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Abstract: Compared to traditional technology, image classification technology possesses a superior
capability for quantitative analysis of the target and background, and holds significant applications
in the domains of ground target reconnaissance, marine environment monitoring, and emergency
response to sudden natural disasters, among others. Currently, the enhancement of spatial spectral
resolution heightens the difficulty and reduces the efficiency of classification, posing a substantial
challenge to the aforementioned applications. Hence, the classification algorithm is required to take
both computing power and classification accuracy into account. Research indicates that the deep
kernel mapping network can accommodate both computing power and classification accuracy. By
employing the kernel mapping function as the network node function of deep learning, it effectively
enhances the classification accuracy under the condition of limited computing power. Therefore, to
address the issue of network structure optimization of deep mapping networks and the insufficient
application of line feature learning and expression in existing network structures, considering the
adaptive optimization of network structures, deep quasiconformal kernel network learning (DQKNet)
is proposed for image classification. Firstly, the structural parameters and learning parameters of
the deep kernel mapping network are optimized. This approach can adaptively adjust the network
structure based on the distribution characteristics of the data and enhance the performance of image
classification. Secondly, the computational network node optimization method of quasiconformal
kernel learning is applied to this network, further elevating the performance of the deep kernel
learning mapping network in image classification. The experimental results demonstrate that the
improvement in the deep kernel mapping network from the perspectives of accounting children,
mapping network nodes, and network structure can effectively enhance the feature extraction and
classification performance of the data. On the five public datasets, the average AA, OA, and KC
values of our algorithm are 91.99, 91.25, and 85.99, respectively, outperforming the currently most-
advanced algorithms.

Keywords: image classification; deep quasiconformal kernel network learning; feature extraction

1. Introduction

The concept of deep kernel learning was first introduced by Yu et al. in 2008. Its goal is
to enhance visual recognition speed and accuracy through the use of kernel regularization
techniques in neural networks. By employing stochastic gradient descent, the method
significantly improves both the efficiency and accuracy of visual recognition, laying the
foundation for subsequent research in deep kernel learning [1]. This approach addresses
several limitations of traditional kernel learning, such as poor performance when dealing
with complex problems due to a reliance on limited sample-driven learning. Furthermore,
kernel learning machines are often highly sensitive to the choice of the kernel function,
lacking the ability to adapt to input data. The principles of deep learning have further
advanced the development of kernel learning.
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In 2012, Cho et al. proposed MKMS, based on a deep belief network, which described
the transition from a support vector machine to a deep multilayer structure in a more
complete and comprehensive way [2]. Brahma et al. introduced kernel-based deep neural
networks from the perspective of popular learning and presented a relatively complete
theoretical framework for deep kernel learning [3]. In 2011, researchers enhanced the
Fisher discriminant ability to improve the separability of different sample categories [4].
Several algorithms were introduced, such as FKNN and DLF, to effectively improve image
classification [5]. To address clustering challenges, Prenger proposed the RBF kernel-
based K-means algorithm, which combines nonlinear kernels with deep architectures [6].
Meanwhile, Harikrishnan et al. applied kernel K-means to satellite images, using deep
learning to achieve nonlinear clustering of a pseudo-training set of pixels representing
changed and invariant fields [7]. To tackle recursion problems, Varma et al. developed a
local deep kernel learning algorithm to accelerate the prediction performance of nonlinear
support vector machines and optimize the spatial tree structure [8]. Finally, to address
deep model selection, Strobl et al. proposed a multikernel deep learning approach, which
enhances the performance of deep kernel learning through multilayer and multikernel
function learning [9].

Regarding image classification technology, it holds significant application value in var-
ious domains, such as ground target reconnaissance, marine environment monitoring, and
emergency response, among others. Hui Bi et al. proposed a novel target reconnaissance
and classification framework based on sparse SAR images to automatically extract features
and train models for ground target reconnaissance involving complex image data [10].
Zeyuan Shao et al. put forward an efficient model for detecting small objects in the marine
environment to accomplish ocean monitoring [11]. Additionally, Liron Bergman et al.
employed a classification-based approach to respond to sudden abnormal events [12], and
Haoran Ye et al. also adopted this idea to detect the fault of the oceanographic multi-layer
winch fiber rope arrangement [13]. Given the unique challenges of image classification,
researchers have proposed targeted approaches to network structure optimization, re-
sulting in various deep learning-based classification methods [14-17]. These include HSI
spatial classification [18] and spectral-spatial residual networks (SSRNs) [19], which extract
discriminative features from spatial context and rich spectral data. A 3D CNN has also
been developed to retain deep spectral features, effectively differentiating them. In [20],
a deep belief network (DBN) was introduced to improve classification, while in [21], a
fully convolutional neural network (F-CNN) was proposed for the same purpose. Some
studies have focused on jointly extracting spatial features for classification [20], leading
to the development of a series of improved algorithms [22-24]. In [25,26], a compact and
differentiated stacked autoencoder model was designed for HSI, utilizing low-dimensional
feature maps. Other methods have aimed to improve HSI classification by extracting
spectral-spatial features using enhanced deep learning networks [27-31]. Additionally,
unlike traditional methods that directly extract spatial features from adjacent regions, new
filtering techniques, such as Gabor filtering and attribute profiling, have been proposed [32].
Subsequent research introduced fusion strategies for HSI spectral-spatial classification,
applying multiple CNNs in groups. However, the combination of multiple supervised
CNNs is computationally expensive and time-consuming [33].

Given the limitations of existing network structures in learning and representing
line features, and with a consideration of adaptive network optimization, a method for
optimizing deep kernel mapping networks based on structural adaptation has been studied.
This method aims to improve classification performance by adjusting the width and depth
of the network. First, the structural and learning parameters of the deep kernel mapping
network were optimized, and the network structure was adaptively adjusted according
to the distribution characteristics of the data to verify the feasibility of enhancing image
classification performance. Second, the kernel operator and network node optimization
methods introduced in the subsequent three chapters were applied to this network. The
deep kernel mapping network, based on multiple optimizations, was further studied to
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improve its performance in image classification. Finally, the proposed deep kernel mapping

network algorithm, based on three-factor multiple optimization, was comprehensively

compared and analyzed against current image classification methods using an open dataset.
We summarize our contributions as follows:

(1) We present a novel deep learning model, DQKNet, for image classification. Through
the combination of the deep kernel mapping network and quasiconformal kernel
learning, the model optimizes the network structure and enhances the accuracy and
efficiency of image classification.

(2) We optimize both the structural and learning parameters of the deep kernel mapping
network, enabling the network to adapt its structure based on the data’s distribution
characteristics. This enhances image classification performance while allowing models to
achieve more efficient learning and classification with limited computational resources.

(3) Through experiments on multiple public datasets, we demonstrate that DQKNet
surpasses existing state-of-the-art algorithms in both computational efficiency and
classification accuracy.

2. Materials and Methods
2.1. Framework

The infrastructure of the deep kernel mapping network is illustrated in Figure 1.
The depth of the kernel mapping network, as computed by each network node, and the
network connection weight calculations directly influence the network’s performance. This
includes the network node calculations based on the underlying kernel function of the
operator. The “accounting child” is combined with the network node calculations to form
a comprehensive network node computation. Therefore, to assess the applicability of the
deep kernel mapping network in classification, its performance is analyzed from three key
elements: the accounting child, network nodes, and the overall network structure.

classifier

|:| Kernel |:| Network node |:| Partial network structure

Figure 1. Architecture of the deep kernel mapping network and three elements.

The impact on classification performance is analyzed from three perspectives: account-
ing substructures, network nodes, and network structure. Addressing the suboptimization
issue of deep mapping networks, combined with the challenge of strong coupling between
features and high correlation in large bands, classification performance is enhanced through
improvements in the inner construction of the kernel function operator. From the perspec-
tive of network node subcombination optimization, the network optimization node serves
as the foundation for overall network optimization, solving the node optimization problem
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in deep mapping networks. This approach addresses the challenges of strong nonlinearity
and inaccurate representation from a single accounting substructure. Additionally, to tackle
the network structure optimization issue and the limitations of existing network structures
in feature learning and representation, adaptive optimization of the network structure is em-
ployed to effectively enhance feature extraction and classification performance. Although
deep learning networks combined with kernel learning algorithms have shown promise,
they do not yet enable adaptive adjustment of the network structure. Consequently, the
network struggles to adapt to heterogeneous data. For the same dataset, classification
accuracy varies based on the depth and width of the network structure. For datasets of
different scales, a fixed depth and width structure cannot achieve optimal classification
accuracy. To address this, the algorithm’s structure was flexibly adjusted according to the
dataset, allowing the deep kernel mapping structure to vary in depth and width. The deep
kernel mapping network’s performance is influenced by the calculations of each network
node and the network connection weights. Each network node’s calculations are based
on a basic kernel function operator, with the kernel operator performing combinational
calculations as part of the network nodes.

For data analysis, data D = {(x1,y1), (x2,¥2),- -, (Xm, Ym) }, including vector x; € R"
and label vector y; € {—1,1},i =1,2,...,m. Based on the kernel function k(x;, xj) and the
nonlinear mapping characteristics of the input data, Kp ,, is the combination kernel, and
0% is the network node calculation for the basic combination of kernel operators. The
decision function of the algorithm can be written as follows:

M m
f(x) =sign()_ 6c) ayik(xi, x) +b) 1)
P R

where 0y is the combination coefficient of the structurally variable network algorithm. The
structurally variable network algorithm is uniformly written as follows:

flx) = sign(i a;yik(x;, x;0;) + D) (2)

i=1

where 6, &, and b are learned by a structurally variable network algorithm. By extending
the combinatorial kernel cascade to layer, the combinatorial kernel function of is defined
as follows:

KM (x,y) = g (@D (. oM (2))) - 9P (9D (oM () 3)

where x and y are the vectors input to the algorithm. ¢(L) is the kernel function. In addition
to cascading multilayer combinatorial kernels, the structurally variable network algorithm
also extends multiple deep structures into multiple channels. The kernel function is defined
as follows:

1 1 I— I— 1 !
KO (x,y) = {00k (0 KD ) gl KD () @)

where K}(llzn is the mth basic kernel in the hth set in the Lth row and 9}(111)" refers to the weights.
The characteristic output of each channel is input into the combinatorial kernel according

to the summation average rule. The combinatorial kernel is expressed as follows:

Ly
K= —) Kp, (G))
/ Wm:l "
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where Ky is the combination kernel of the last layer, except for the depth and width. The
Kp,w of the structurally variable network algorithm in each layer and channel is defined
as follows:

M dwqdw
Kiw= Y 05“K%, d=1,2,...,D, w=1,2,...,W
m=1

M
sh Y ok =1, ©)
m=1

04 >0 m=1,2,...,M

where k%" is the kernel function of each layer with the g,
Therefore, the optimization of DQKNet involves two perspectives, including the
kernel mapping network node k& and the optimal network parameters 04,

2.2. Learning ki for the Optimal Kernel Mapping Network Node

The main purpose of this part is to optimize the optimal network computing node ki
Data will obtain different geometric structures in the nonlinear mapping space. Similarly,
different kernel operators will result in different class discrimination abilities, which directly
affects the effect of classification. Due to the restriction of the kernel function learning
mechanism, different class discrimination abilities can be obtained in the nonlinear mapping
space accordingly. At present, no kernel function can adapt to all data. The kernel function
should change its structure depending on the input data; that is, the kernel function should
be data-dependent, which is also the basic idea for constructing a data-dependent kernel
function. The quasiconformal mapping kernel function is introduced as the objective kernel
function for kernel optimization, and the Mahalanobis kernel function is extended by using
mapping theory. Therefore, the network node k%" is described mathematically by the
kg(x,y) quasiconformal kernel as follows:

kq(x,y) = f(x)f(y)k(x,y) (7)

where x, y represents the sample vector and a is the basic accounting sub. In practical appli-
cations, polynomial and Gaussian kernels are generally used as the basic accounting sub.
To improve the classification performance, the extended Mahalanobis distance calculation
sub-A is adopted, assuming that a is a positive function, and it is expressed as follows:

Nxvy

flx)=bo+ 2 bne(x, Xn) (8)

n=1
where e(x, %) = e~° “X_EHHZ, ¢ is the weight adjustment parameter, X, is called the ex-
pansion vector, Nxy is the number of expansion vectors, and b, (n = 0,1,2,..., Nxy,) is
the expansion coefficient associated with X, (n =0, 1,2, ..., Nxy,). In practical work, the
method of selecting the expansion vector directly affects the performance of the algorithm.
In conventional calculation problems, researchers use randomly selected samples as the
expansion vector. Accordingly, this paper uses different calculation methods to realize the
feature calculation for different spectra.
Step 1: Expansion vector solving objective function construction
To solve for the expansion vector of the Markovian operator of a quasiconformal
mapping, the optimal objective of the optimal mapping space is constructed, the optimal
nonlinear mapping space is achieved by adjusting the optimal expansion coefficient, and
optimal between-class discrimination is achieved in this space. Therefore, to solve for the
appropriate expansion coefficient, it is difficult to calculate the feature space within the
feature space of nonlinear mapped images to effectively construct an effective feature space
to achieve data classification. Its mathematical description is as follows. For the input
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training sample {x;} ;, the n x n kernel matrix K = [kij] ., of r is constructed, and its
basic matrix element a is follows:
kij = k(xj, x}) )

where the dimension of the sample space is d. The matrix K constructed from the above
elements, which is a positive definite symmetric matrix, can be decomposed by SVD into
the following:

Knxn = anrAreryTxn (10)

According to positive definite matrix decomposition analysis, the diagonal matrix A
of its data is composed of eigenvalue decomposition values of the kernel matrix K, and the
corresponding eigenvectors form matrix P. In this case, the mapping from the input space
to the feature space can be expressed as follows:

®:x =+ R 1
x — AV2PT (k(x, x1),k(x, x2), ..., k(x,x,))" (1)
In the equation, the characteristics of space are obtained by mapping space ®%(x) C
R" according to experience, and the space vector is obtained by inflation adjustment to
determine the distribution of the spectrum sample; thus, by performing a quasiconformal
mapping Markov calculation to realize the optimal classification, from the expansion of the
vector optimization algorithm, optimal classification results can be obtained. The sample
{®(x;)}i_; of data in the nonlinear mapping space has the same geometric structure
as the sample {®¢(x;)};_; obtained by the Mahalanobis accounting submapping of the
quasiconformal mapping in the empirical feature space. In other words, the classification
of data can be realized by classification in space. Let Y be the matrix of n x r with column
vectors D¢(x;), as follows:
Y = KPA~1/? (12)

Therefore, the feature inner product matrix of {®¢(x;)} in the empirical feature space
after mapping the data is as follows:

YYT = KPA7V2A"V2PTK = K (13)

Therefore, in the feature space {®(x;)}/_; of the feature space and in the spectral
feature space of data, the distance n of nonlinear mapping vectors {®(x;)}; ; can be
obtained by the following formula:

@ (x:) — D(x;)||* = K(xi, ;) +k(x;, %)) — 2k(x;, %)) (14)

The above formula shows that the training data samples have different discriminative
powers in the feature space with the mapping of the quasiconformal mapping Markovian
operator, and the same-class discriminative ability of features can be obtained through
the mapping network of the quasiconformal mapping Markovian operator. Therefore, in
practical applications, the use of a deep kernel mapping network to realize data has the
largest ground object class discrimination power, so the optimal objective function can be
constructed for the optimization problem of a quasiconformal mapping Markovian calcula-
tion in the empirical feature space. In the subprocess of Mahalanobis accounting for data
using quasiconformal mapping, for a given expansion vector, a constrained optimization
equation is established to achieve accurate ground object classification, and the optimal
expansion coefficient is solved by solving the optimization equation to achieve the optimal
effect of ground object classification in the feature space. Therefore, by evaluating the
discrimination of classes in the empirical feature space, in this paper, the maximum margin
criterion (MMC) and Fisher criterion (FC) of feature categories in the empirical feature
space are used to construct the optimal objective function. By using this principle, the class
discrimination of samples in the empirical feature space can be measured. By using this
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objective function, the objective function that solves the optimal expansion coefficient can
be established, and the optimal equation can be constructed through this objective function.

In the empirical feature space, to measure the category discrimination in the empirical
feature space, linear metric learning can be used to measure the space. A new metric
function can be obtained through linear transformation, and the metric function obtained
with the mapping is as follows:

d(x,y) = \/(ATx — ATy) (ATx — ATy) (15)

If M = AAT, M is a semisymmetric matrix. The formula is as follows:

dx,y) = (ATx— ATy)T(ATx — ATy)
= \J(x—y)TAAT(x —y) (16)
= J(x =) M(x—y)

M is extended to half of the above equation for the matrix, which is a more general
Markov matrix. The internal structure of the traditional Markov matrix is achieved using
only the data. The aim is to describe the distribution characteristics of the data. Using
the Markov distance matrix can be sufficient to determine the relationship between the
characteristic and the label, and the Markov matrix can be used to distinguish between
different characteristics of the contribution. The constrained optimization problem is
defined as follows:

H&/Imﬁx(M) + AV(M)

s.t. Cx(M) 17)

where Lx (M) and cx (M) are the loss function and the constraint on the training set.

In the network learning, for a given data sample set X : {xi}f\i 1 C RN, the constrained
set of category samples can be constructed, including a similar set W and dissimilar set B,
where W is the constrained set constructed by sample pairs of the same category and set B
is constructed in the opposite manner. Therefore, the following method of constructing a
convex optimization problem can be used to optimize the Mahalanobis distance:

min Y d%(x;,x))

MZO(xi,x]')EW M\*1r2g

s.t. Z dM(xl-,x]-) >1
(xi,xj)eB

(18)

where d3,(x;, x;) = (x; — xj)TM (x; — xj) and M is a positive semidefinite matrix. The
constraint is added mainly to remove trivial solutions for M = 0. In the concrete solution,
the iterative updating method can be used to solve the problem. In each iteration, the
mature Newton downhill method is used for the gradient descent process to obtain an
updated Markov matrix. In the calculation process, the implementation of the algorithm is
simple. For the optimization problem, the extent of the optimization calculation changes
with the optimization function, and convergence is relatively slow for the Mahalanobis
operator, with a complex optimization process as follows:

dm(xi, xj) = \/(ATxi — ATx))T(ATx; — ATx;) (19)

On the constrained set W, under the action of projection matrix A, the sum of squared
distances between all pairs of points is as follows:

dw= Y (ATx;—ATx)"(ATx;— ATx)) (20)
(xi,xj)EW
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The sum of squares of distances between all pairs of points in constrained set B can be
calculated as follows.

dB = Z (ATXI' — ATXJ')T(ATXZ' — ATX]')
(xi,xj)GB (21)
= tr(ATSpA)

The optimal objective function is constructed to achieve a constrained solution for the
similar set W and dissimilar set B. The method of solving for the optimal A* is as follows:

tr(ATSpA)

AT = LACLELL SR
O (ATSWA)

ATA=I

(22)

Therefore, computing the Mahalanobis distance matrix M* = A*(A*)T is a post-
learning process. In the learning domain of the algorithm, the learning criterion maximizes
the accuracy of the test data. Given the function f : x — R, the threshold version of f is
defined as follows:

er(f) = l{n 41 <0 <o yif(x) <0} 23)

where the kernel-based classifier is the threshold of the formal kernel expansion operation,
and the bounded norm is as follows:

2n
1
w|[* =Y awjk(x;, x;) =a"Ka < — v (24)
i,j=1

For any y > 0 with a probability of at least 1 — ¢ in the data (x;,y;), the er(f) of each

1n / [o(
function f € F; does not exceed - Y max(1 —y;f(x;) + — 4 +1/2log ”’Y
i=1

where ¢(K) = EI]?aI?UTKU is the expected value for o. Assumlng that A; is the largest
€

eigenvalue of K;, then Equations (25) and (26) are as follows:

_ T
o(K) = CEnkleE}z(U trace(K) @5
) A
¢(K) < cmin(m, nmax ) (26)

] trace(Kj)

In conclusion, for the classification of ground objects, the Fisher criterion and maxi-
mum interval criterion are implemented in the empirical feature space mapping, and the
expansion vector is solved by solving the optimization objective function.

Step 2 Optimization function solution

To solve the problems of objective functions based on the Fisher criterion and the
maximum interval criterion, the following equation-solving methods are used to solve the
two objective functions.

(1) Optimization with the Fisher criterion

The gradient method is used to solve the optimization equation based on the Fisher cri-
terion, and the partial differential equations for J; () = aTETByEx and Jo(a) = aT ETWyEa
are obtained

(2) Optimization of the objective function based on the Fisher criterion

The gradient method is used to solve the optimization equation based on the Fisher
criterion. Let J;(a) = aTETByEx and J(a) = aT ETWyEa. The partial differential equation
for J;(«) and J»(a) to « is determined as follows:

0J1(a)

= 2ETByEa (27)
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Lza(“) = 2ETW,Ea (28)
Then, the partial differential of Jr;g., () is as follows:
781“3’”’(“) = 5 (RE"BoE — hETWoE)a (29)
4 ]2

To optimize and maximize Jr;g,,, according to the gradient descent method, %j{’(’x) =0.
Then, Equation (30) is as follows:

JLETWoEa = J,ETByEa (30)
Therefore, if (E TWoE ) - exists, then Equation (31) is as follows:
-1
Jrishert = (ETWoE)  (E" BoE)a (31)

Then, Jrisher is the maximum eigenvalue of (ETWoE )_1 (ETByE), and the obtained
eigenvector is the optimal expansion coefficient a of the objective function based on the
Fisher criterion.

In the data classification problem, (ETWyE )_1 (ETByE) is asymmetric, and ETWE is a
singular matrix. In this case, the cyclic iterative calculation method is adopted to solve «.
Then, Equation (32) is as follows:

a1+l — 4 () —|—£(]1 ETByE — ]F}SMETWOE)&(”) (32)
2 2

where ¢ is the learning rate, so Equation (33) is as follows:

e(n) =eo(1— %) (33)

In the calculation process, €g is the initial value of the learning rate, and n and N are
the current iteration and the total iteration number, respectively.

Therefore, in terms of the learning rate of the initialization parameter ¢ and the number
of iterations N, these parameters directly determine the solution time of the algorithm, and
these parameters determine the total solution time of the optimization function. Therefore,
the optimal expansion coefficient vector can only be obtained when n and N are properly
chosen. Because the cyclic iteration method is used to solve the probl2m, the optimal
solution is often not unique and depends on the selection of initialization parameters.

(3) Optimizing with the maximum interval criterion

Maximum interval optimization equations are deduced with the Lagrange method,
converting equation for the optimal characteristic equation with the A parameter. The
method solves the 253 — St matrix eigenvalue and eigenvector to obtain the solution for
the optimal a*. This parameter enables the maximum interval of categories to be obtained.
Thus, Equations (34) and (35) are as follows:

PTSgP = A (34)

PTSp=1 (35)

Assuming that 6 and ¢ are the eigenvalues and eigenvectors of matrix St,P = ¢~ 2yp
can be calculated, where ¢ is calculated by matrix 6~ 1/2pTSpph~1/2, Among them, matrix
P is calculated by using 253 — S7. P = ¢80~ /2y is calculated using SVD decomposition
technology, and the n x m matrix A is as follows:

A=UA?V (36)
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where A!/2 is a diagonal matrix and U and V are the U and V column vectors of
n x min(n, m) and m x min(n, m), respectively, which are feature vectors of AAT and ATA.

2.3. Learning ga;w for the Optimal Network Structure

To optimize the learning parameters 64, of the deep kernel mapping network, accord-
ing to the estimation of T, derived from the support vector span space, the structurally
variable network algorithm minimizes the upper bound Ty, of error to optimize the
algorithm parameters. The specific formula is as follows:

M
nbinTspan,s.t. 0, >0, Y0,=1
i=1
n (37)
_ 0g2
Tspan = p§1 ¢<aPSP - 1)

where a9 is the coefficient of the SVM; n is the number of support vectors; Sy, is the distance
between point ¢(x,) and set Ap; and x,, is the support vector. Specifically, A is defined
as follows:

Ap=19 Y M) ) Ai= 1} (38)

i#pad>0 i#p

The structurally variable network algorithm uses a constructor i(x) to obtain a smooth
error approximation. The constructor is expressed as follows:

¥(x) = (1+exp(—Ax+ B)) ™ (39)

where A and B are constants. During the implementation of this algorithm, the values are
A=5B=0 S%, which can be expressed as follows:

$2 = — (40)

where sv is a set of support vectors; sv = {xp‘tx% >0,p=1,2,...,1); and Ky, is the dot
product matrix between support vectors, as follows:

= Ky 1

The values given by the span of the above formula are not continuous. The algorithm
of the variable structure network uses regularization terms to replace constraints while
calculating S% to smooth the S%, values. The formula is as follows:

n 2 n
1
S2= min [|p(xp) — Y Aip(x)|| +7). A7 (42)
PooAA= i#p =
The matrix expression is abbreviated as follows:
= -1
S5 =1/(K' +Q)pp — Qpp (43)

where Q is a diagonal matrix and the matrix elements are Q;; = 1/ oc?, Qniint1 =0;nisa
constant. In the structurally variable network algorithm, # = 0.1.

The SVM coefficient « is fixed to solve for the combination coefficient 6, and the
combination coefficient 6 is fixed to solve for the SVM coefficient . The two steps are
iterated alternately. When the difference between the S%, values of i and i — 1 is less than e~*
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or the algorithm is iterated 100 times, the algorithm parameters stop updating. The obtained
model is the optimal model for testing. The parameter update formula is as follows:

aTspan
0

01 0 +1Ir- (44)

where 0Tspa, /00 calculates the gradient update direction and the partial derivative is
approximately expressed as follows:

aTspan o & 2 aS%}
5 = _,,; Ay (xp)” - exp(Axp +B) - = (45)

According to the specific definition of Sf,, the partial derivative can be calculated

as follows: )
dS >
P o_ -1 -1
5. = (/B (57

aksv
36,

+GF)B™ ")y — (GF),, (46)

where the matrix B = Ko + Q through the diagonal matrix G, where the matrix elements
are G;; = —17/(0420,,)2, Gutin+t1 =0, F = diag(stZststucgv;O), which is calculated by
Yso = diag((Ysoy, Ysvys - - - » Yson )T) ‘A is the inverse matrix, where Kg, cuts off the last row

and column, and Ba(s)v / BGP = —YSUZKSUYSMQU. Through the above matrix calculation, the
optimal equation is solved.

2.4. Algorithm Steps

Combined with the analysis and optimization ideas of different influencing factors, the
kernel operator, network node, and network structure optimization methods are adopted
to construct a classification method framework based on deep kernel mapping network
multiple optimization. Regarding the kernel operator, the Mahalanobis distance kernel
operator is more beneficial to classification. In terms of network nodes, using different
multikernel combination structures to analyze and learn network nodes can effectively
improve the effect of classification. In terms of network structure, a hybrid deep kernel
learning network can effectively improve the accuracy of classification. The overall flow of
the algorithm is shown in Algorithm 1.

Step 1. Basic kernel operator optimization of the deep mapping network

The Mahalanobis distance calculation subparameter and basic calculation subparam-
eter are selected, and the Mahalanobis distance matrix is constructed to determine the
contribution degree of different features to the classification problem. Combined with
different imaging conditions, the coupling correlation relationship of features is adjusted
by the Mahalanobis distance matrix to improve the classification ability of features. On this
basis, an operator based on quasiconformal mapping is proposed, which can improve the
performance of the Markovner model through the theory of quasiconformal mapping.

Step 2. Network node optimization of the deep mapping network

The network node optimization method based on the nonlinear combination of ac-
counting subsets is adopted. The data dependence function is used to realize the nonlinear
combination optimization of different accounting subsets, and the objective function is
solved. The multifunction optimization strategy is constructed by using multiple map-
ping characteristics, and the optimal parameters of nonlinear combination optimization
are solved.

Step 3. Optimizing the network structure of the deep mapping network

Different kernel structure parameters are used to select the structure. After selecting
the appropriate structure, the optimization results of Step 2 and Step 3 are used to optimize
the structure parameters and learning parameters of the deep kernel mapping network.

Step 4. Deep kernel mapping network classification
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A support vector machine is used as a classifier to solve the basic data classification
problem, and its classification decision function is expressed as follows:

f(x)—-agn<i:¢myxxi-x>+—b> @)

where «; is the dual coefficient and b is the deviation of the decision function f(x). The
optimization problem of the support vector machine is as follows:

min 1wl +CY &

(w,b,g) i=1

s.ty(aik(xi, x) +b) > 1=,
gl’ Z 0/C > 0,1 - 1,2,...,7’7’1

(48)

where ¢; is the relaxation variable and C is the regularization coefficient.

The optimization of this part mainly analyzes the influence of different network depths
and widths on the algorithm. The depth and width of the algorithm are limited to the range
D € [4,5,6],W € [1,2,3]. After training, the combination coefficients of the variable-depth
and width-structure of the SVM classification model and algorithm with classification
ability are obtained. The training data are expressed as I = {(x;,y;)|i = 1,2,....m}.

Algorithm 1: Model for Structurally Variable Networks (I, 6°,D, W, Ir, 0)

Input: I = {(x;,y;)|i=1,2,....m},6° &, D, W,Ir, C.
Output: parameter matrix.

1 initialize k, calculate K;

2 for i+ 1 toNdo

3. Calculate the optimal vector using K £

4 for w<+1toWdo

5 for d — 1 to D do
~ 2

6 Calculate Ky, B, %; aTasgm

. gi—1 i aTs an
7 update; 611 « 0/ 4 Ir - Lo
8 end
9 end
10 end

Due to the direct cascade between different layers of the structurally variable network
algorithm, that is, the output of the combinatorial kernel function of the upper layer is
the input of the base kernel function of the next layer and each channel is independent
of the others, it is easy to adjust the combination mode of the depth and width of the
algorithm. For the same dataset, the classification accuracies of structurally variable
network algorithms with variable-depth and variable-width combined architectures are
different. For datasets of different sizes, if the combination structure of depth and width is
fixed, the classification accuracy cannot be the highest in all datasets.

3. Results and Discussion
Experimental Settings

In this paper, five publicly collected datasets are used to verify the algorithm per-
formance. At present, the Indian Pines data, University of Pavia dataset, Salinas dataset,
Houston 2013 dataset, and Houston 2018 dataset are mainly used. These datasets are
widely used to verify the performance of the algorithm. These datasets are the data col-
lected under different environmental conditions, which are fair to the algorithm verification.
These datasets can reflect the effect of the actual application of the algorithm and verify
the performance of the algorithm in the actual application. Since the dataset used is the
measured data under natural conditions, and the target and imaging conditions are also in
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line with the actual application scenarios, this experiment can reflect the real application
conditions and realize the transformation of engineering applications in the future.

(1) Indian Pines dataset

Indian Pines dataset: This dataset is an open dataset collected and constructed by
researchers in the Indian Pines region of the United States using AVIRIS sensor in 1992,
including agriculture, forest, and other ground objects. The spatial resolution of this
spectral dataset is 145 x 145 relative resolution and 20 m absolute spatial resolution.
The data include 16 types of ground objects with 20~2468 pixels, as shown in Table 1.
As one of the most common datasets used in the current field, this dataset can fairly
evaluate the advantages and disadvantages of various algorithms. Therefore, as the basis
for comprehensive comparison and analysis of algorithms in this paper, it can provide
important data support for the evaluation and analysis of future algorithms.

Table 1. Description of the Indian Pines data.

Category Number Category Total Number of Samples Training Sample Test Sample
1 C;—Non-tilled corn 1434 50 1384
2 Cp,—Less-tilled corn 834 50 784
3 C3—Corn 234 50 184
4 C4—Grass/pasture 497 50 447
5 Cs—Grass/trees 747 50 697
6 C¢—Dry grass heap 489 50 439
7 Cy—Less-tilled corn 968 50 918
8 Cg—Non-tillled corn 2468 50 2418
9 Cy9—Pure corn 614 50 564
10 C1p—Wheat 212 50 162
11 Cq1—Forest 1294 50 1244
12 Cip—Buildings-grass—trees 380 50 330
13 Ci3—Clover 46 23 23
14 C14—Builtback meadow 28 14 14
15 Cy5—Oats 20 10 10
16 C16—Stone-steel tower 93 46 47

(2) University of Pavia dataset

University of Pavia Dataset: The data were collected using the Reflectance Optical
System Imaging Spectrometer (ROSIS-3) at the University of Pavia, Italy, in July 2002. The
data were collected by the sensor in the spectral dimension of between 0.43 um and 0.86 um.
In this paper, 103 bands are used for research and comparative application. As shown
in Table 2, the description of ground object categories in the University of Pavia dataset
shows the number of ground object categories and ground object targets. This dataset
is widely used in the verification experiments of classification algorithms, and different
experimental results are obtained in different algorithms. Most of the experimental results
have relatively high classification accuracy. The public dataset constructed by this dataset
includes agriculture, forest, and other ground objects. The high spatial resolution and
spectral resolution of this dataset can objectively evaluate the accuracy of the algorithm in
practical applications.

Table 2. Description of the University of Pavia data.

Category Number Category Total Number of Samples Training Sample Test Sample
1 C;—Asphalt pavement 6852 50 6802
2 C,—Grass 18,686 50 18,636
3 C3—Gravel roof 2207 50 2157
4 Cy—Trees 3436 50 3386
5 Cs—Metal roof 1378 50 1328
6 Cg—Bare land 5104 50 5054
7 Cy—Asphalt roof 1356 50 1306
8 Cg—Brick road 3878 50 3828
9 Cg—Shadow 1026 50 976
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(3) Salinas dataset

Salinas dataset: collected by AVIRIS in the Salinas Valley in Southern California. The
images have 224 bands and 51,217 pixels, with a spatial resolution of 3.7 m. For detailed
information, refer to Table 3.

Table 3. Description of the Salinas data.

Category Number Feature Category Training Test
1 Brocoli-green-weeds-1 50 1959
2 Brocoli-green-weeds-2 50 3676
3 Fallow 50 1926
4 Fallow-rough-plow 50 1344
5 Fallow-smooth 50 2628
6 Stubble 50 3909
7 Celery 50 3529
8 Grapes-untrained 50 11,221
9 Soil-vineyard-develop 50 6153

10 Corn-senesced-green-weeds 50 3228
11 Lettuce-romaine-4wk 50 1018
12 Lettuce-romaine-5wk 50 1877
13 Lettuce-romaine-6wk 50 866
14 Lettuce-romaine-7wk 50 1020
15 Vineyard-untrained 50 7218
16 Vineyard-vertical-trellis 50 1757

According to the reference classification map shown in the figure, there are 16 different
categories marked with different colors. The image of Salinas, collected by the AVIRIS
sensor in Salinas, California, consists of 512 x 217 pixels with a spatial resolution of
3.7 m/pixel.

(4) Houston 2013 dataset

Houston 2013: This dataset has been made public in the 2013 IEEE Data Fusion
Competition. The images were acquired through the National Aeronautical Laser Mapping
Center (NCALM). A total of 15,029 ground truth samples are available, divided into
15 LULC categories. In this paper, the sample set is divided into 2832 training samples and
12,197 test samples. The distribution of samples is shown in Table 4.

Table 4. Description of the Houston 2013 data.

Category Number Category Information The Tost;:nlf);l;lber of The Training Sample Testing Sample
1 Healthy grass 1251 50 1201
2 Stressed grass 1254 50 1204
3 Synthetic grass 697 50 647
4 Trees 1244 50 1194
5 Soil 1242 50 1192
6 Water 325 50 275
7 Residential 1268 50 1218
8 Commercial 1244 50 1194
9 Road 1252 50 1202

10 Highway 1227 50 1177
11 Railway 1235 50 1185
12 Parking lot 1 1233 50 1183
13 Parking lot 2 469 50 419
14 Tennis court 428 50 378
15 Running track 660 50 610
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(5) Houston 2018 dataset

Houston 2018: The dataset was taken from the 2018 IEEE Data Fusion Competition.
There are 20 LULC categories distributed in 2,018,910 ground truth samples. From these
samples, 2000 samples (50 samples in each class) were randomly selected for training, and
the remaining 2,016,910 samples were tested. Compared with the test samples, the number
of training samples is very small (0.1%), so the effect of overlap between training and
test samples is negligible. The category information and spatial distribution are shown in
Table 5.

Table 5. Description of the Houston 2018 data.

Category Number Category Information Training Sample Testing Sample
1 Healthy grass 50 39,096
2 Stressed grass 50 129,908
3 Artificial turf 50 2636
4 Evergreen trees 50 54,222
5 Deciduous trees 50 20,072
6 Bare earth 50 17,964
7 Water 50 964
8 Residential buildings 50 158,895
9 Nonresidential buildings 50 894,669
10 Roads 50 183,183
11 Sidewalks 50 135,935
12 Crosswalks 50 5959
13 Major thoroughfares 50 185,338
14 Highways 50 39,338
15 Railways 50 27,648
16 Paved parking lots 50 45,832
17 Unpaved parking lots 50 487
18 Cars 50 26,189
19 Trains 50 21,739

20 Stadium seats 50 27,196

This group of experiments mainly evaluate the effects of basic accounting sub-network
nodes and network structure on the classification performance of images, as shown in
Table 6. The kernel base operator adopts a Euclidean polynomial kernel operator and
Euclidean Gaussian kernel operator. Network nodes adopt an independent multikernel
combination of kernel computing structures. The network structure adopts a deep mapping
network structure that is 4-5 layers deep. The network’s structure is shown in the table.

Table 6. Configurations of the 3 elements of the deep kernel mapping network.

Optimization Elements

Basic Kernel Operator Network Node Network Structure

Elements setting

Combination of kernel
operators of one class

European Poly nucleo-1

European RBF kernel-1 4layer network

Combination of multi-class
kernel operators

European Poly nucleo-2

European RBF kernel-2 5-layer network

As for the performance evaluation index of the algorithm, this paper mainly uses the
image classification effect as the basis for evaluating the performance of the algorithm,
and mainly uses the following three types of indicators as the evaluation index: the kappa
coefficient (KC), overall accuracy (OA), and average accuracy (AA).

The mathematical expression of average classification accuracy (AA) is as follows:

AA = il <Xu~ / i x,-]-> (49)
= =
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where m is the number of categories and X;; is the correct classification number of i class
pixels, that is, the value on the main diagonal of the confusion matrix. X;; is the actual
number of correct or incorrect categories.

The calculation formula of total classification accuracy (OA) is as follows. The calcula-
tion formula includes the following;:

1 C
OA = - Y Xii (50)
i=1

where X is the confusion matrix composed of the classification results of test samples;
C is the total number of categories in the sample. The calculation formula of the kappa
coefficient was calculated using the following indicators:

C C C C C C C
Kappa = (1’[ (Z Xi[> — Z (Z Xz’j X]'l'>> / (1’[2 — Z (Z Xij Xj,’) ) (51)
i=1 i=1\j=1 j=1 i=1\j=1 j=1

In terms of classification, in addition to classification accuracy, there is also computa-
tional efficiency, which involves comparing the performance of classification. At present,
in the research field, the main concern is classification accuracy. Generally speaking, the
computational burden of classification is not large, and part of the computational burden
can be solved by using equipment with large computing power. Therefore, this paper
mainly evaluates the classification accuracy of the algorithm.

This part of the experiment is divided into two parts. First, the feasibility of the net-
work structure optimization method of the deep kernel mapping network is verified. This
part is validated with a public dataset. The main purpose is to verify the effect of network
structure optimization on the performance of the deep kernel mapping network. Second, it
verifies the application in classification. This part mainly verifies the feasibility analysis of
the network structure optimization algorithm in classification. Finally, combined with the
results of network optimization, the comprehensive evaluation of the data classification
performance of the multi-optimization network is realized.

(1) Feasibility verification of network structure optimization

In this paper, five public datasets were used to verify the algorithm performance.
Currently, the Indian Pines dataset, University of Pavia dataset, Salinas dataset, Houston
2013 dataset, and Houston 2018 dataset are used. These datasets are widely used to verify
algorithm performance and to analyze the algorithm performance of different network
structures for different types of data. In terms of parameter setting, the learning rate is e,
the maximum number of iterations is 100, the penalty coefficient range of the SVM classifier
is C = [1071,10,10?], and the deep margin of the algorithm is D € [4,5,6],W € [1,2,3].
The structure of the algorithm can be adjusted flexibly according to the dataset, which
is the main characteristic of the structurally variable network algorithm. The depth and
width range of the architecture are limited to D € [4,5,6], W € [1,2,3]. Thus, nine different
combinations of depth and width can be obtained, including 4 x 1,4 x 2,4 x 3,5 x 1,
5x2,5x3,6x1,6x2 and 6 x 3. Using the different datasets, the combination of
depth and width is determined by algorithm learning. The depth D and width W of the
architecture are taken as parameters to be learned and participate in algorithm training.
The depth and width parameters of the classification results are optimized by the iterative
training of different combination structures using a grid search algorithm.

In Tables 7 and 8, nine combination structures with different depths and widths are
used for different data. The classification accuracy of the algorithm is shown in the table.
The numbers in brackets represent the ranking of test set classification accuracy with the
specified depth and width combination structure. The smaller the number is, the better the
algorithm performance. The average classification accuracy of different widths is sorted,
and this problem is explained in the last part of the table. For different data, the highest
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classification accuracy of the deep and wide combination architecture is different, which
verifies the feasibility of the network structure data adjustment algorithm structure.

Table 7. Classification accuracy with different network structures on the Indian Pines data (%).

Width of the Structure

Feature Category Depth of the Structure " ) 3
4 82.94 (7) 81.06 (8) 86.69 (5)
C1—Non-tilled corn 5 85.86 (6) 86.69 (5) 87.45 (3)
6 87.09 (4) 87.65 (2) 88.96 (1)
4 83.44 (8) 85.38 (7) 87.69 (5)
Cy,—Plow corn less 5 85.38 (7) 88.47 (3) 86.48 (6)
6 89.31 (2) 89.59 (1) 88.30 (4)
4 82.05 (8) 85.28 (7) 85.28 (7)
Cz—corn 5 85.79 (6) 86.19 (4) 86.23 (3)
6 86.04 (5) 87.96 (1) 87.45 (2)
4 84.02 (9) 85.71 (8) 86.54 (6)
C4—Grass/pasture 5 86.91 (5) 91.27 (1) 86.22 (7)
6 88.37 (4) 89.76 (3) 90.45 (2)
4 84.53 (8) 88.73 (2) 88.91 (1)
Cs—Grass/trees 5 85.11 (7) 85.27 (6) 84.50 (9)
6 86.31 (5) 86.35 (4) 87.79 (3)
4 84.57 (8) 86.38 (6) 90.36 (2)
Cg—Hay pile 5 86.21 (7) 90.09 (3) 88.17 (4)
6 87.52 (5) 91.62 (1) 90.09 (3)
4 80.02 (8) 81.92 (7) 85.21 (4)
Cy—Plantless soybeans 5 83.65 (6) 84.27 (5) 86.44 (3)
6 86.44 (3) 86.49 (2) 86.80 (1)
4 85.34 (8) 89.44 (4) 88.41 (5)
Cg—Non-tilled soybeans 5 87.18 (7) 89.44 (4) 90.76 (3)
6 87.26 (6) 91.35 (2) 92.12 (1)

Table 8. Classification accuracy with different network structures on the Indian Pines data (%) (continued).

Feature Category

Width of the Structure

Depth of the Structure

1 2 3

4 84.02 (8) 84.43 (7) 88.21 (4)
Cg9—Pure soybean 5 86.23 (6) 89.14 (2) 89.70 (1)
6 88.87 (3) 89.70 (1) 88.20 (5)
4 80.07 (8) 86.42 (4) 83.48 (6)
Cio—Wheat 5 83.41 (7) 85.59 (5) 88.30 (2)
6 87.56 (3) 88.88 (1) 85.59 (5)
4 83.32 (9) 84.25 (8) 90.20 (2)
Cy1—Forest 5 85.39 (7) 88.57 (5) 88.79 (4)
6 89.56 (3) 90.32 (1) 87.48 (6)
4 84.37 (7) 83.26 (8) 87.42 (5)
Cip—Buildings—grass—trees 5 86.99 (6) 88.39 (4) 88.74 (3)
6 88.74 (3) 89.53 (2) 89.96 (1)

The average ranking 6.08 4.00 3.72

The classification accuracy ranking of structures with different depth and width
combinations is shown in Table 9 and Figure 2. When the width is 1, 2, or 3, the classification
accuracy of the algorithm increases with increasing depth. Similarly, when the depth is
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4, the classification accuracy of the algorithm increases with increasing width. When the
depth is 5 or 6, the classification accuracy of the algorithm increases first and then decreases
with increasing width. Therefore, for different datasets, the depth and width combination
structure of the adaptive adjustment algorithm can better extract features and improve
the classification performance. The experimental results are fine, but not all the deepest
and widest structures have the best classification results. Therefore, it is feasible to use
the variable structure network based on data to improve the resolution of samples. The
results of the experiment on the University of Pavia dataset, Salinas dataset, Houston 2013
dataset, and Houston 2018 dataset are shown in Tables A1-A11 and Figures A1-A4 (in
Appendix A). The experimental structure includes the classification accuracy and ranking
of different network structures.

Table 9. Rank of classification accuracies with different network structures on the Indian Pines data.

(Depth, Width) 1 2 3
4 7.83 6.08 4.33
5 6.08 3.91 4.00
6 3.83 1.75 2.50
8 78 =3 depth=4 81 78 =3 width=1
3 depth=5 =3 width=2
74 3 depth=6 7 3 width=3

6.08 6.08 6.08 6.08

N
=N

w
[

4.33

383 3.91 391 4 383

Accuracy_Rank
e
Accuracy Rank

v
w

25 25

)

1.75

)

1.75

i 2 3 4 5 6
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(a) Classification Accuracy With Different Depth On The Indian Pines Data (b) Classification Accuracy With Different Width On The Indian Pines Data
Figure 2. Rank of classification accuracies with different widths and depths on the Indian Pines data.

In summary, the network structure adaptive search method can effectively improve
the classification performance of data. In the process of using the structure variable
network algorithm, determining the depth and width of the combined structure for specific
datasets can effectively improve the accuracy of the algorithm and is more in line with the
requirements of the application. The algorithm has a clear mathematical explanation and a
clear and reasonable process and is easy to implement. Therefore, adaptive optimization of
the network structure is feasible.

(2) Feasibility verification of the multi-optimization network

The experiments were conducted on the Indian Pines, University of Pavia, Salinas,
Houston 2013, and Houston 2018 datasets to verify the comprehensive performance of
different optimization methods. The application performance of operator optimization,
operator optimization and node optimization double optimization, and operator, node,
and structure optimization were evaluated. Overall accuracy (OA) was used to evaluate
the network evaluation standard. The kernel base operator adopts the Euclidean distance
calculation suboperator and Mahalanobis distance kernel operator, the network node
adopts a linear combined computing node and nonlinear combined computing node, and
the network structure adopts a deep mapping network structure of four, five, and six layers,
as shown in Table 10.
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Table 10. Configurations of the 3 elements of the deep kernel mapping network.

To Optimize the Elements

Basic Accounting Sub Network Node Network Structure

Elements set

Accounting for sublinear 4layer network

Edmond-Karp nuclear combinations
. . 5-layer network
Markov nuclear Accounting for subnonlinear
o 6-layer network
combinations

Basic Edmond-Karp accounting (EK): Optimal results obtained by using POLY1,
POLY2, RBF1, and RBF2 as basic accounting subsets.

Basic Markov calculators (MK): Optimal results obtained by using the kernel function
of Markov distance, including M_POLY1, M_POLY2, M_RBF1, and M_RBEF2.

Quasiconformal mapping Markov calculators (QMK): Quasiconformal mapping is
used to obtain the optimized calculator, including QM_POLY1, QM_POLY2, QM_RBF1,
and QM_RBF2.

QMK and linear calculation 1 (LC1): Calculation method combining quasiconfor-
mal mapping Markovner calculations and the linear combined network node calculation
method based on Bregman divergence.

QMK and linear calculation 2 (LC2): Method including node calculation of a linear
combined network based on the maximum threshold function by using the quasiconformal
mapping Markov calculation.

QMK and nonlinear calculation (NonLC): Calculation method adopting kernel opera-
tors and nonlinear nodes.

QMK, NonLC, and network structure calculation: Results obtained by the methods of
accounting suboptimization, nonlinear network node calculation, and adaptive network
structure calculation.

All the above algorithms are simulated with the same computing resources, and all
the training samples and test samples are allocated under the same conditions.

As shown in Tables A12-A16 (in Appendix A), the accuracy evaluation on the same
dataset shows that the performance of classification increases progressively in the order
of operator optimization, operator optimization, network node optimization, and triple
optimization. Multiple optimization can improve the performance of the algorithm.

(3) Comparative validation experiment to determine the multi-optimization net-
work performance

In this experiment, the performance analysis of the algorithm based on multiple
optimization of the kernel operator, mapping network nodes, and network structure is
compared with the performance analysis of the existing classification algorithm. At present,
the Indian Pines, University of Pavia, Salinas, Houston 2013, and Houston 2018 datasets are
mainly used to evaluate classification performance by using classification accuracy. In this
experimental evaluation, the principal component analysis method is adopted to achieve
feature dimension reduction in the original data. In the experiment, the characteristic
dimensions of the first four datasets are from 10 to 50, and the total number of spectral
bands of the fifth dataset is 48; thus, the highest dimension of the fifth dataset is set to 45.

The focus of this part of the experiment is to compare the advancement of existing
methods and evaluate the advantage in precision. Some experiments are carried out to
compare the performance of the algorithm. EasyMKL [24], SimpleMKL [25], SMIMKL [34],
L2MKL [35], RBF-SKL [28], POLY-SKL [28], Euclidean-MKL1 [29], Euclidean-MKL2 [30],
SK-CV-RBF-SKL [31], SK-POLY-SKL [32], Mahal-RBF-SKL [32], Mahal-Poly-SKL [32],
NMEF-MKL [33], KNMF-MKL [33], QMKL [36], DMKL [37], SparseDKL [38], and Hes-
sianMKL [39], i.e., 18 multikernel learning and deep multikernel learning classification
algorithms, are implemented. The basic ideas of these algorithms are as follows:

EasyMKL [24]: A multikernel network algorithm using direct multikernel function
addition calculation;

SimpleMKL [25]: A multikernel network algorithm with different weights;
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SM1MKL [34]: A multikernel combination calculation method based on a soft margin
is adopted;

L2MKL [35]: A multikernel combined network computing method using the L2 norm;

RBF-SKL [28]: A method in which the RBF Euclidian kernel is used as the kernel
function of the support vector machine;

POLY-SKL [28]: A method in which the polynomial Euclidean kernel used as the
kernel function of the support vector machine;

Euclidean-MKL1 [29]: A calculation method of nodes with the same weight combination;

Euclidean-MKL2 [30]: A node calculation method with different weights;

SK-CV-RBF-SKL [31]: A method in which the RBF kernel is used as the kernel function
of the support vector machine;

SK-POLY-SKL [31]: A method in which the polynomial kernel is used as the kernel
function of the support vector machine;

Mahal-RBF-SKL [32]: A method in which the RBF kernel based on Mahalanobis
distance is used as the kernel function of SVM;

Mahal-Poly-SKL [32]: A method in which the polynomial kernel based on the Maha-
lanobis distance is used as the kernel function of the support vector machine;

NMF-MKL [33]: Non-negative matrix factorization (NMF) MKL;

KNME-MKL [33]: A kernel-based non-negative matrix combining the multikernel and
KNMEF methods;

QMKL [36]: A method using a generic mapping kernel function multikernel mapping
learning network;

DMKL [37]: A deep kernel learning network based on generic mapping;

SparseDKL [38]: A deep kernel learning matrix network based on the sparse matrix
principle;

HessianMKL [39]: A method using the SimpleMKL node calculation.

The experimental results are shown in Tables 11 and A17-A21 and in Figures 3 and A5-A8
(Tables A17-A21 and Figures A5-A8 are in Appendix A). The kappa coefficient (KC), overall
accuracy (OA) and average classification accuracy (AA) were used to evaluate the performance
of the algorithm. The multi-optimization method proposed in this paper is a combination of
network structure optimization, network node optimization, and operator optimization.

Table 11. Performance comparison of the different algorithms on the Indian Pines dataset.

Serial Number Methods AA (%) OA (%) KC (%)
1 EasyMKL [24] 89.47 88.83 84.86
2 SimpleMKL [25] 90.45 89.26 85.56
3 SMIMKL [34] 91.79 90.42 86.57
4 L2MKL [35] 92.74 91.35 88.43
5 RBF-SKL [28] 87.23 86.43 82.34
6 POLY-SKL [28] 88.47 87.62 83.56
7 Euclidean-MKL1 [29] 91.64 90.34 88.27
8 Euclidean-MKL2 [30] 92.45 91.47 87.57
9 SK-CV-RBF-SKL [31] 92.24 91.45 87.35
10 SK-POLY-SKL [31] 91.46 90.37 88.34
11 Mahal-RBF-SKL [32] 91.94 90.67 88.32
12 Mabhal-Poly-SKL [32] 92.39 91.84 87.03
13 NME-MKL [33] 91.89 90.92 86.97
14 KNME-MKL [33] 92.68 91.26 87.47
15 QMKL [36] 94.83 93.92 89.94
16 DMKL [37] 95.68 96.37 91.34
17 SparseDKL [38] 95.54 94.68 90.27
18 HessianMKL [39] 95.83 94.90 90.78

19 In this paper, methods 96.76 95.94 91.82
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Figure 3. Performance comparison of the different algorithms on the Indian Pines dataset.

In summary, the experimental results show that the deep network is improved from
three perspectives, namely the kernel operator, mapping network node, and network
structure, and this method effectively improves classification results. The experimental
results show that in the application of classification, most of the proposed algorithms are
improved from a single operator and related methods, including optimization of the kernel
operator and network node calculation. To solve the basic kernel operator problem of a
deep mapping network, combined with the application problem of a strong coupling degree
between features and high band correlation, the kernel operator optimization method is
proposed from the perspective of the internal construction of the kernel operator, and a
Mahalanobis distance metric matrix is constructed. This method maps samples to feature
space with stronger classification ability, which can enhance the feature relationship of
similar samples, and optimize the features used for feature classification. Considering the
network node optimization problem of a deep mapping network, the strong interspectral
nonlinearity of the kernel operator structure expression is not sufficiently accurate. From
the perspective of network node accounting subcombination optimization, this paper
effectively improves the adaptability of the learning model to complex data and can more
accurately describe the data from the input space to nonlinear mapping relationships
so that data belonging to different classes have better discrimination in the nonlinear
mapping space.

Considering the network node optimization problem of a deep mapping network,
the strong interspectral nonlinearity and single accounting substructure expressions are
not sufficiently accurate. In this paper, from the perspective of network node accounting
subcombination optimization, the adaptive ability of the learning model to complex data
can be improved effectively, and the data from the input space to the nonlinear mapping
relationship can be described more accurately so that the data belonging to different classes
can have better discrimination in the nonlinear mapping space. Considering the insufficient
application of the existing network structure to line feature learning, the proposed deep ker-
nel mapping network optimization based on structure adaptation effectively improves the
ability to accurately describe spectral relations and improves the classification performance
to obtain features that can more accurately describe the target characteristics.
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4. Conclusions

In this paper, a structural adaptive deep kernel mapping network optimization method
is proposed from the perspective of the adaptive optimization of the network structure.
This method allows the network to adapt its structure based on the data’s distribution
characteristics, thereby improving image classification performance. On this basis, the clas-
sification method based on a multi-optimized deep kernel mapping network is proposed.
By combining deep kernel mapping networks with quasiconformal kernel learning, this
method optimizes the network structure and enhances both the accuracy and efficiency
of image classification. The feasibility of network optimization is verified by the open
simulation datasets and other datasets, and then the optimization method proposed in this
paper is comprehensively verified and analyzed. The results show that the deep kernel
mapping network, which is optimized from three aspects, namely the kernel operator,
mapping network node, and network structure, can effectively improve the feature extrac-
tion and classification performance of data. However, the adaptive network structure and
deep kernel mapping in DQKNet may increase model complexity, potentially making the
training process more difficult and requiring additional parameters and computational
resources. In the future, we aim to address these challenges by refining the method.
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Appendix A

Table A1l. Classification accuracy with different network structures on the Pavias dataset (%).

Width of the Structure

Feature Category Depth of the Structure 1 2 3
4 79.47 (8) 81.22 (7) 84.83 (5)
Cy—Tarmac 5 83.28 (6) 87.99 (1) 85.60 (4)
6 86.79 (3) 87.60 (2) 86.79 (3)
4 82.11 (9) 84.27 (8) 87.49 (4)
C,—Grass 5 86.27 (6) 89.06 (2) 85.89 (7)
6 88.37 (3) 89.26 (1) 87.33 (5)
4 81.21 (8) 86.46 (7) 86.46 (7)
C3z—Gravel roof 5 88.17 (5) 91.95 (1) 87.33 (6)
6 90.50 (2) 89.20 (4) 89.49 (3)
4 82.87 (8) 85.50 (7) 85.65 (6)
C4—Trees 5 85.50 (7) 88.63 (3) 89.87 (2)
6 87.59 (4) 87.01 (5) 90.05 (1)
4 86.38 (7) 86.09 (8) 88.47 (6)
Cs—Metal roof 5 85.56 (9) 91.68 (2) 91.24 (3)
6 92.28 (1) 90.57 (4) 89.67 (5)
4 83.05 (8) 86.77 (5) 84.19 (7)
C¢—Bare land 5 85.61 (6) 89.98 (1) 86.77 (5)
6 89.59 (2) 88.70 (3) 88.03 (4)
4 84.54 (8) 88.21 (7) 83.10 (9)
Cy—Asphalt roof 5 89.47 (6) 92.89 (1) 90.59 (5)
6 91.23 (4) 92.65 (2) 91.88 (3)
4 84.10 (9) 86.57 (7) 86.45 (8)
Cg—Brick pavement 5 88.69 (5) 90.08 (3) 90.46 (2)
6 87.58 (6) 90.70 (1) 89.42 (4)
4 83.21 (9) 85.37 (8) 87.49 (6)
Cy—Shadow 5 86.50 (7) 90.72 (1) 89.45 (4)
6 88.74 (5) 90.00 (3) 90.08 (2)

The average ranking 5.96 3.85 4.67
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Table A2. Rank of classification accuracies with different network structures on the Pavias dataset.

(Depth, Width) 1 2 3
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(a) Classification Accuracy With Different Depth On The Pavias Dataset (b) Classification Accuracy With Different Width On The Pavias Dataset

Figure A1. Rank of classification accuracies with different widths and depths on the Pavias dataset.

Table A3. Classification accuracy with different network structures on the Salinas dataset (%).

Width of the Structure

Feature Category Depth of the Structure " ) 3
82.90 (9) 87.43 (6) 86, 58 (8)
Brocoli-green-weeds-1 86.79 (7) 91.78 (3) 89.97 (5)
90.96 (4) 92.56 (2) 93.25 (1)

84.75 (8) 84.20 (9) 90.06 (6)

Brocoli-green-weeds-2 88.65 (7) 90.82 (4) 90.36 (5)

91.57 (2) 91.43 (3) 92.78 (1)

82.37 (8) 86.34 (7) 89.43 (5)

Fallow 88.27 (6) 91.05 (2) 90.03 (4)

89.43 (5) 91.10 (1) 90.72 (3)

83.49 (7) 89.27 (6) 89.27 (6)

Fallow-rough-plow 90.20 (5) 92.17 (2) 91.43 (4)
89.27 (6) 91.78 (3) 92.48 (1)

82.24 (8) 86.59 (7) 88.45 (6)

Fallow-smooth 89.87 (5) 91.86 (1) 90.62 (4)

90.62 (4) 91.09 (3) 91.77 (2)
83.50 (8) 85.92 (7) 88.26 (6)

Stubble 89.69 (5) 90.04 (4) 85.30 (5)
89.69 (5) 91.64 (1) 91.60 (2)

84.16 (9) 88.76 (8) 90.10 (6)

Celery 89.14 (7) 91.56 (4) 91.39 (5)
92.30 (2) 92.12 (3) 92.88 (1)

82.91 (7) 87.64 (6) 89.02 (5)

Grapes-untrained 87.64 (6) 91.48 (1) 91.36 (2)

NUI OO | ONUITER | NO R |G| OO OO | O Ul

91.06 (3) 90.84 (4) 90.84 (4)
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Table A4. Rank of classification accuracies with different network structures on the Salinas dataset (%).

Width of the Structure
1 2 3

82.90(8)  8844(6)  87.71(7)
87.71(7)  88.89(5)  91.24 (4)
9239(2)  9211(3)  93.00 (1)

81.87(9)  87.89(7)  87.44(8)
88.67(6)  92.24(2)  90.94 (4)
9243(1)  90.64(5) 9168 (3)

83.11(8)  86.78(6)  85.98(7)
88.45(5)  9047(2)  89.28 (4)
88.45(5)  90.09(3)  90.84 (1)

81.87(8)  8622(7)  88.24(6)
89.69(5)  90.06(4)  88.24(6)
91.05(1) 9047 (3)  90.78 (2)

8235(7)  8639(6)  88.10 (5)
86.39(6) 9047 (3)  89.69 (4)
9126 (2)  89.69(4)  91.38 (1)

8352(8)  8440(7)  87.69 (5)
9047 (3)  87.44(6) 9157 (2)
90.06 (4)  9222(1) 9157 (2)

80.87(8)  85.38(7)  86.00 (5)
85.67(6)  88.86(2)  86.12(4)
8747(3)  88.86(2)  89.57 (1)

82.10(8)  8548(7)  87.56 (6)
8548 (7)  88.69(5)  89.68 (4)
91.00(3)  91.38(1)  91.24(2)

The average ranking 5.69 4.19 3.98

Feature Category Depth of the Structure

Soil-vineyard-develop

Corn-senesced-green-weeds

Lettuce-romaine-4wk

Lettuce-romaine-5wk

Lettuce-romaine-6wk

Lettuce-romaine-7wk

Vinyeard-untrained

Vineyard-vertical-trellis
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Table A5. Rank of classification accuracies with different network structures on the Salinas dataset.
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Figure A2. Rank of classification accuracies with different widths and depths on the Salinas dataset.
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Table A6. Classification accuracy with different network structures on the Houston 2013 dataset (%).

Width of the Structure

Feature Category Depth of the Structure 1 ) 3
4 75.22 (8) 77.12 (7) 77.57 (6)
Healthy grass 5 78.54 (5) 79.69 (3) 80.24 (1)
6 78.54 (5) 84.60 (2) 79.42 (4)
4 78.35 (8) 80.00 (7) 80.27 (6)
Stressed grass 5 81.46 (4) 82.37 (3) 83.23 (1)
6 81.28 (5) 80.27 (6) 82.85(2)
4 80.84 (8) 84.79 (7) 86.00 (4)
Synthetic grass 5 85.18 (6) 86.25 (3) 87.28 (1)
6 85.67 (5) 87.28 (1) 86.46 (2)
4 78.88 (8) 81.59 (7) 81.59 (7)
Trees 5 82.30 (6) 85.28 (2) 84.78 (3)
6 82.44 (5) 83.60 (4) 85.59 (1)
4 82.10 (7) 85.41 (6) 87.34 (5)
Soil 5 87.34 (5) 87.34 (5) 89.47 (1)
6 88.49 (3) 89.17 (2) 88.06 (4)
4 82.06 (8) 84.01 (7) 84.20 (6)
Water 5 84.89 (5) 86.36 (4) 87.00 (3)
6 87.57 (2) 88.20 (1) 86.36 (4)
4 78.60 (8) 79.37 (7) 81.68 (4)
Residential 5 80.09 (6) 83.24 (2) 83.66 (1)
6 81.55 (5) 83.24 (2) 82.07 (3)
4 70.18 (8) 7245 (7) 72.59 (6)
Commercial 5 73.38 (5) 75.00 (3) 75.27 (2)
6 74.75 (4) 73.38 (5) 75.60 (1)

Table A7. Classification accuracy with different network structures on the Houston 2013 dataset (%).

Width of the Structure

Feature Category Depth of the Structure 1 ) 3
4 71.68 (8) 72.09 (7) 74.35 (4)
Road 5 75.22 (5) 80.04 (1) 80.00 (2)
6 76.93 (4) 78.64 (3) 78.64 (3)
4 58.47 (4) 64.09 (6) 66.05 (4)
Highway 5 65.53 (5) 68.22 (2) 68.65 (1)
6 66.43 (3) 68.22 (2) 68.22 (2)
4 75.69 (8) 79.83 (7) 80.00 (6)
Railway 5 80.67 (5) 81.47 (2) 81.85 (1)
6 81.25 (3) 81.85 (1) 81.20 (4)
4 79.43 (8) 81.22 (7) 82.74 (5)
Parking lot 1 5 81.46 (6) 84.59 (2) 85.00 (1)
6 83.88 (3) 83.07 (4) 85.00 (1)
4 80.00 (8) 81.11 (7) 81.11 (7)
Parking lot 2 5 82.30 (6) 85.11 (2) 85.23 (1)
6 83.36 (4) 82.46 (5) 84.34 (3)
4 81.02 (7) 83.77 (6) 86.53 (3)
Tennis court 5 84.24 (5) 85.90 (4) 88.24 (1)
6 86.77 (2) 88.24 (1) 86.53 (3)
4 79.36 (8) 83.49 (7) 84.79 (5)
Running track 5 84.48 (6) 88.03 (1) 87.42 (2)
6 86.14 (4) 87.00 (3) 88.03 (1)

The average ranking 5.58 4.07 3.07
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Table A8. Rank of classification accuracies with different network structures on the Houston

2013 dataset.
(Depth, Width) 1 2 3
4 7.60 6.80 5.20
5 5.33 2.60 1.47
6 3.80 2.80 2.53
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(a) Classification Accuracy With Different Depth On The Houston 2013 Dataset (b) Classification Accuracy With Different Width On The Houston 2013 Dataset

Figure A3. Rank of classification accuracies with different widths and depths on the Houston
2013 dataset.

Table A9. Classification accuracy with different network structures on the Houston 2018 dataset (%).

Width of the Structure
2 3

8091(8)  8358(7)  83.58(7)
8422(6)  8457(5)  86.43(3)
8721(1)  8678(2)  85.60 (4)

76.48(7)  7924(6)  79.24 (6)
80.00(5)  8157(2)  80.08 (4)
81.98 (1)  81.98(1)  81.26 (3)

8422(9)  8834(6)  86.80 (8)
8725(7)  91.29(3)  90.05 (5)
91.75(2)  91.98(1)  90.73 (4)

7777(@8)  8L70(7)  83.20 (5)
8249 (6)  86.77(1)  84.59 (4)
8459 (4)  8645(2)  85.38(3)

7054 (8)  7470(7)  75.46 (6)
7630(5)  7630(5)  77.57 (4)
7930(1)  7829(3) 7856 (2)

83.77(8)  8694(7)  87.48 (6)

Feature Category Depth of the Structure

Healthy grass

Stressed grass

Artificial turf

Evergreen trees

Deciduous trees

Bare earth 88.69 (5) 92.11 (1) 91.25 (3)
91.84(2)  9125(3)  89.47 (4)

81.60 (9) 88.54 (6) 86.96 (8)

Water 87.75 (7) 91.68 (2) 90.73 (5)

92.42 (1) 91.48 (3) 91.08 (4)

60.41 (8) 64.73 (7) 67.43 (6)

Residential buildings 64.73 (7) 68.99 (4) 68.57 (5)

QU | U R | QU R N R[NV ONU | O | O U

7037 (2)  7140(1)  69.58 (3)
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Table A9. Cont.

Width of the Structure

Feature Category Depth of the Structure 1 ) 3
4 5410(8)  5832(7)  60.73 (6)
Nonresidential buildings 5 60.94 (5) 62.48 (2) 61.28 (4)
6 62.74 (1) 61.66 (3) 62.48 (2)
4 2849 (7)  3127(5)  31.00 (6)
Roads 5 3127 (5)  3244(2) 3133 (4)
6 3244 (2)  31.69(3)  32.46 (1)

Table A10. Classification accuracy with different network structures on the Houston 2018 dataset (%).

Width of the Structure
1 2 3

Feature Category Depth of the Structure

4 328.89 (8)  42.19(7)  43.07 (6)

Sidewalks 5 43.20 (5) 46.44 (2) 45.39 (3)

6 46.95(1)  44.68(4)  44.68 (4)

4 5631 (8)  60.00(7)  61.74 (5)

Crosswalks 5 60.45 (6) 62.06 (4) 63.92 (1)

6 62.78 (3) 63.33 (2) 61.74 (5)

4 4026 (8)  4439(7)  45.22(6)

Major thoroughfares 5 46.05 (5) 47.28 (3) 48.58 (1)
6 4858 (1)  46.85(4)  47.66(2)

4 7170 8)  7632(6)  75.40(7)

Highways 5 7632(6)  7697(5)  77.91(4)

6 7947 (2)  78.80(3)  80.40 (1)

4 8120 (8)  8539(6)  84.24(7)

Railways 5 87.08 (5) 90.00 (2) 87.93 (4)

6 90.64 (1)  88.74(3)  87.08 (5)

4 7335(9)  7921(7)  78.25(8)

Paved parking lots 5 80.00 (6) 82.90 (1) 80.63 (5)
6 8147 (3)  8212(2)  81.30 (4)

4 8242(9)  86.02(8)  86.49 (7)

Unpaved parking lots 5 88.36 (6) 89.47 (5) 90.08 (4)
6 92.40 (1) 91.48 (2) 90.76 (3)

4 7641(7)  81.70(6)  82.40 (5)

Cars 5 82.71 (4) 85.76 (2) 84.40 (3)

6 86.37 (1)  8440(3)  84.40 (3)

4 7881 (8)  8470(7)  84.74 (6)

Trains 5 86.38 (5) 90.06 (1) 88.25 (3)

6 89.76 (2)  87.40(4)  86.38 (5)

4 80.01(7)  8457(6)  85.99 (5)

Stadium seats 5 84.57 (6) 87.19 (4) 88.69 (2)

6 90.00 (1) 90.00 (1) 88.02 (3)

The average ranking 5.55 4.08 4.67

Table A11. Rank of classification accuracies with different network structures on the Houston

2018 dataset.
(Depth, Width) 1 2 3
4 8.00 6.60 6.30
5 5.60 2.80 3.70

6 1.65 2.50 3.25
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Figure A4. Rank of classification accuracies with different widths and depths on the Houston
2018 dataset.

Table A12. Feasibility analysis of different optimization strategies on the Indian Pines dataset.

Multiple Optimization Strategy

Feature Extraction Dimension

e Algorithm Name
Combinations 10 20 30 40 50
Basic Edmond-Karp accounting (EK) 69.33 75.40 80.19 83.41 85.01
Operator optimization Basic Markov calculation (MK) 71.34 77.23 82.56 85.67 87.45
Quasiconformal mapping Markov
calculators (QMK) 73.12 79.81 84.76 87.62 89.19
QMK and linear node calculation 1 (LC1)  73.24 78.57 82.35 85.78 88.25
Operator optimization and node QMK and linear node calculation 2 (LC2)  75.82 82.47 86.72 88.28 91.45
optimization QMK and nonlinear node computation 77 46 84.75 88.39 90.79 93.28
(NonLC)
Operator, n(.)de.z, agd structure QOMK, NonLC, and n?twork structure 80.39 86.94 90.95 93.69 95.94
optimization calculation

Table A13. Feasibility analysis of different optimization strategies on the University of Pavia
dataset (%).

Multiple Optimization Strategy

Feature Extraction Dimension

R Algorithm Name
Combinations 10 20 30 40 50
Basic Edmond—-Karp accounting (EK) 72.86 77.99 82.45 86.54 88.14
Operator optimization Basic Markov calculation (MK) 73.78 78.92 83.21 87.82 90.11
Quasiconformal mapping Markov
Calculators (QMK) 76.21 80.22 85.89 89.99 92.67
QMK and linear node calculation 1 (LC1)  76.23 82.08 86.26 89.14 90.25
Operator optimization and node QMK and linear node calculation 2 (LC2)  78.35 83.35 87.57 92.58 93.47
optimization QMK and nonlinear node computation 80.47 85.22 8964 9434 95.75
(NonLC)
Operator, nc.)dg, ar}d structure QMK, NonLC, and nfetwork structure 83.53 88.56 9232 95.63 96.68
optimization calculation
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Table A14. Feasibility analysis of different optimization strategies on the Salinas dataset (%).
. s s Feature Extraction Dimension
Multiple Optln.uza.tlon Strategy Algorithm Name
Combinations 10 20 30 40 50
Basic Edmond-Karp accounting (EK) 68.23 76.34 81.25 84.98 86.36
0 S Basic Markov calculation (MK) 70.62 78.35 83.39 86.93 88.84
perator optimization Quasiconformal mapping Markov
calculators (QMK) 72.68 80.46 85.67 88.47 90.78
QMK and linear node calculation 1 (LC1)  73.56 79.37 82.86 86.28 87.32
Operator optimization and node QMK and linear node calculation 2 (LC2)  75.57 82.75 87.57 89.32 91.25
optimization QMK and nonlinear node computation 76.43 85.93 88.79 90,51 93.94
(NonLC)

Operator, nnode, and structure QMK, NonLC, and network structure 78.40 88.89 90.62 92.89 95.78

optimization

calculation

Table A15. Feasibility analysis of different optimization strategies on the Houston 2013 dataset (%).

Multiple Optimization Strategy

Feature Extraction Dimension

e Algorithm Name
Combinations 10 20 30 40 50
Basic Edmond—-Karp accounting (EK) 62.86 67.89 73.65 76.74 78.45
Operator optimization Basic Markov calculation (MK) 64.84 69.22 75.57 78.57 80.65
Quasiconformal mapping Markov
calculators (QMK) 66.67 71.43 77.57 80.65 82.32
QMK and linear node calculation 1 (LC1)  67.46 72.36 77.39 80.93 81.42
Operator optimization and node QMK and linear node calculation 2 (LC2)  72.36 74.85 79.27 83.69 84.37
optimization QMK and nonlinear node computation 74.75 76.45 81.83 85.45 86.38
(NonLC)
Operator, node, and structure QMK, NonLC, and network structure 76.93 75.93 83.92 87.93 88.93

optimization

calculation

Table A16. Feasibility analysis of different optimization strategies on the Houston 2018 dataset (%).

Multiple Optimization Strategy

Feature Extraction Dimension

R Algorithm Name
Combinations 10 20 30 40 45
Basic Edmond—-Karp accounting (EK) 55.28 57.44 62.85 67.89 7247
Operator optimization Basic Markov calculation (MK) 56.43 58.54 63.86 68.76 73.65
Quasiconformal mapping Markov
calculators (QMK) 57.45 59.57 64.78 69.69 74.68
QMK and linear node calculation 1 (LC1)  59.68 60.63 65.74 70.25 72.38
Operator optimization and node QMK and linear node calculation 2 (LC2)  62.26 64.84 67.27 73.54 75.76
optimization QMK and nonlinear node computation 64.68 65.53 68.39 75.93 77 07
(NonLC)
Operator, node, and structure QMK, NonLC, and network structure 64.93 65.93 69.92 76.93 78.93

optimization

calculation

Table A17. Performance comparison of the different algorithms on the University of Pavia dataset.

Serial Number Methods AA (%) OA (%) KC (%)
1 EasyMKL [24] 90.43 90.56 85.45
2 SimpleMKL [25] 91.45 90.57 86.83
3 SMI1MKL [34] 92.59 92.43 87.67
4 L2MKL [35] 93.57 92.49 87.64
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Table A17. Cont.

Serial Number Methods AA (%) OA (%) KC (%)
5 RBF-SKL [28] 88.34 88.63 83.25
6 POLY-SKL [28] 89.43 88.43 84.75
7 Euclidean-MKL1 [29] 92.35 92.32 88.83
8 Euclidean-MKIL2 [30] 93.86 92.78 87.45
9 SK-CV-RBF-SKL [31] 93.24 92.45 87.38
10 SK-POLY-SKL [31] 91.93 91.03 88.69
11 Mahal-RBF-SKL [32] 92.36 92.25 88.75
12 Mahal-Poly-SKL [32] 93.49 92.82 87.25
13 NME-MKL [33] 92.79 92.56 87.73
14 KNMEF-MKL [33] 93.45 92.72 87.83
15 QMKL [36] 95.74 94.96 88.85
16 DMKL [37] 96.83 96.32 89.74
17 SparseDKL [38] 96.35 95.37 89.28
18 HessianMKL [39] 96.36 95.98 89.96
19 In this paper, methods 97.42 96.68 90.97
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Figure A5. Performance comparison of the different algorithms on the University of Pavia dataset.

Table A18. Performance comparison of the different algorithms on the Salinas dataset.

Serial Number Methods AA (%) OA (%) KC (%)
1 EasyMKL [24] 90.10 89.15 83.53
2 SimpleMKL [25] 90.89 89.71 84.83
3 SM1MKL [34] 92.45 91.29 85.83
4 L2MKL [35] 92.46 91.54 86.45
5 RBF-SKL [28] 87.35 87.37 81.75
6 POLY-SKL [28] 88.86 87.43 83.34
7 Euclidean-MKL1 [29] 92.57 91.03 86.57
8 Euclidean-MKL2 [30] 92.82 91.32 86.56
9 SK-CV-RBF-SKL [31] 92.28 91.37 86.38
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Table A19. Performance comparison of the different algorithms on the Salinas dataset.
Serial Number Methods AA (%) OA (%) KC (%)
10 SK-POLY-SKL [31] 91.37 90.56 87.86
11 Mahal-RBF-SKL [32] 92.93 91.63 86.66
12 Mahal-Poly-SKL [32] 92.32 91.80 86.30
13 NMF-MKL [33] 92.25 91.37 85.94
14 KNMEF-MKL [33] 92.89 91.71 86.83
15 QMKL [36] 94.81 93.57 88.53
16 DMKL [37] 95.46 95.67 89.23
17 SparseDKL [38] 95.83 94.47 88.37
18 HessianMKL [39] 95.85 95.27 89.27
19 In this paper, methods 96.74 95.78 89.86

Accuracy(%)

95.46]

Figure A6. Performance comparison of the different algorithms on the Salinas dataset.
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Table A20. Performance comparison of the different algorithms on the Houston 2013 dataset.

Serial Number Methods AA (%) OA (%) KC (%)
1 EasyMKL [24] 82.53 81.85 76.52
2 SimpleMKL [25] 83.48 82.52 77.87
3 SM1MKL [34] 84.83 83.82 78.23
4 L2MKL [35] 86.43 84.47 79.34
5 RBF-SKL [28] 80.64 80.69 76.43
6 POLY-SKL [28] 81.36 81.47 76.54
7 Euclidean-MKL1 [29] 84.54 83.80 79.32
8 Euclidean-MKL2 [30] 85.82 84.48 79.32
9 SK-CV-RBF-SKL [31] 85.47 84.49 79.24
10 SK-POLY-SKL [31] 84.98 83.82 78.74
11 Mahal-RBF-SKL [32] 84.59 83.51 79.59
12 Mahal-Poly-SKL [32] 85.32 84.79 79.94
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Table A20. Cont.

Serial Number Methods AA (%) OA (%) KC (%)
13 NMEF-MKL [33] 84.36 83.85 78.59
14 KNMF-MKL [33] 85.88 84.92 79.92
15 QMKL [36] 87.35 86.38 81.36
16 DMKL [37] 88.57 88.24 82.73
17 SparseDKL [38] 88.57 87.79 82.27
18 HessianMKL [39] 88.53 88.34 83.27
19 In this paper, methods 89.42 88.93 83.48
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Figure A7. Performance comparison of the different algorithms on the Houston 2013 dataset.

Table A21. Performance comparison of the different algorithms on the Houston 2018 dataset.

Serial Number Methods AA (%) OA (%) KC (%)
1 EasyMKL [24] 72.43 72.12 68.24
2 SimpleMKL [25] 73.92 72.92 68.87
3 SMIMKL [34] 74.46 74.32 70.25
4 L2MKL [35] 75.57 74.58 71.45
5 RBF-SKL [28] 70.45 70.75 67.45
6 POLY-SKL [28] 71.72 70.43 67.75
7 Euclidean-MKL1 [29] 74.43 74.44 71.88
8 Euclidean-MKL2 [30] 75.23 74.86 70.24
9 SK-CV-RBF-SKL [31] 75.43 74.69 70.38
10 SK-POLY-SKL [31] 74.62 73.24 69.92
11 Mahal-RBF-SKL [32] 74.58 74.94 71.68
12 Mahal-Poly-SKL [32] 75.39 74.47 70.02
13 NMF-MKL [33] 74.89 74.68 70.24
14 KNME-MKL [33] 75.57 74.92 70.87
15 QMKL [36] 77.35 76.27 71.59
16 DMKL [37] 78.47 78.25 73.13
17 SparseDKL [38] 78.57 77.35 72.73
18 HessianMKL [39] 78.25 78.34 73.78
19 In this paper, methods 79.62 78.93 73.84
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Figure A8. Performance comparison of the different algorithms on the Houston 2018 dataset.
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