsation

To place a stronger focus on the minute defect areas on printed circuit boards, the
model can be directed to more effectively learn the characteristics of these defects. This
enables it to differentiate more clearly between the defects and the background, ultimately
improving the precision of PCB defect detection; so, INM-IoU is proposed. This approach
integrates the auxiliary bounding box concept of inner-IoU [35], the NWD (Normalized
Wasserstein Distance) [36] probability distribution computational system, and the bounding
box alignment accuracy principle of MPDIoU [37] to optimize the GIoU loss function of
RT-DETR. The rationale behind the creation of INM-IoU is as follows:
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Intersection over Union (IoU), a crucial element in existing mainstream bounding box
regression loss functions, is defined as follows. Figure 5 illustrates its calculation, while the
corresponding formula is given in Equation (6):

(6)

I B g

B prd

— — —r

Figure 5. The IoU calculation factor.

The GIoU in RT-DETR is improved based on the IoU to solve the problem of the
gradient disappearing when the un-overlapped area is 0. The GloU loss function is mainly
based on the overlapped area between the predicted and GT boxes to optimize the model.
However, regarding PCB defect detection, relying only on the overlapped area may only
partially reflect the geometric alignment between the boxes. In this situation, MPDIoU
compensates for this by introducing an additional distance metric, i.e., the minimum
perpendicular distance between the vertices of the predicted box and the actual box, so
that the loss function can pay more attention to the precise alignment of the bounding box
during the optimization process. The schematic diagram of the MPDIoU loss function is
shown in Figure 6. The expression of MPDIoU is

d? a3
Lypprou =1 — IoU + 2 +1w2 + 2 —0—27,02 )
d t\2 d t\2
di = (" =) + " ) o
2 ®)

d £\2 d t
B=E" =)+ )

w

Figure 6. The MPDIoU calculation factor.
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MPDIoU takes into account not only the overlap degree of the bounding boxes but
also the relative positions and shapes of the boxes. This enhances the accuracy of bounding
box alignment while preserving the benefits of the IoU loss function. For small targets,
the MPDIoU loss function can reduce the impact of defects being indistinguishable from
the background, as the bounding boxes for small targets are better optimized through
multi-scale regression.

The inner-IoU loss function builds on MPDIoU, enhancing its performance by calcu-
lating IoU loss through an auxiliary bounding box. The key concept of this approach is to
use auxiliary bounding boxes of different scales for samples with high and low IoU values,
respectively, to calculate the loss. This strategy effectively accelerates the bounding box
regression process while improving the model’s generalization capability and localization
accuracy.

inter = (min(by, ;rd) - max(blgt, b;rd)) * (mz'n(bgt, bgrd) - max(bgt, b;yd)) 9)
union = (ws' x h&t) « (ratio)* 4 (w?"™® x hP'?) x (ratio)* — inter (10)
inter
ToUipper = union (11)
Linner—1ou =1 — IoUjpper (12)
di 43
Linner—mppiou =1+ W2+ w2 + h2 + w2 — LoUinper (13)

bgt, bgt denote the right, left, lower and upper boundaries of the GT box,

;rd’ b;rd’ b?)rd’ b;rd

the predicted box (or the auxiliary bounding box), respectively, (w?™,hP™) and (ws$!, h8t)
denote the width and height of the predicted box and the GT box, respectively, and ratio is
the scaling factor ratio, which is used to resize the auxiliary bounding box.

If the predicted box and the ground truth (GT) box do not overlap, the inner-MPDIoU
loss function significantly hinders the model’s ability to update parameters during back-
propagation. Additionally, it becomes challenging to compute the similarity between
predicted and GT boxes when they fully contain each other. At this time, the NWD loss
function calculation similarity is introduced to improve the detection efficiency.

NWD represents the bounding box as a two-dimensional Gaussian distribution and
measures the similarity between the predicted and GT boxes based on their respective
Gaussian distributions. The calculation formulas are given in Equation (14).

where b, bl

respectively, b denote the right, left, lower and upper boundaries of

2

22 22 (9

) g i wprd hprd T ; ; wgt hgt T
_ T T
W3 (Na,,, Np,,) = cxP?, cyP™, —— , {cxg,cyg, 55

2

where (cxP™, cyP™) and (cx8t, cy8t) are the center coordinates of predicted box and the GT
box, respectively. W2 (N B,ar N B, ) is a distance measure and cannot be directly used as a
similarity measure. Therefore, normalize its exponential form to obtain a new metric NWD;
the calculation formula is as Equation (15).

w% (NBprd’ NBgt )

C (15)

NWD(NBW,NBgt) =exp| —

where C is a constant.
The new loss function, INM-IoU, is created by proportionally combining inner-
MPDIoU with NWD, as presented in Equation (16).

Linm-tou = &Liuner—mppiou + (1 —«)NWD(Ng,,,, Np, ) (16)
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where « is the scale factor, 0 < a < 1.

3.5. SOEP

Traditional detection layers like P3, P4, and P5 face challenges in effectively addressing
these small-scale issues in PCB micro-defect detection. A common approach to enhancing
the detection capability of micro-defects is to introduce a P2 detection layer. However,
this introduces a series of issues, such as increased computational load and prolonged
post-processing times. Hence, there is an urgent need to develop novel feature pyramid
structures to address the challenges of micro-defect detection effectively. We analyzed and
designed a novel neck network called SOEP to address this.

In contrast to traditional methods of adding P2 detection layers, we utilize P2 feature
layers processed through SPDConv [38], which contain abundant information about small
targets, and integrate them with the P3 layer. Subsequently, drawing inspiration from
the CSP structure and OmniKernel-based [39] approaches, we propose CSP-OmniKernel
for feature integration. Furthermore, we developed a CSP module, known as the CREC
module, which incorporates cascaded residuals into the SOEP network. This design aims
to strengthen the fusion capabilities of micro-defect features, ultimately enhancing the
performance of micro-defect detection.

3.5.1. SPDConv

The Space to Depth Convolution module (SPDConv) comprises a Space to Depth
(SPD) layer and a non-stepped convolution (Conv) layer. Firstly, the SPD layer cuts the
intermediate feature input X of size S x S x C; into a series of sub-feature maps fyy,
all of size (S/scale,S/scale,Cy1), which are down samples of the original feature input
X. Next, all sub-feature maps are concatenated along the channel dimension to create
feature map X,(S /scale, S/scale,scale2Cy). After the feature map X' is fed into a non-
stepped convolutional layer (N-S Conv) containing C, filters, the output feature map
X"(S/scale, S /scale, Cy) is obtained. The non-stepped convolutional layer preserves as
much discriminative information as possible.

foo = X[0:S:scale,0:S :scale],- -,

fscate—10 = X[scale —1: S :scale,0: S : scale]

fo1 = X[0:S:scale,1:S :scale],---,

fscale—11 = X[scale —1: S : scale,1: S : scale] 17)

foscate—1 = X[0: S : scale,scale —1: S : scale], - - -,
fscate—1,scale—1 = X[scale —1: S : scale,scale —1: S : scale]

In the formula, f, consists of all i +- x and i +y in x(i, j) that can be divided propor-
tionally by scale.

To avoid feature loss caused by small defect networks, such as mouse bites and spikes,
due to stride convolution, an SPDConv layer with a scale of 2 is selected to collect small
target information from the P2 layer and send it to the P3 layer for fusion.

3.5.2. CSP-OmniKernel

As shown in Figure 7a, the CSP OmniKernel (CSPOK) module follows the idea of
the CSP structure, which can enhance the information flow of the network, promote the
transmission and learning of features, enhance computational efficiency, reduce module
complexity and inference time, and make the model more lightweight and practical. We
generate four slices of the input channels, only one of which is processed by the OmniKernel
module. In Figure 7b, the OmniKernel (OKM) is shown with the given input feature
X € RE*HXW_ Following 1 x 1 convolution processing, the features are directed into
three branches—local, large, and global—allowing for effective learning of the feature
representation of PCB defects across scales from global to local. The outputs from these
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branches are subsequently merged using addition and refined with an additional 1 x 1
convolution. Parallel deep convolutions of 1 x Kand K x 1 are used in a large branch
to obtain bar-shaped contextual information. To mitigate the substantial computational
burden associated with large kernel size convolutions, we set the kernel size K to 31. In
the inference phase of the global branch, the input image is much larger than the training
image. Therefore, a 31 x 31 kernel cannot cover the global domain. To alleviate this issue,
dual-domain processing was adopted, which added global modeling capability to the
global branch. Specifically, the global branch comprises a dual domain channel attention
module (DCAM) and a frequency-based spatial attention module (FSAM), as shown in
Figure 7c,d.

: DConv | Depth-wise Global average
12l convolution  9AF* ooling
Conv pooling
1x1 :
h

A

Jl“- :

DConv DConv ny '
1x1 31x31 1x31 :
&En

| |

Local Large Global
| | I
Conv ‘ [ Conv J [ Conv J
: o) i
1=1
. !
(a)CSPOK (b)OKM (d)FSAM

Figure 7. The architecture of CSPOK. FFT and IFFT represent the fast Fourier transform and its
inverse operation, respectively.

3.5.3. CREC Module
The CREC module is illustrated in Figure 8.

e A
Head 1 ] \ / Headh

|

|

|
v
niy
|
|
|

v

(Sclf-altcmion)

4

BN A |
y - |
1x1 \ /

Conv SO e P

I ( Concat&Projection )

~—
Output ~ Output
CWR CGA

Figure 8. CREC module.

It comprises two convolutional blocks, Batch Normalization (BN) and SiLU activation
functions, along with ‘n” CWR residual modules. However, after slicing operations and
residual connections on input tensors X € R"*¢*/*¥ the output undergoes convolution
through convolutional layers. This process is depicted by Equation (18).
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Yi = CWR,(X),
Yo = CWR,(X3) + - + CWR,(X3) + CWR(X2) + Xo, (18)
Y = [Concat(Yy,Y2)] + X2

CWRn (+) represents the nth CWR module, Concat(-) represents features that connect
two branches, and [-] represents 1 x 1 convolution operation, +: residual connection.

The proposed residual structure design method ensures a light weight while acquiring
richer gradient flow information, thereby capturing more local details and enhancing
feature extraction for minor defects in PCBs.

The core element of this module is CWR. It employs a two-step strategy to gather
multi-scale contextual information effectively and subsequently merges the feature maps
acquired from different receptive fields.

Step 1: Generate corresponding residual features from the input features, termed
regional residualization. The image can be segmented into distinct regions by utilizing re-
gional residuals, allowing separate extraction of features from each region, thus facilitating
more precise identification of minor defects.

Step 2: Employ cascaded attention to cascade and iterate multi-level attention, direct-
ing focus to feature regions of varying sizes, gradually focusing on local information of
minor PCB defects, and capturing more spatial relationships. Each channel applies only a
single expected receptive field to avoid redundant receptive fields.

Subsequently, the BN layer aggregates multi-scale contextual information obtained
from these two steps through pointwise convolution.

CGA (Cascaded Group Attention) [40] level group attention is expressed as

~

Xij = Attn(XyWi7, XijWii, X Wif), (19)
Xiq = Concat[Xij}jzlthZP

The jth head calculates self attention on Xj;, which is the jth segmentation of input
feature X;, i.e., X; = [Xj1, Xip,- -+, Xip), and 1 < j < h. h is the total number of heads.
Wl.]Q, WZ-I; and Wi‘]-/ are projection layers that map the input features into distinct subspaces,
while WP is a linear layer that projects the concatenated output features back to the same
dimension as the input.

Integrating the CREC module within the SOEP network enhances the accurate capture
of local features, thereby improving the distinction between PCB micro-defects and their
background.

4. Experiments
4.1. Experimental Description
4.1.1. Experimental Environment and Parameter Settings

Tables 1 and 2 show the experimental environment and configuration parameters,
respectively. No pre-training weights are set to ensure the experiment’s fairness.

Table 1. Experimental environment.

Configure Setting
CPU i7-10700F 2.90GHz
GPU NVIDIA GeForce RTX 4090
Operating systems Windows 11
Deployment environment Python 3.10.11
Deep learning framework PyTorch 2.0.0
Accelerated computing framework CUDA 11.7

Optimizer SGD
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Table 2. Configuration of experimental parameter.
Parameters Setting
Input image size 640 x 640
Epoch 300
Parameter learning rate 0.001 (First 200epoch), 0.0001 (Post 100epoch)
Batch size 8

4.1.2. PCB Defect Image Dataset

The defect dataset used in the study is provided by the Intelligent Robotics Open Lab-
oratory at Peking University (http:/ /robotics.pkusz.edu.cn/resources/dataset/, accessed
on 16 January 2023.) and contains six defect types: missing hole, spurious copper, short
circuit, mouse bite, open circuit, and spur. The original dataset consists of 693 images,
and data augmentation techniques are used to increase the dataset size to 9009 images.
Data augmentation techniques include blurring, brightness adjustment, random cropping,
rotation, translation, and mirroring. The augmented dataset is divided into a training set
and a test set in an 8:2 ratio. The distribution of each defect type after data augmentation is
presented in Table 3.

Table 3. Dataset details.

Defect Type

missing_hole

spurious_copper

short

mouse_bite

open_circuit

spur

Total number

Example of Defects Number of Original Images Number of Images After Expansion

- 115 1495
. 116 1508
. 116 1508
. 115 1495
. 116 1508
. 115 1495

- 693 9009

4.1.3. Performance Evaluation and Indicators

To assess the algorithm’s effectiveness in detecting PCB defects, evaluation indexes
such as precision (P), recall (R), mean average precision (mAP), mouse bite mean average
precision (mAP,;), spur mean average precision (mAPsp,,), and floating-point operation
(Flops) were used in this study.

P= -2 x100%,

Tp+Fp (20)
T o
R = ﬁ X 100 /O
AP = [} P(R)dR,
(21)

1 n
mAP = =Y. AP(i)
ni=1

where Tp represents the count of correctly predicted positive samples, Fp denotes the num-
ber of incorrectly predicted negative samples, and Fy indicates the number of incorrectly
predicted positive samples.
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Electronics 2024, 13, 4453

14 of 21

4.2. Experimental Analysis
4.2.1. Ablation Study on MDD-DETR

To evaluate the effects of the proposed modules on the PCB defect detection model,
this study designs an ablation experiment based on the original RI-DETR. The MDD-
DETR contains an SOEP module, INM-IoU loss function, MDDNet module, and AIFI-HiLo
module. The ablation experiment results are shown in Table 4. We first added the SOEP
module, and with only 0.3M parametric quantities added, the mAP was improved by 1.2%,
while both spur and mouse bite were substantially improved. Then, the loss function was
optimized using INM-IoU to improve the target recall R by 6.4% with a small increase in
mAP. Then, the lightweight MDDNet network was added to greatly reduce the number of
5.3M senators with a 0.1% increase in mAP, and finally the HiLo attention mechanism was
used to increase the detection accuracy to 99.3% with controlled parameter costs.

Table 4. Ablation study on MDD-DETR.

SOEP INM-IoU MDDNet AIFI-Hilo P R mAP  mAP,;, mAPsy, Params FLOPs  F1
982 884 97.3 94.3 902  198M 573G 93.0

v 986 898 98.5 97.5 947  201M 582G 940
v v 988 962 99.0 98.8 953  201M 582G 975
v v v 993  97.0 99.1 99.2 9.6  148M 386G 981
v v v v 999 979 99.3 99.3 982  134M 364G 989

4.2.2. MDDNet Analysis

In order to verify the effectiveness of the MDDNet design, comparison experiments
are conducted with the current popular backbone network. This experiment is carried out
on the basis of RI-DETR. Among backbones, MDDNet (without EMA) is the backbone
that lacks the EMA mechanism. As shown in Table 5, MDDNet has the best results in
detecting mouse bite and spur defects, with an improvement of 4.5% mAP and 6.2% mAP,
respectively, compared to the baseline backbone ResNet18. Meanwhile, with the addition
of the EMA mechanism, MDDNet has a 0.4% mAP improvement with an increase of only
0.4M parameters.

Table 5. Comparison results of different backbones.

Backbone P R mAP mAP,,, mAPspyr Params FLOPs
ResNet18 [41] 98.2 88.4 97.3 94.3 90.2 19.8 M 57.0G
PKINet [42] 97.5 86.8 96.6 93.1 84.5 12.8 M 454G
CSwinTramsformer [43] 96.2 86.3 95.8 91.6 82.6 30.5M 90.2 G
EfficientFormerv2 [44] 98.2 89.1 97.5 93.9 89.8 11.9M 29.8 G
EfficientViT [40] 98.2 89.2 97.5 94.5 90.4 10.8 M 27.6 G
LSKNet [45] 97.9 85.7 96.8 93.5 81.7 126 M 379G
RepViT [46] 97.5 89.5 97.3 94.5 88.7 134 M 36.7 G

RMT [47] 98.4 915 97.6 94.9 91.8 214 M 615G
SwinTransformer [48] 97.3 86.5 96.5 93.1 81.6 36.4M 97.3 G
UniRepLKNet [49] 97.8 86.8 96.7 93.8 86.5 12.8 M 337G
VanillaNet [50] 96.8 85.9 96.1 89.8 80.6 21.8M 1105 G
MDDNet (without EMA) 98.6 92.2 97.8 98.2 96.2 141 M 372G
MDDNet 98.9 94.3 98.2 98.8 96.4 145 M 379G

4.2.3. INM-IoU Analysis

We performed ablation experiments on INM-IoU, using the RT-DETR model as the
baseline. As shown in Table 6, we first compared INM-IoU with other conventional loss
functions. Then, we conducted ablation experiments using the three components of INM-
IoU: MPDIoU, inner-IoU, and NWD. Each component contributed to an improvement in
mADP, and when combined, they produced the best overall performance.
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Table 6. Comparison results of different loss functions.

Model Loss P R mAP
GloU 98.2 88.4 97.3

CIoU 97.6 86.5 97.1

SIoU [51] 97.5 86.2 96.9

Shape-IoU [52] 97.1 87.9 96.9

RT-DETR MPDIoU 98.8 91.5 97.6
inner-IoU 98.6 91.2 974

NWD 99.0 92.8 97.6

MPDIoU + inner-IoU 99.0 94.3 97.7

INM-IoU 99.1 94.8 97.9

4.2.4. SOEP Analysis

To verify the generality of SOEP, we replaced the neck structure with different algo-
rithms and applied them to various models. The results, shown in Table 7, demonstrate
that replacing PAFPN with SOEP in YOLOv8n resulted in a 0.4% mAP improvement, with
fewer training epochs and a slight increase in the number of parameters. Additionally, we
validated the effectiveness of SOEP using the latest YOLO detector, YOLOv10n.

Table 7. Comparison of SOEP’s effectiveness in other algorithms.

Model Neck mAP Params FLOPs Epochs
CCFM 98.8 131M 355G 300
BiFPN 99.1 137M £26G 300
MDD-DETR PAFPN 98.7 131M 354G 300
GLSA [53] 99.0 153 M 025G 300
SOEP 99.3 134M 364G 300
PAFPN 943 31M 87G 300
YOLOv8n SOEP 94.7 34M 9.7G 200
PAFPN 95.3 23M 6.7G 200
YOLOv10n SOEP 95.4 27M 82G 150

4.2.5. AIFI-HiLo Analysis

To highlight the effectiveness of the HiLo attention mechanism in the AIFI module,
we combine Hil.o with multihead self-attention (MHSA) [54], Cascaded Group Attention
(CGA) [40], DAttention [55], Efficient Additive Attention (EAA) [56], the multiscale mul-
tihead self-attention (M2SA) in CMTENet [57], Histoformer Dynamic-range Histogram
Self-Attention (DHSA) [58], and the recently popular Transformer attention. This experi-
ment was performed based on the RT-DETR model. The experimental results are shown
in Table 8. HiLo attention has the best effect. Compared with other Transformer atten-
tions, HiLo captures local details through the high frequency in the image, while the low
frequency focuses on the global structure, which can better extract small defect features.

Table 8. Contrast of the different Transformer attentions.

Model Attention P R mAP
MHSA 98.2 88.4 97.3

CGA 98.5 89.9 97.6

DAttention 97.4 84.7 96.8

RT-DETR EAA 96.5 81.9 95.9
M2SA 98.9 91.8 98.2

DHSA 98.9 91.5 98.2

HiLo 99.3 94.2 98.9
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4.3. Comparison of PCB Defect Detection Algorithms

As seen in Table 9, the performance of the improved network is compared with several
established models, including SSD, Faster R-CNN, YOLOv3 [59], YOLOvS, DETR [60], and
YOLOVY [61]. Additionally, the experiment includes comparisons with current popular de-
tection algorithms such as Huawei’s Gold-YOLO and YOLOv10 from 2024. The algorithm
proposed in this paper outperforms most network models, with a minimum mean average
precision (mAP) improvement of 2.1% over other networks. Furthermore, the number of
parameters is kept relatively low at 14.12 M.

Table 9. Comparison of the results with the latest algorithm.

Model mAP mAP,,;, MAPspyy Params FLOPs FPS (bs = 8)
SSD 64.5 432 35.4 1502 M 3205 G 81
Faster-RCNN 72.2 57.8 50.6 40.6 M 89.2G 168
YOLOV3-tiny 91.5 82.5 75.6 121 M 249 G 179
YOLOv8n 94.3 91.2 86.4 3.1 M 87G 188
DETR 93.8 88.7 84.6 41.6 M 100.5 G 148
YOLOV9s 94.3 88.6 83.8 72M 26.7 G 186
Gold-YOLOn 95.2 92.1 89.5 5.6 M 121G 190
YOLOv10n 95.3 93.5 89.2 23M 6.7 G 189
RT-DETR-MobileNetV4 97.1 96.2 93.5 114M 488 G 201
RT-DETR-StarNet 97.2 96.4 93.1 11.5M 485G 205
YOLOvS8s 94.3 91.1 86.4 11.2M 28.6 G 184
YOLOVIm 97.1 93.5 90.8 201 M 76.8 G 172
Gold-YOLOs 95.9 92.8 88.5 215M 46.1G 175
YOLOv10m 97.2 94.1 91.8 154 M 59.1 G 186
MDD-DETR 99.3 99.3 98.2 134 M 364G 198

RT-DETR-MobileNetV4 [62] and RT-DETR-StarNet [63] modified the RT-DETR back-
bone to be more lightweight. While these adjustments reduced the number of parameters
and computations, they also resulted in lower accuracy, highlighting the superior per-
formance of MDDNet. Additionally, compared to MDD-DETR, MDD-DETR maintains
ultra-high accuracy with approximately the same number of parameters, further emphasiz-
ing its effectiveness.

4.4. Visualization Experiments

As shown in Figure 9, the detection results for three challenging defect types—spur,
mouse bite, and open circuit—are presented. The results indicate that our algorithm not
only accurately identifies all defects but also achieves higher detection scores compared
to the baseline. Furthermore, our algorithm correctly classifies these defects. The results
show that the baseline algorithm can only recognize a single defect when detecting small
spur defects, while our algorithm can recognize all defects, and the baseline algorithm
can only correctly recognize one defect when detecting mouse bite defects and recognize
another mouse bite defect as a very similar open circuit defect, while our algorithm not only
recognizes all defects but also correctly categorizes the defects. In the detection of open
circuit defects (complex backgrounds), it is comprehensive and achieves higher detection
scores than the baseline.

Figure 10 presents the heat map of PCB detection performance. As shown in the figure,
compared to the original model, our model is able to accurately and effectively focus on
PCB defects.
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Figure 9. Visualization comparison: (a) original; (b) baseline; (c) MDD-DETR.

Figure 10. Comparison of heat maps for detection performance: (a) original; (b) baseline; (¢) MDD-
DETR.
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4.5. The Generalization of the Experiment

To demonstrate the general applicability of the algorithm presented in this paper,
we compared MDD-DETR and RT-DETR across three datasets: the ceramic tile surface
defect dataset, the aluminum surface defect dataset [64], and the strip surface defect dataset
(NEU-DET). The ceramic tile dataset includes six types of defects, such as white and black
spots, which are small targets with features resembling subtle background differences and
detection challenges similar to those in PCB datasets. Both the NEU-DET and aluminum
surface defect datasets display a long-tail distribution with numerous small target defects,
further increasing detection difficulty. These datasets were chosen to evaluate the generality
of the proposed algorithm. As shown in Table 10, in all three datasets, our algorithm
achieved better detection performance compared to the baseline algorithm.

Table 10. The generalization of the experiment.

Dataset Model P R mAP
Coramic Til RT-DETR 72.8 68.6 72.5
eramic 11les MDD-DETR 80.6 73.8 77.9
RT-DETR 76.8 72.7 75.6

NEU-DET MDD-DETR 833 77.8 81.7
Aluminum RT-DETR 90.2 84.2 89.5
Product MDD-DETR 90.9 84.6 90.2

5. Conclusions

To address the challenges posed by minimal differences between target features and
the background, as well as the high proportion of small targets in PCB defect detection
tasks, this study proposes an enhanced RT-DETR detection model, MDD-DETR. The model
improves the extraction of small defect features through the novel backbone network,
MDDNet, and enhances the ability to capture critical features related to minor PCB de-
fects by incorporating a high- and low-frequency feature extraction attention mechanism.
Additionally, INM-IoU is used to optimize the loss function, allowing the model to better
focus on the features of minor defects and distinguish them from the background. The
reconstructed neck further improves feature fusion and information transfer efficiency.
Experimental validation on a PCB defect dataset demonstrates the algorithm’s effectiveness
in defect detection tasks. This model is still lacking in terms of the edge device deploy-
ment performance. Future work will focus on optimizing the model to reduce parameters
and computational requirements, while also enhancing its robustness for deployment on
edge devices.

Author Contributions: Conceptualization, D.W. and ].P.; methodology, S.L.; software, W.E,; validation,
W.E, ].P.and W.E; formal analysis, S.L.; investigation, W.E; resources, ].P; data curation, W.E,; writing—
original draft preparation, W.F.; writing—review and editing, W.F.; visualization, W.F.; supervision,
J.P; project administration, D.W.; funding acquisition, S.L. All authors have read and agreed to the

published version of the manuscript.

Funding: This work was supported by the Fuxiaquan National Independent Innovation Demonstra-
tion Zone High end Flexible Intelligent Packaging Equipment Collaborative Innovation Platform
Project (2023-P-006) and the 2022 Fujian Provincial Key Project for Science and Technology Innovation
(2022G02007).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy concerns.

Conflicts of Interest: The authors declare no conflicts of interest.



Electronics 2024, 13, 4453 19 of 21

References

1. Annaby, M.H.; Fouda, Y.M.; Rushdi, M.A. Improved Normalized Cross-Correlation for Defect Detection in Printed-Circuit Boards.
IEEE Trans. Semicond. Manuf. 2019, 32, 199-211. [CrossRef]

2. Tian, X.; Zhao, L.; Dong, H. Application of image processing in the detection of printed circuit board. In Proceedings of the 2014
IEEE Workshop on Electronics, Computer and Applications, Ottawa, ON, Canada, 8-9 May 2014; pp. 157-159.

3. Yang, Q.; Li, Z. Software Design for PCB defects detection system based on AOI technology. Information 2011, 14, 4041.

4. Ma,].; Cheng, X. Fast segmentation algorithm of PCB image using 2D OTSU improved by adaptive genetic algorithm and integral
image. J. Real-Time Image Process. 2023, 20, 10. [CrossRef]

5. Cheng, Y.; Wang, S.; Chen, B.; Mei, G.; Zhang, W.; Peng, H.; Tian, G. An improved envelope spectrum via candidate fault
frequency optimization-gram for bearing fault diagnosis. J. Sound Vib. 2022, 523, 116746. [CrossRef]

6. Sun, X;; Wu, P; Hoi, S5.C. Face detection using deep learning: An improved faster RCNN approach. Neurocomputing 2018, 299,
42-50. [CrossRef]

7. Qiao, S,; Chen, L.-C.; Yuille, A. Detectors: Detecting objects with recursive feature pyramid and switchable atrous convolution. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 21-25 June 2021; pp.
10213-10224.

8.  Liu, W,; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the Computer Vision—-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11-14 October 2016; Proceedings,
Part I 14. Springer: Berlin/Heidelberg, Germany, 2016.

9. Tan, M,; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 13-19 June 2020.

10. Redmon, J. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016.

11. Zhang, S.; Chi, C.; Yao, Y,; Lei, Z.; Li, S.Z. Bridging the gap between anchor-based and anchor-free detection via adaptive training
sample selection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
13-19 June 2020.

12.  Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.

13. Duan, K;; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. Centernet: Keypoint triplets for object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October—2 November 2019.

14. Yang, Z;Liu, S.; Hu, H.; Wang, L.; Lin, S. Reppoints: Point set representation for object detection. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Seoul, Republic of Korea, 27 October—2 November 2019.

15.  Ge, Z. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430.

16. Hu, B.; Wang, J. Detection of PCB Surface Defects with Improved Faster-RCNN and Feature Pyramid Network. IEEE Access 2020,
8, 108335-108345. [CrossRef]

17. Yuan, M.; Zhou, Y,; Ren, X.; Zhi, H.; Zhang, J.; Chen, H. YOLO-HMC: An Improved Method for PCB Surface Defect Detection.
IEEE Trans. Instrum. Meas. 2024, 73,2001611. [CrossRef]

18. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

19. Li, W,; Zhang, L.; Wu, C.; Cui, Z.; Niu, C. A new lightweight deep neural network for surface scratch detection. Int. ]. Adv. Manuf.
Technol. 2022, 123, 1999-2015. [CrossRef] [PubMed]

20. Salscheider, N.O. Featurenms: Non-maximum suppression by learning feature embeddings. In Proceedings of the 2020 25th
International Conference on Pattern Recognition (ICPR), Milan, Italy, 10-15 January 2021.

21. Huang, J. PCB defect detection based on an enhanced dab-deformable-DETR. In Proceedings of the Ninth International Sym-
posium on Advances in Electrical, Electronics, and Computer Engineering (ISAEECE 2024), Changchun, China, 1-3 March
2024.

22. Zhao,Y,;Lv, W; Xu, S.; Wei, ].; Wang, G.; Dang, Q.; Liu, Y.; Chen, J. Detrs beat yolos on real-time object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 17-21 June 2024.

23.  Yu, C.; Chen, X. Railway rutting defects detection based on improved RT-DETR. J. Real-Time Image Process. 2024, 21, 146. [CrossRef]

24. Liu, M.; Wang, H.; Du, L.; Ji, E; Zhang, M. Bearing-DETR: A Lightweight Deep Learning Model for Bearing Defect Detection
Based on RT-DETR. Sensors 2024, 24, 4262. [CrossRef] [PubMed]

25. Girshick, R. Fast r-cnn. arXiv 2015, arXiv:1504.08083.

26. Niu, J.; Huang, J.; Cui, L.; Zhang, B.; Zhu, A. A PCB Defect Detection Algorithm with Improved Faster R-CNN. In Proceedings of
the ICBASE, Online, 21-23 October 2022.

27. Zeng, N.; Wu, P; Wang, Z.; Li, H.; Liu, W.; Liu, X. A Small-Sized Object Detection Oriented Multi-Scale Feature Fusion Approach
with Application to Defect Detection. IEEE Trans. Instrum. Meas. 2022, 71, 3507014. [CrossRef]

28. Tang,].; Liu, S.; Zhao, D.; Tang, L.; Zou, W.; Zheng, B. PCB-YOLO: An Improved Detection Algorithm of PCB Surface Defects
Based on YOLOVS5. Sustainability 2023, 15, 5963. [CrossRef]

29. Liu, X;; Hu, J.; Wang, H.; Zhang, Z.; Lu, X,; Sheng, C.; Song, S.; Nie, J. Gaussian-IoU loss: Better learning for bounding box

regression on PCB component detection. Expert Syst. Appl. 2022, 190, 116178. [CrossRef]


https://doi.org/10.1109/TSM.2019.2911062
https://doi.org/10.1007/s11554-023-01272-0
https://doi.org/10.1016/j.jsv.2022.116746
https://doi.org/10.1016/j.neucom.2018.03.030
https://doi.org/10.1109/ACCESS.2020.3001349
https://doi.org/10.1109/TIM.2024.3351241
https://doi.org/10.1007/s00170-022-10335-8
https://www.ncbi.nlm.nih.gov/pubmed/36313192
https://doi.org/10.1007/s11554-024-01530-9
https://doi.org/10.3390/s24134262
https://www.ncbi.nlm.nih.gov/pubmed/39001040
https://doi.org/10.1109/TIM.2022.3153997
https://doi.org/10.3390/su15075963
https://doi.org/10.1016/j.eswa.2021.116178

Electronics 2024, 13, 4453 20 of 21

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.
53.

54.

55.

56.

Lan, H.; Zhu, H.; Luo, R.; Ren, Q.; Chen, C. PCB defect detection algorithm of improved YOLOVS. In Proceedings of the 2023 8th
International Conference on Image, Vision and Computing (ICIVC), Dalian, China, 27-29 July 2023.

Ling, Q.; Isa, N.A.M.; Asaari, M.S.M. SDD-Net: Soldering defect detection network for printed circuit boards. Neurocomputing
2024, 610, 128575. [CrossRef]

Zhang, L.; Chen, J.; Chen, J.; Wen, Z.; Zhou, X. LDD-Net: Lightweight printed circuit board defect detection network fusing
multi-scale features. Eng. Appl. Artif. Intell. 2024, 129, 107628. [CrossRef]

Ouyang, D.; He, S.; Zhang, G.; Luo, M.; Guo, H.; Zhan, J.; Huang, Z. Efficient multi-scale attention module with cross-spatial
learning. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Rhodes Island, Greece, 4-10 June 2023.

Pan, Z.; Cai, ].; Zhuang, B. Fast vision transformers with hilo attention. Adv. Neural Inf. Process. Syst. 2022, 35, 14541-14554.
Zhang, H.; Xu, C.; Zhang, S. Inner-IoU: More effective intersection over union loss with auxiliary bounding box. arXiv 2023,
arXiv:2311.02877.

Wang, J.; Xu, C; Yang, W,; Yu, L. A normalized Gaussian Wasserstein distance for tiny object detection. arXiv 2021,
arXiv:2110.13389.

Ma, S.; Xu, Y. Mpdiou: A loss for efficient and accurate bounding box regression. arXiv 2023, arXiv:2307.07662.

Sunkara, R.; Luo, T. No more strided convolutions or pooling: A new CNN building block for low-resolution images and small
objects. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Grenoble,
France, 19-23 September 2022.

Cui, Y.; Ren, W,; Knoll, A. Omni-Kernel Network for Image Restoration. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vancouver, BC, Canada, 20-27 February 2024.

Liu, X.; Peng, H.; Zheng, N.; Yang, Y.; Hu, H.; Yuan, Y. Efficientvit: Memory efficient vision transformer with cascaded group
attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada,
18-22 June 2023.

He, K.; Zhang, X.; Ren, S.; Sun, ]J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016.

Cai, X,; Lai, Q.; Wang, Y.; Wang, W.; Sun, Z.; Yao, Y. Poly kernel inception network for remote sensing detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 17-21 June 2024.

Dong, X.; Bao, J.; Chen, D.; Zhang, W.; Yu, N.; Yuan, L.; Chen, D.; Guo, B. Cswin transformer: A general vision transformer
backbone with cross-shaped windows. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
New Orleans, LA, USA, 18-24 June 2022.

Li, Y,; Hu, J.; Wen, Y.; Evangelidis, G.; Salahi, K.; Wang, Y.; Tulyakov, S.; Ren, ]J. Rethinking vision transformers for mobilenet size
and speed. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2-6 October 2023.

Li, Y,; Li, X;; Dai, Y,; Hou, Q.; Liu, L.; Liu, Y.; Cheng, M.-M.; Yang, ]. LSKNet: A Foundation Lightweight Backbone for Remote
Sensing. Int. |. Comput. Vis. 2024, 1-22. [CrossRef]

Wang, A.; Chen, H,; Lin, Z.; Han, J.; Ding, G. Repvit: Revisiting mobile cnn from vit perspective. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 17-21 June 2024.

Fan, Q.; Huang, H.; Chen, M.; Liu, H.; He, R. Rmt: Retentive networks meet vision transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 17-21 June 2024.

Liu, Z,; Lin, Y;; Cao, Y.; Hu, H.; Wei, Y,; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11-17 October
2021.

Ding, X.; Zhang, Y.; Ge, Y.; Zhao, S.; Song, L.; Yue, X.; Shan, Y. UniRepLKNet: A Universal Perception Large-Kernel ConvNet for
Audio, Video, Point Cloud, Time-Series and Image Recognition. In Proceedings of the 2024 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Washington, DC, USA, 17-21 June 2024.

Chen, H.; Wang, Y.; Guo, J.; Tao, D. Vanillanet: The power of minimalism in deep learning. Adv. Neural Inf. Process. Syst. 2024, 36.
[CrossRef]

Gevorgyan, Z. SIoU loss: More powerful learning for bounding box regression. arXiv 2022, arXiv:2205.12740.

Zhang, H.; Zhang, S. Shape-iou: More accurate metric considering bounding box shape and scale. arXiv 2023, arXiv:2312.17663.
Tang, E; Xu, Z.; Huang, Q.; Wang, J.; Hou, X,; Su, J.; Liu, J]. DuAT: Dual-aggregation transformer network for medical image
segmentation. In Proceedings of the Chinese Conference on Pattern Recognition and Computer Vision (PRCV), Xiamen, China,
13-15 October 2023.

Voita, E.; Talbot, D.; Moiseev, F.; Sennrich, R.; Titov, I. Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy
Lifting, the Rest Can Be Pruned. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
Florence, Italy, 28 July—2 August 2019.

Xia, Z.; Pan, X,; Song, S.; Li, L.E.; Huang, G. Vision transformer with deformable attention. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18-24 June 2022.

Shaker, A.; Maaz, M.; Rasheed, H.; Khan, S.; Yang, M.-H.; Khan, ES. SwiftFormer: Efficient Additive Attention for Transformer-
based Real-time Mobile Vision Applications. In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision
(ICCV), Paris, France, 2-6 October 2023.


https://doi.org/10.1016/j.neucom.2024.128575
https://doi.org/10.1016/j.engappai.2023.107628
https://doi.org/10.1007/s11263-024-02247-9
https://doi.org/10.48550/arXiv.2305.12972

Electronics 2024, 13, 4453 21 of 21

57.

58.

59.
60.

61.

62.

63.

64.

Wu, H.; Huang, P.; Zhang, M.; Tang, W.; Yu, X. CMTFNet: CNN and Multiscale Transformer Fusion Network for Remote-Sensing
Image Semantic Segmentation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 2004612. [CrossRef]

Sun, S.; Ren, W.,; Gao, X.; Wang, R.; Cao, X. Restoring images in adverse weather conditions via histogram transformer. In
Proceedings of the European Conference on Computer Vision, London, UK, 15-16 January 2025.

Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.

Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In
Proceedings of the European Conference on Computer Vision, Online, 23-28 August 2020.

Wang, C.-Y.; Yeh, I.-H.; Liao, H.-Y.M. YOLOV9: Learning What You Want to Learn Using Programmable Gradient Information. In
Proceedings of the European Conference on Computer Vision, Milan, Italy, 29 September—4 October 2024.

Qin, D.; Leichner, C.; Delakis, M.; Fornoni, M.; Luo, S.; Yang, F; Wang, W.; Banbury, C.; Ye, C.; Akin, B. MobileNetV4-Universal
Models for the Mobile Ecosystem. arXiv 2024, arXiv:2404.10518.

Ngiam, J.; Caine, B.; Han, W.; Yang, B.; Chai, Y.; Sun, P; Zhou, Y.; Yi, X.; Alsharif, O.; Nguyen, P. Starnet: Targeted computation
for object detection in point clouds. arXiv 2019, arXiv:1908.11069.

Rezazadeh, N.; Perfetto, D.; Polverino, A.; De Luca, A.; Lamanna, G. Guided wave-driven machine learning for damage
classification with limited dataset in aluminum panel. Struct. Health Monit. 2024, 14759217241268394. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1109/TGRS.2023.3314641
https://doi.org/10.1177/14759217241268394

	Introduction 
	Related Work 
	RT-DETR 
	PCB Defect Detection 

	Methodology 
	MDD-DETR Network Model 
	MDDNet 
	AIFI-HiLo 
	Loss Function Optimizsation 
	SOEP 
	SPDConv 
	CSP-OmniKernel 
	CREC Module 


	Experiments 
	Experimental Description 
	Experimental Environment and Parameter Settings 
	PCB Defect Image Dataset 
	Performance Evaluation and Indicators 

	Experimental Analysis 
	Ablation Study on MDD-DETR 
	MDDNet Analysis 
	INM-IoU Analysis 
	SOEP Analysis 
	AIFI-HiLo Analysis 

	Comparison of PCB Defect Detection Algorithms 
	Visualization Experiments 
	The Generalization of the Experiment 

	Conclusions 
	References

