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Abstract: Multi-robot SLAM (simultaneous localization and mapping) is crucial for the implemen-
tation of robots in practical scenarios. Bandwidth constraints significantly influence multi-robot
SLAM systems, prompting a reliance on lightweight feature descriptors for robot cooperation in
positioning tasks. Real-time map sharing among robots is also frequently ignored in such systems.
Consequently, such algorithms are not feasible for autonomous multi-robot navigation tasks in the
real world. Furthermore, the computation cost of the global optimization of multi-robot SLAM
increases significantly in large-scale scenes. In this study, we introduce a novel distributed multi-
robot SLAM framework incorporating sliding window-based optimization to mitigate computation
loads and manage inter-robot loop closure constraints. In particular, we transmit a 2.5D grid map of
the keyframe-based submap between robots to promote map consistency among robots and main-
tain bandwidth efficiency in data exchange. The proposed algorithm was evaluated in extensive
experimental environments, and the results validate its effectiveness and superiority over other

mainstream methods.
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1. Introduction

SLAM (simultaneous localization and mapping) is a fundamental technology for
mobile robot navigation in unknown environments. Many outstanding single-robot SLAM
algorithms have been proposed in the last decade, e.g., LOAM [1] and LIO-SAM [2].
However, in specific tasks, such as rescue, planetary exploration, and logistics applications,
multi-robot SLAM is more efficient than single-robot SLAM. Compared with single-robot
SLAM, multi-robot SLAM is still a challenging issue for most scenes.

Multi-robot SLAM relies on information interaction to build a consistent map when
cooperative robot teams traverse an unknown environment. According to the interac-
tion manner, multi-robot SLAM systems can be divided into the following two types:
centralized and decentralized approaches. Centralized approaches compute the global
SLAM through a remote base station that can interact with each team robot [3,4]. Decen-
tralized approaches rely only on the communication between robots to build a consistent
map, such that it does not need any central authority [5,6]. Due to the limitations of net-
working coverage, robots cannot always maintain a stable connection to the base station.
Thus, the decentralized solution is better suited for large-scale environments. However,
in both multi-robot SLAM approaches, a consistent map is derived from the constraints of
inter-robot loop closures. For the optimization of inter-robot constraints in the distributed
approach, it maintains several graphs across robots. Each robot optimizes the localization
with respect to other robots only when there are overlapping constraints.
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The optimization of inter-robot constraints is a critical problem for multi-robot SLAM.
Traditional multi-robot SLAM methods optimize the robot’s entire map and trajectory
based on current and historical inter-robot loop closures. However, the computation
burden rises with increases in trajectory and inter-robot loop closures, making conventional
algorithms unsuitable for large-scale scenes. Moreover, besides cooperative localization,
multi-robot SLAM also needs to generate an accurate and robust map that can be used
for collaborative planning and navigation in practice tasks. However, to overcome the
limitation of communication bandwidth, most current multi-robot SLAM approaches only
transmit lightweight descriptors between robots. Each robot can calculate its global pose in
real time but cannot obtain the map information of other robots. Thus, the map built by
these methods can only be applied to navigation tasks after the completion of the SLAM
process. This limits the application of these multi-robot SLAM methods to tasks such as
exploration and rescue in fully autonomous scenarios.

In this paper, a distributed multi-robot SLAM framework with a sliding window-
based global graph optimization procedure is designed. This framework handles the
computation cost and constraints of the inter-robot loop closure sequence. In particular, we
transmit a 2.5D grid map of the keyframe-based submap between robot teams to achieve
low-bandwidth information exchange. We use RING [7], a general non-learning framework
with roto-translation invariance for inter-loop closure detection and estimation of a coarse
relative pose. Then, this result is used as the initial value of the Iterative Closest Point (ICP)
to generate a more accurate relative pose between two robots. Subsequently, pose graph
optimization is used to update the poses of robots in the sliding window. Finally, the global
map of each robot is updated based on the updated consistent robot poses. Moreover,
the global grid map of each robot can be directly used for distributed multi-robot planning
and navigation. The contributions of our work are summarized as follows:

1. A 25D grid map of the keyframe-based submap is used for inter-machine communi-
cation, reducing bandwidth while achieving a balance between bandwidth and the
robustness of map fusion.

2. Sliding window optimization is used to update the poses of robots, ensuring the effi-
ciency of pose optimization and enhancing the real-time performance of the algorithm.

3. An extensive evaluation of the system’s overall performance is conducted under
different conditions through a real-world experiment.

2. Related Work

Multi-robot SLAM systems typically include two essential components, namely inter-
loop closure detection and relative pose estimation. For inter-loop closure, various methods
employ place descriptors such as NetVLAD [8], Bag of Words (BoW) [9], and AnyLoc [10]
for visual-based approaches and Scan Context [11], PointNetVLAD [12], and DiSCO [13] for
laser-based approaches to identify the same location. Subsequently, relative pose estimation
is carried out using Perspective-n-Point (PnP) for image feature points and Iterative Closest
Point (ICP) for laser point clouds.

DOOR-SLAM [5] is a fully distributed multi-robot SLAM system featuring a robust out-
lier rejection mechanism. It utilizes NetVLAD descriptors in its inter-loop closure module,
while its pose graph optimization module integrates a distributed outlier rejection model
to achieve accurate and robust collaborative positioning and mapping. DiSCO-SLAM [14]
is the first method to use a LIDAR-based global descriptor, i.e., scan context [11], for dis-
tributed place recognition. The lightweight nature of the scan context descriptor facilitates
real-time applications. DRACo-SLAM [15] estimates multi-robot system trajectories in
GPS-free environments using scene descriptors and dynamic event-triggered communica-
tion. Kimera-Multi [16] integrates D-GNC and semantic data into its generated maps. Tian
et al. [17] improved Kimera-Multi to make it suitable for large-scale practical deployments,
with a particular focus on handling intermittent and unreliable communications. Bozzi
et al. [18] proposed a solution for dynamically adjusting the trajectories of vehicle platoons,
ensuring that optimal spacing is maintained between adjacent vehicles traveling at cruis-
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ing speed on a straight road. Multi-modal maplab 2.0 [19] supports heterogeneous robot
groups with diverse sensor configurations. Swarm-SLAM [20] implements an innovative
budgeted method for selecting inter-robot loop closures by maximizing algebraic connec-
tivity. DCL-SLAM [21] evaluates the performance of LiDARIris [22], M2DP [23], and scan
context, ultimately selecting the most effective and rotation-invariant LiDAR-Irisfor loop
closure detection.

However, previous systems were mainly designed for multi-robot positioning, ignor-
ing map sharing between robots. Thus, they are not feasible in multi-robot exploration
with a high dependency on maps. Compared with the sharing of a complete single-robot
map, incremental map construction and merging only need to share newly added parts of
maps and put little pressure on the communication bandwidth. SMMR-Explore [24] is a
submap-based multi-robot SLAM framework that only shares the grid map, eliminating
the transfer of place recognition descriptors and raw sensor data. This framework saves
30% of the total communication traffic, and the aligned global map can be directly used
for the exploration task. Nevertheless, SMMR-Explore transmits 2D laser scans between
robots, easily leading to incorrect loop closure detection and limiting its application to
rough and complex roads. Motivated by this limitation, we utilize 2.5D submap interaction
among robots to achieve low-bandwidth information exchange and the construction of
a global map in each robot. The communication protocol for the 2.5D submap incorpo-
rates timestamps to accurately pinpoint the generation time of the data packet, ensuring
precise synchronization. It also includes the pose of the last scan, detailing the sensor’s
position and orientation, which are essential for relative localization and environmental
reconstruction. The protocol further specifies the dimensions of the submap on the x
and y axes and a one-dimensional array that stores the height values of each voxel point,
facilitating the construction of three-dimensional terrain models. Additionally, it integrates
RTK data from the last scan to provide real-time kinematic positioning information. The
2.5D global map contains the height information for the robot, enabling more reasonable
and safe navigation in complex terrain. In particular, a sliding window-based global graph
optimization procedure is designed to handle the increased computation cost as the scale
of the environment expands.

3. Approach

Each robot individually performs a SLAM task. Within the communication range,
robots interchange 2.5D submaps to facilitate collaboration. The shared submaps are
used to determine whether the robots are encountering a common scene. Subsequently,
the relative positions and orientations between the robots are calculated by aligning the
observations of the identical scene. Finally, leveraging the computed relative poses of the
robot team, a consistent map of the explored area is obtained based on the transformation
and integration of individual submaps.

3.1. Inter-Robot Place Recognition

This research employs 2.5D submaps to facilitate lightweight inter-robot communi-
cation. For inter-robot place recognition, RING [7], which represents LiDAR scans in the
form of Radon sinograms, is employed. To create a translation-invariant descriptor, RING
applies a 1D discrete Fourier transform to each row along the d axis, obtaining the magni-
tude spectrum in the frequency domain. The resultant spectra of the query-scan RING and
map-scan RING are denoted as Sg and Sy, respectively. Sg can be expressed as

Sq = |F(Dq(6,4))l, 1)

where F(+) is the discrete Fourier transform operator. Subsequently, RING applies cross-
correlation along the 6 axis between Sg and Sy to obtain the orientation invariance. The



Electronics 2024, 13, 4129

40f12

max correlation value (C(Sp, Sp)) of the circular cross-correlation results is considered as
the metric between the query scan and map scan as follows:

C(SQ, SM) = max SQ(Gi,w) . SM<91' + a,w), )
6;

where a denotes an orientation of f(x,y) and w is the discrete frequency. Then, the most
similar map scan, which should be acquired in the same place as the query scan, can be
achieved. Notably, our algorithm also leverages the Pairwise Consistency Maximization
(PCM) [25] approach. This approach identifies whether the loop-closure pairs satisfy the
criteria for establishing inter-robot associations.

3.2. Relative Pose Optimization

To calculate the relative transform between the robot teams, we designed a sliding
window-based optimization module. In contrast to the traditional optimization method,
the proposed optimization method focuses on optimizing the estimated trajectory and map
within a time window. It integrates the relative transform of the candidate loop-closure
pair provided by the place recognition module with odometry data and the pose of the first
keyframes in a sliding window as follows:

X;— 1, = argmin(Fiyer (X 1¢) + Eo(Xe—r,t) + Ef(Xe—1,1)), 3)
Xi—Lt

where Fyper (Xt—1,¢) is the cost function of inter-loop closure. E, is the residual error, which is
calculated based on the constraint of odometry data. E¢(X;_r ) is the residual error linked
with the pose of the first keyframes in the sliding window. Since the sliding window-based
optimizer mainly optimizes the partial path, E¢(X;_1 ;) is used to prevent discontinuity at
path junctions. In particular, we also incorporate Gaussian noise to simulate observation
uncertainty in the real world. The sliding window-based optimizer ensures the effective
utilization of computational resources while providing sufficient context information for
precise pose inference.

After optimization, the last 10 keyframes of the odometry and the associated loop
closures are retained in the sliding window. We emphasize the reuse and maintenance
of effective loop closure and odometry factors in the optimization process. This strategy
helps mitigate potential negative impacts from suboptimal optimizations on subsequent
pose tracking. It ensures the coherence and stability of pose estimation throughout the
entire process.

3.3. Efficient, Consistent Map

Based on the relative pose matrices, the proposed approach subsequently transforms
the local maps from each robot’s coordinate system into the global coordinate. For the
maintenance of the global map, an increasing scope of the area mapped by the robots
leads to substantial storage requirements. Voxel filtering is a voxel-based method for point-
cloud filtering. It divides the point-cloud space into a series of cubic units at a predefined
resolution. Each unit encompasses one or multiple points, enabling noise and outlier
removal without compromising the geometric integrity of the point cloud. Therefore, we
apply voxel filtering to the global map to efficiently reduce spatial occupancy.

To address unavoidable, dynamic obstacles in the environment, which can impact
backend loop closure detection and global map construction, we adopt a strategy based on
relative motion to remove dynamic points. The current point cloud is denoted as P;, and the
point cloud of the previous frame is expressed as P;_1. The transformation matrix between
consecutive frames is represented as T} _;, which can be calculated using the consecutive
relative poses. Using this transformation matrix, the point cloud from the previous frame
can be transformed into the coordinate system of the current frame as follows:
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P, =T | P 4

Then, the dynamic points can be recognized by calculating the disparity between the
transformed point cloud (Pt,fl) and the current frame’s point cloud (P).

Notably, dynamic points are further removed in this paper. In a multi-robot exploration
process, an area might be surveyed by different robots at varying times. The presence of
dynamic objects in this region during the passage of certain robots can lead to disparate
observation outcomes. In these specific areas, we can achieve clearer removal based on the
disparate observations from different robots. The criteria are defined as follows:

N .
Alp) =TTA'(p), (5)

where A(p) is the comprehensive property of the point that appears in the area scanned by
multiple robots and A’(p) is the property in robot i, which is equal to 0 or 1. Equation (5)
means that only if one robot observes the area without dynamic objects can the dynamic
points generated by other robots be removed. On the other hand, regarding the loss of sen-
sor data and communication interruptions between multiple robots, the proposed method
includes mechanisms to handle such challenges effectively. Following the initialization of
multiple robots through RTK, their coordinates are unified into their respective North-East—
Up (NEU) coordinate frames. Even if there is a disruption in information transmission
among the robots, upon the re-establishment of communication, the missing submaps can
be seamlessly integrated into the global map. Furthermore, the corresponding poses can
be directly incorporated into the factor graph for optimization, facilitated by the unified
coordinate system.

4. Experiments
4.1. Real Environment
4.1.1. Implementation Details

The proposed algorithm is evaluated by a self-built dataset (https://drive.google.
com/file/d/1urfKVAkVIkRyDMFjhatv-Jexst7vn]sp /view?usp=drive_link, accessed on 28
September 2024) using three sensor-identical AGILE-X vehicles operating in an industrial
park. In this experiment, the first and third robots are wheeled robots. The specific parame-
ters are outlined as follows: the model is SCOUT 2.0, with dimensions of 930 mm x 699 mm
x 349 mm (Length x Width x Height), a maximum speed of 1.5 m/s, and a four-wheel
independent drive system. It supports rapid secondary development through a standard
protocol and CAN bus. The second robot is a BUNKER tracked robot with dimensions of
1023 mm x 778 mm X 400 mm (length x width X height), a maximum speed of 1.2 m/s,
left and right independent drive, and tracked differential steering. The communication
interface includes a standard CAN/232 serial port. Each AGILE-X vehicle is equipped with
an onboard computer and a paired display. The system runs Ubuntu 20.04 and is used to
operate our multi-robot SLAM program in real time. All vehicles are on the same local area
network and communicate through the Robot Operating System (ROS 1). The mapping
results are displayed via Rviz and can be directly interacted with by a human operator.
The program can be controlled through a wireless keyboard and mouse connected to the
onboard computer to start or stop the operation. The robots run on three pre-defined
trajectories by the control handler. NOVATEL OEM7 RTK and RoboSense Lidar-16 are
integrated into the three mobile robots, as shown in Figure 1. The LiDAR, IMU, and GPS
data are recorded during the movements of three robots.


https://drive.google.com/file/d/1urfKVAkVlkRyDMFjhatv-Jexst7vnJsp/view?usp=drive_link 
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Figure 1. The three mobile robots equipped with RoboSense Lidar-16, NOVATEL OEM7 RTK,
and IMU in an industrial park.

The proposed algorithm is implemented through modification based on the open-
source code of MR-SLAM (https:/ /github.com/MaverickPeter/MR_SLAM accessed on
28 September 2024). We rely on ISAM2 from the GTSAM library to implement the sliding
window-based optimization. We adopted DLIO [26] as the front end of our proposed
algorithm. A primary AGILE-X vehicle is chosen as the global reference, and the coordinates
of the other vehicles are transformed into its coordinate frame when inter-loop closure
is detected. To evaluate the performance of the proposed algorithm, an ablation study is
designed and implemented. We show how the design of each novelty in the proposed
system affects the accuracy and efficiency. The data obtained by NOVATEL OEM7 RTK
are used as the ground truth to calculate the localization errors of the multi-robot SLAM
algorithms. Trajectory error analysis is performed using the EVO tool (https:/ /github.
com/MichaelGrupp/evo, accessed on 28 September 2024). The accuracy of the generated
maps is obtained by comparing the actual geodetic distances of five predefined landmark
sets with the distances of those landmarks in the generated map, as shown in Figure 2. In
experiments, all algorithms are executed on machines powered by 13th i7 processorswith
16 GB RAM, all operating under Ubuntu 20.04 LTS.

Landmarker 1-10 RTK True Distance

BN ST

Mapping Distance

S

e O

A
1

Figure 2. The experimental environment in an industrial park and five sets of landmarks used to
evaluate the accuracy of mapping.
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4.1.2. Results and Discussion

Table 1 lists the errors of robot localization and mapping obtained under different
conditions. The data in the first row show the results of the condition under which both the
proposed sliding window optimizer and 2.5D submap-based communication strategy are
disabled. The traditional global optimizer and 2D submap-based communication strategy
are utilized. Compared with other results, this condition generates the largest errors. The
second row lists the performance achieved after enabling the sliding window optimizer
when inter-loop closure is detected. Compared with data in the first row, the errors of robot
localization are significantly reduced with efficient optimization. In addition, the accuracy
of mapping is also improved with more accurate robot localization. However, 2D submap-
based transmission results in incorrect inter-loop closure under the first two conditions
and leads to map alignment failure. Thus, three sets of landmarks cannot be determined,
and errors are unable to be calculated. The third row presents the results achieved using
the 2.5D submap as the transmission information. The accuracy of inter-loop closure is
efficiently improved by adding one more dimension of information. However, the accuracy
of robot localization and mapping is not better than in the second row of data. The last row
shows the results achieved with the two proposed modules enabled. The results indicate
that the condition under which the two proposed modules are enabled in the multi-robot
SLAM framework achieves the best accuracy.

Table 1. Errors of the robot trajectory and map generated under different conditions in an ablation
study. SWO denotes sliding window optimization.

SWO 25D Mapping Error [m] Robot Localization Error [m]
1-2 34 56 7-8 9-10 AE Robotl Robot2 Robot3 AE
X X — 03 — 028 — 031 278 5.65 6.08  4.84
v X — 0.16 — 0.14 — 0.15 1.02 0.99 4.54 2.18
X v 0.14 012 015 0.16 0.07 0.13 0.88 1.86 0.92 1.22
v v 0.14 010 0.04 013 0.01 0.08 0.62 0.64 0.44 0.57

To validate the accuracy of our localization results, we incorporated statistical analysis
into the positioning errors, as listed in Table 2. We conducted multiple tests across several
trajectories of different lengths, and the test results are used as our sample data for statistical
analysis. The analysis results indicate that the sample mean error is 0.5497 and the sample
variance is 0.0237. With a confidence level of 0.95, the confidence interval is [0.4396,
0.6597]. The significance test employed a t-test, with a t-statistic of —0.4182 and a p value
of 0.6856. The results of the significance test support the hypothesis that the mean is 0.57,
demonstrating that our test results are accurate.

Table 2. The trajectory errors of each robot in multiple tests across different segments of various
trajectories.

Traj 1 2 3 4 5 6 7 8 9 10 AE
Robotl 029 120 040 022 033 058 079 072 056 099 0.61
Robot2  0.53 044 068 041 059 075 065 116 072 046 0.64
Robot3 029 028 034 030 028 043 051 048 049 061 041

AE 037 064 047 031 040 059 065 078 059 0.69 055

Figure 3 shows comparisons between trajectories estimated under four conditions
and ground-truth trajectories. The sequence of results in Figure 3a—d corresponds to
the sequence in Table 1. The results show that the method that integrates the sliding
window optimizer and the 2.5D submap-based communication strategy achieves the best
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performance. Incorrect estimation of relative pose appears in Figure 3a,b when using 2D
submaps. In particular, three trajectories in Figure 3a generate large deviations due to
the use of the global optimization method. However, in Figure 3b, only the trajectory
of the third robot generates a large deviation by using the proposed sliding window
optimizer. This result also occurs in Figure 3c,d. Additionally, comparison of Figure 3a—d
further indicates that 2.5D submaps outperform 2D submaps. Furthermore, to validate our
low-bandwidth information exchange, we compared the data sizes of 3D, 2.5D, and 2D
submaps required for each communication. The data sizes of 2.5D and 2D submaps are
similar, at 71.99 KB and 70.18 KB, respectively, whereas the data size of 3D submaps is
1.30 MB.

204 207

—204

E E | L
.; —40 z’ -40
x x
L e
~ 601 > 60+
_801 -801
--- Traj_gt --- Traj_gt
—1001 Robot 1 Traj ~1004 Robot 1 Traj
—— Robot 2 Traj —— Robot 2 Traj
—— Robot 3 Traj —— Robot 3 Traj
-150 -125 -100 -75 —-50 -25 0 -150 -125 -100 -75 -50 -25 0
X-axis (m) X-axis (m)
(a) (b)
20 20
04 0
—201 —20 1
I
— — )
E 40 E 40
2 )
x x
L L
> —60 > —60
—801 —80
--- Traj_gt --- Traj_gt
~1004 Robot 1 Traj ~1004 Robot 1 Traj
—— Robot 2 Traj —— Robot 2 Traj
—— Robot 3 Traj 120 —— Robot 3 Traj
-150 -125 =100 -75 -50 -25 0 -150 -125 -100 -75 —-50 -25 0
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(c) (d)

Figure 3. Performances of robot trajectories under different conditions in an ablation study. (a) Both
sliding window optimization and 2.5D submap are disabled; (b) only sliding window optimization is
enabled; (c) only 2.5D submap is enabled; (d) both sliding window optimization and 2.5D submap
are enabled.

The efficiency of the sliding window optimizer was also manifested in the experiments.
The time consumption of the optimization process under the four conditions is shown in
Figure 4. The time consumption of the global optimizer increases with an increase in the
number of inter-loop closures. The real-time performance of the global optimizer is also
affected in larger scenarios. However, the proposed sliding window optimizer requires
limited stationary time consumption. Comprehensive consideration of error and time
consumption indicates that the proposed sliding window optimizer is more accurate and
efficient than the traditional global optimizer.



Electronics 2024, 13, 4129

9of 12

Loop Closure Optimization Time Performance

0871 — Global Optimizer 2.5D
0.7-— Sliding Window Optimizer 2.5D
—— Global Optimizer 2D

% 0.6 —— Sliding Window Optimizer 2D
C
© 0.51
a
€ 0.4
[%2]
C
S 0.31
£
£ 0.21

0.1

0.0+

0 5 10 15 20 25 30
Steps

Figure 4. Per-step time consumption curves under different conditions in an ablation study.

4.2. Public Dataset

Furthermore, the performance of the proposed method is compared with DiSCO-
SLAM [14] on a public dataset. We adapt the dataset from the raw data of the KITTI Vision
Benchmark (sequence 08) [27]. In sequence 08, raw inertial measurement unit (IMU) data
sampled at 100 Hz are recorded with temporal coherence, rendering them compatible
with integration with the LIO-SAM and DLIO frameworks. Two robots are recorded in
sequence 08. Each robot trajectory in the dataset includes intra-robot and inter-robot loop
closures. When GPS signals are accessible, the GPS data are used as ground truth for
quantitative analysis but not integrated into the SLAM process. Trajectory error analysis is
also performed using the EVO tool.

Figure 5 shows the performances of DiSCO-SLAM and the proposed method on KITTI-
08. It shows that the proposed method achieves better performance than DiSCO-SLAM.
The trajectories of two robots estimated by the proposed method almost coincide with the

ground truth. However, the trajectory of robot 2 estimated by DiSCO-SLAM generates a
significant deviation.

~
o
o

o
=3
o

u
=3
o

g E 400
k) 0
3 3001 $ 300
> >
200 1 2004
100 1 100 1
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Figure 5. Performances of DiSCO-SLAM and the proposed method on KITTI-08. (a) DiSCO-SLAM
with two robots; (b) the proposed method with two robots.
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Furthermore, based on the quantitative analysis provided by the EVO tool, the average
trajectory errors of robot 1 and robot 2 generated by DiSCO-SLAM are 4.21 m and 8.68 m,
respectively. In contrast, our proposed method yields average trajectory errors of robot 1
and robot 2 of 3.0 m and 3.98 m, respectively. These results indicate that our proposed
method demonstrates superior performance compared to DiSCO-SLAM. DISCO-SLAM
uses scan context to extract descriptors for place recognition. However, scan context can
only provide the initial rotation estimate for ICP, lacking an initial translation estimate,
which leads to larger matching errors and affects the accuracy of ICP’s relative pose
estimation. In contrast, our method uses the RING descriptor for place recognition, which
can provide both initial rotation and translation estimates, enabling ICP to solve the relative
pose more quickly and accurately.

On the other hand, the 2.5D grid map used in our proposed method has several
limitations compared to the 3D map. Incomplete height information can lead to the loss of
terrain details and possible penetration effects when objects are occluded. Additionally,
the insufficient representation of vertical details reduces navigation precision and increases
the difficulty in merging data from different robots. In future work, to address these issues,
the multi-sensor data fusion method is a potential solution to improve the consistency and
completeness of the map, and deep learning technology is also a promising method to
predict and fill in missing height information.

5. Conclusions

In this paper, a novel distributed, multi-robot SLAM framework incorporating sliding
window-based global optimization is proposed. The sliding window-based optimizer
ensures the efficiency of the global optimization process while avoiding the impact of
incorrect inter-loop closure on early results. In addition, a 2.5D keyframe-based submap
is transmitted between robots to promote map consistency among robots and maintain
bandwidth efficiency in data exchange. The lightweight communication and optimization
methods enhance the practicality of the multi-robot SLAM algorithm in large scenarios.
Extensive experiments demonstrate the validity and superiority of the proposed algorithm.
However, our approach still has certain limitations. Specifically, compared to a 3D map,
our 2.5D submap lacks rich spatial geometric structures, which could negatively affect
subsequent path planning and obstacle avoidance during navigation. In future work, we
will focus on addressing these limitations and enhancing our method to support multi-robot
exploration tasks.
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