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Abstract: The precise detection of small lesions on grape leaves is beneficial for early detection of
diseases. In response to the high missed detection rate of small target diseases on grape leaves, this
paper adds a new prediction branch and combines an improved channel attention mechanism and
an improved E-ELAN (Extended-Efficient Long-range Attention Network) to propose an improved
algorithm for the YOLOv7 (You Only Look Once version 7) model. Firstly, to address the issue of
low resolution for small targets, a new detection head is added to detect smaller targets. Secondly, in
order to increase the feature extraction ability of E-ELAN components in YOLOv? for small targets,
the asymmetric convolution is introduced into E-ELAN to replace the original 3 x 3 convolution
in E-ELAN network to achieve multi-scale feature extraction. Then, to address the issue of insuffi-
cient extraction of information from small targets in YOLOvV?7, a channel attention mechanism was
introduced and improved to enhance the network’s sensitivity to small-scale targets. Finally, the
CloU (Complete Intersection over Union) in the original YOLOV7 network model was replaced with
SIoU (Structured Intersection over Union) to optimize the loss function and enhance the network’s
localization ability. In order to verify the effectiveness of the improved YOLOV? algorithm, three
common grape leaf diseases were selected as detection objects to create a dataset for experiments.
The results show that the average accuracy of the algorithm proposed in this paper is 2.7% higher
than the original YOLOV7 algorithm, reaching 93.5%.

Keywords: YOLOV7; small target detection; E-ELAN network; attention mechanism

1. Introduction

The United States Department of Agriculture (USDA) released the “World Fresh apple,
grape and pear market and Trade Report”, which shows that the 2022 /2023 season global
table grape production is expected to increase by 1.1 million tons to 27.3 million tons,
achieving the fourth consecutive year of growth; China’s grape production will reach
12.6 million tons, the world’s largest grape producer [1]. At the same time, the output of the
European Union and Turkey has increased significantly. However, Australia suffered heavy
rains in the spring, and the attack of bacteria on grapes was extremely serious, affecting the
yield of grapes. The wet conditions of South African grapes during the growing season
have increased the pressure of fungal diseases, which have had a significant negative
impact on the harvest, while the peak heat in December and January has brought sunburn
to the grapes, and the lack of irrigation power during the high summer temperatures has
resulted in crop losses [2].

When grapes grow, they are often eroded by diseases, which not only reduce the fruit
and yield of grapes but even make the vineyard suffer a devastating blow in serious cases.
Because grapes have important nutritional, medicinal and economic value, improving the
efficiency of prevention and control of grape leaf diseases is the key to improving fruit
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quality and yield [3]. In the process of grape growth, leaf diseases are mostly small targets.
Affected by the growth time, grape leaf disease spots have problems such as random
locations and different sizes of disease spots. Some disease spots have small pixels, which
makes it easy to miss inspection and leads to difficulties in manual identification. Therefore,
accurately and efficiently identifying the types of grape leaf diseases and providing corre-
sponding prevention and control strategies is of great significance for the development of
the grape industry [4].

At present, grape leaf diseases are still mainly observed manually. Relevant personnel
need to observe the disease spots on the leaves with the naked eye and determine whether
it is a specific disease based on their own experience. The accuracy of disease types depends
on the experience of relevant personnel. In addition, some of the diseased areas on grape
leaves are very small, which not only increases the difficulty of detection but also greatly
affects the discrimination ability of personnel, leading to an increase in the rate of false
detection rate [5,6].

In recent years, the research and application of artificial intelligence technology have
been in full swing, especially in the field of modern agricultural precision planting, which
has aroused strong interest from many researchers. The use of artificial intelligence technol-
ogy for the intelligent identification of crop diseases has also become an important research
hotspot. The crops involved are diverse, such as grapes, tomatoes, potatoes and corn. The
types of methods involved are also diverse, mainly divided into two categories: traditional
machine learning methods and deep learning methods [7].

The application of machine learning theory and technology in crop pest identification
began in the 1980s and 1990s. In 2005, Tian Youwen [8] proposed a method for identifying
grape diseases by applying SVM and chromaticity moment analysis, which had good
classification and generalization ability for small sample datasets, and its recognition rate
of black spot, powdery mildew and downy mildew is more than 90%. In 2007, Youwen [8]
used SVM to identify grape leaf diseases with an average recognition rate of 87.5%. In
2016, Mohan [9] used the Scale Invariant Feature Transform (SIFT) algorithm to extract
color features of rice leaf blasts, brown spots and bacterial wilt. Finally, SVM and K-nearest
neighbor algorithm (KNN) were used for classification, and a rice disease recognition
method with an accuracy of 91.10% was proposed. Padol [10] used SVM classification
technology to detect and classify grape leaf diseases. The method first found the lesion area
through K-means clustering segmentation, then extracted the color and texture features, and
finally used SVM to classify the leaf disease. Waghmare [11] proposed a grape leaf disease
recognition system based on multi-class support vector machines, and the classification
accuracy of this method for grape leaf disease is 96.66%. In 2019, Jaisakthi [12] used the
global threshold method to extract the diseased parts of grape leaves and then classified
the grape leaf images through the support vector machine, obtaining an accuracy of 93.04%
on the test images.

The above methods are all crop disease recognition methods based on traditional
machine learning technology. Compared to early manual recognition methods, their
recognition accuracy and efficiency have been significantly improved. However, these
methods have problems such as low efficiency, weak anti-interference ability and poor
universality, which seriously limits their promotion in actual agricultural production.
With the development of deep learning technology, convolutional neural network (CNN)
replaces the traditional artificial feature extraction method, which has a stronger feature
expression ability and significantly improves the accuracy and efficiency of plant disease
recognition [5].

CNN is the most widely used method in deep learning image classification technology
and is favored by many plant disease recognition researchers; it can automatically extract
image features to classify and recognize leaf disease types in images. In 2016, Mohanty [13]
proposed a model based on the integration of AlexNet and GoogleNet to detect 26 kinds of
diseases in the Plant Village dataset, with a detection accuracy of 99.35%. In 2017, Ram-
charan [14] proposed an automated cassava disease identification method based on the
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Inceptionv3 network, which used transfer learning to train CNN, and the classification ac-
curacy reached 93%. Bin Liu [15] designed a new deep convolutional neural network model
based on AlexNet, which used apple leaf disease images for pre-processing to generate
new datasets, and the accuracy rate reached 97.62% in the datasets of four common apple
leaf diseases. In 2018, Liu [16] proposed a CNN-based recognition model for strawberry
leaf powdery mildew disease. The CNN structure with nine different network depths
was designed by this method, and the nine models were trained and tested with different
proportions of training sets and test sets. The results showed that the average accuracy
reached 98.61%. In 2019, Too, E. C. [17] used VGGNet, Inception V4, ResNet and DenseNet
to detect the apple disease dataset and found that DenseNet performed best, with a test
accuracy of 99.75%. In 2020, Gong An [18] proposed using multiple CNNS to identify
diseases. The experimental results showed that the recognition accuracy of the fused model
is 87.19%. Long Yin [19] used ResNet50 and other networks as the basic framework to train
and identify crop disease data. Experimental results showed that the improved model has
the highest recognition accuracy of 90.2%.

With the rise of CNN-based target detection methods, these methods can not only iden-
tify the type of leaf disease but also locate the location of the disease. In 2017, Fuentes [20]
proposed a method based on deep learning target detection to identify and locate tomato
diseases. In this method, Faster R-CNN, R-FCN and SSD were used to detect tomato
diseases and insect pests. The results show that R-FCN has the highest mAP (mean average
precision) of 85.98%. In 2018, Adhikari [21] proposed a tomato disease detection method
based on YOLO, which used Raspberry Pi for disease image acquisition and recognition;
the deployment of the model was realized, and its mAP reached 76%. Liu Tanyu [22]
first removed the background in the grape disease image to reduce the interference of the
disease region and adopted fast-RCNN technology to extract leaf disease spots, which
made grape leaves adaptable for detection. For common grape diseases, the average mAP
of this method was 75.52%. Xin [23] proposed a real-time grape detection model using
the YOLOv3 model as the basic framework. The model replaced the Darknet-53 backbone
network in YOLOv3 with the EfficientNet network to effectively balance the image res-
olution and the depth and width of the training network, and the final recognition rate
reached 97.29%. In 2019, Jiang [24] expanded the apple leaf disease dataset through data
enhancement and combined Inception structure in GoogleNet and Rainbow concatenation
with SSD network, and the experiment showed that the mAP reached 78.80%. Its detection
speed is 23.13 fps. Zhao [25] adopted the YOLO network to identify tomato diseases,
and the experimental results show that the mAP of this method is 97.24%. In 2020, He
Xin [26] proposed a method for identifying grape leaf diseases. The method first improved
the pooling and mask branch in mask R-CNN. Then, the SENet attention module was
integrated into the ResNet50 classification network to form a new multi-feature fusion
classification network, and the recognition accuracy was 90.83%. Zhu Xu [27] proposed
a blueberry canopy fruit detection and recognition method based on Faster R-CNN. By
constructing their own dataset and using improved Faster R-CNN for training, the average
recognition accuracy of the obtained model could reach 94%. In 2021, He Zifen [28] used
the SE attention mechanism and asymmetric mixing convolutional module in Mask R-CNN
to detect three diseases of apple and obtained an average segmentation accuracy of 94.7%,
reducing the training memory. In 2022, Wang Zhuo [29] proposed a real-time apple detec-
tion model, YOLOV4-CA. In this model, MobileNet v3 was used as the backbone feature
extraction network, and deep separable convolution was introduced into the feature fusion
network with an average accuracy of 92.23%. Huang Tongbin [30] artificially realized
the recognition of citrus fruits in the natural environment by introducing the attentional
mechanism module (CBAM) to improve the feature extraction capability of the network
and proposed a citrus recognition method based on the improved YOLOv5 model. The test
results show that the average accuracy of the model reaches 91.3%.

In 2023, YOLOV?7 rose strongly, and many researchers used YOLOvV7 to detect items
and achieved good results. Zhao Zhenbing [31] proposed an anti-vibration hammer corro-
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sion detection algorithm based on improved YOLOv7. The method first carried out color
space transformation through the HSV color model to highlight corrosion features, then
introduced multi-scale feature fusion, and made full use of feature maps under different
scales to obtain weighted feature fusion. It can accelerate the inference speed and improve
the accuracy of the model. The test results show that the detection accuracy of the improved
algorithm is increased by 1.6%, and the inference speed is increased by 17%. Jialiang [32]
proposed the detection of dragon fruit based on YOLOvV7, and the accuracy, recall rate and
average accuracy were 84.4%, 92.4% and 93.2%, respectively. LiangLiang Z [33] proposed
a multi-scale UAV aerial image target detection model MS-YOLOV? based on YOLOV?,
aiming at the common problems of a large number of targets and a high proportion of small
targets in UAV aerial images. The new network uses multiple detection heads and CBAM
convolutional attention module to extract features of different scales, and the average
detection accuracy of MS-YOLOV?7 is increased by 4.9% compared with the YOLOV7 object
detection algorithm.

With the progress of computing technology, as well as the remarkable innovation
and breakthrough of image detection of crop leaf diseases and related technologies, many
scholars at home and abroad have used Faster R-CNN, SSD and other algorithms to detect
common disease spots in crop leaf diseases images, and the average accuracy rate has
reached over 90%, which provides new possibilities for effective management of crop
leaf diseases. However, the existing detection methods still have some shortcomings,
such as low accuracy and slow detection speed for small target diseases of plant leaves.
Therefore, it is worth exploring and studying to detect small target lesions on grape leaves
quickly and accurately by using the advantages of deep convolution neural networks.
This paper improved on the original YOLOv7 model and added an improved channel
attention mechanism. After training, a grape disease detection model is obtained. The main
contributions of the proposed method are summarized as follows:

1. Inresponse to the problem of low accuracy in identifying small targets in the original
YOLOvV7 model, a specialized output prediction branch was added to detect small
defect targets and perform feature fusion.

2. In order to increase the feature extraction ability of E-ELAN, asymmetric convolu-
tional ACNet was introduced into E-ELAN to enhance its ability to extract small
target features.

3. Inresponse to the insufficient information extraction for small target lesions on grape
leaves using the existing YOLOvV?7 algorithm, an improved CA attention mechanism,
which can effectively identify small lesions, was added.

4. The SIoU loss function was introduced to enhance the localization ability of the
network, thereby improving the detection accuracy of the network and reducing false
or missed detections of small targets during the detection process.

2. Analysis of the Characteristics of Grape Leaves with Diseases

The main diseases of grape leaves are blight, black rot and black measles, as shown in
Figure 1. Their lesions mainly have the following characteristics:

1. The grape leaf blight affects the normal metabolism of the leaves and causes the
grape leaves to fall off, leading to a reduction in grape yield. The grape leaf blight
disease mainly harms the grape leaves. According to the area of the disease spot, it
is generally divided into two kinds: big blight and small blight. The edge of the big
blight is dark brown, and the shape is generally polygonal or quasi-circular. The small
blight first produces small yellow-green spots on the grape leaves, and then the spots
gradually increase. The shape is circular, and the color changes from dark brown to
light brown as the lesion increases, as shown in Figure 1a.

2. The black rot disease spot of grape leaves shows a black circular outline in the leaves.
With the expansion of the disease spot, the center of the disease spot becomes gray-
white, and then the edge becomes black, as shown in Figure 1b.
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3. Attheinitial stage of grape leaf black measles, red-brown irregular spots appear first
and then expand into round spots with a diameter of about 2 cm. The front of the
lesion has obvious concentric rings of the same depth and color, while the back of the
lesion is covered with a light brown layer of mold during humid weather, as shown
in Figure 1c.

4. Even under a single condition, the size of the lesions is diverse, and the same lesion
may even show different sizes due to factors such as angle and image size.

Figure 1. The examples of the grape leaves with diseases:(a) Grape leaves with blight disease;
(b) Grape leaves with black rot diseasel; (c) Grape leaves with black measles disease.

According to the characteristics of the above-mentioned grape leaf disease images, the
target shape and scale of grape leaf disease are changeable, which makes it very difficult
for YOLOV? to detect small disease spots because YOLOv7 mainly relies on convolution
operation in feature extraction. For small-scale disease spots, due to their limited pixel area,
many details may be lost after convolution processing, which makes it difficult to extract
effective features. And because the positioning accuracy of YOLOv7 depends on the size of
its receptive field, for small-scale targets, the receptive field may not be enough to cover the
whole target, resulting in inaccurate positioning.
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3. Improvement of YOLOv7 Model

YOLO series algorithms are known for their fast speed, small model size and simple
structure, so they are widely used in industrial production and life. From the performance
comparison of the YOLOv1 to YOLOv#4 algorithm, the comprehensive performance of the
algorithm is improved with each new version. Although the detection accuracy of YOLOv4
is lower than that of YOLOV3, the speed has been greatly improved, which is very suitable
for real-time target detection. YOLOVS5 integrates some characteristics of YOLOv3 and
YOLOV4, and the speed is faster. By improving the accuracy of the detection algorithm,
YOLOvV7 makes the detected target more accurate and faster than the previous version and
can process a large number of images in a short time. This paper chooses to optimize the
YOLOvV7 model to improve the performance of the algorithm further.

As shown in Figure 2, YOLOV7 adopts the backbone network composed of BConv
module, E-ELAN module and MP module for downsampling and feature extraction, and
adopts SPPCPSC module to expand the receptive field. Then, three feature maps of different
scales are input into the feature fusion module, which is composed of the CatELAN module,
UpSample module and MP module. After the feature fusion module, Cat is used to fuse
the context information, the output is re-parameterized through the REPConv layer, and
the output tensor is finally obtained. YOLOV? introduces model reparameterization into
the network architecture to reduce the calculation amount of the model and introduces
label allocation strategy and efficient E-ELAN network architecture to form a model feature
extraction module. Finally, YOLOV7 puts forward the training method of the auxiliary
head, which increases the training cost and improves the accuracy without affecting the
reasoning time.

The YOLOV? algorithm uses a top-down and bottom-up bidirectional fusion network
to aggregate features at different levels. It uses shallow features to distinguish simple
targets and deep features to distinguish complex targets, and it enhances the semantic
information of the entire pyramid by transferring high-level strong semantic features.
However, the detection effect of YOLOV7 on small blade targets is poor, mainly because
the resolution of small targets is low, and they are susceptible to interference from noise,
complex background and other factors, resulting in more difficult detection of small targets.
In view of the above shortcomings, the detection performance of YOLOV? is mainly
improved from the following aspects:

(1) To solve the problem of YOLOV7's insufficient accuracy in identifying minor lesions,
this paper adds a detection layer dedicated to detecting small targets and involves the
new feature layer in the feature fusion process. Through this scheme, the network can
detect more small targets with lower resolution.

(2) Aiming at the problems of low resolution and insufficient information for small
targets, asymmetric convolution ACNet is introduced into E-ELAN to further enhance
the ability to extract features.

(38) Tosolve the problem of image noise, background and other factors interfering with the
accuracy of grape leaf lesions, this paper adopts an improved CA attention mechanism
to strengthen key features and suppress the interference of noise, which can improve
the model’s attention to small targets.

(4) Aiming at the problem of poor positioning ability of CIoU loss function, SloU is
introduced in the original YOLOv7 network model to optimize the loss function,
reduce the degree of freedom of the loss function and enhance the positioning ability
of the network, thus improving the network detection accuracy and reducing the
missed detection of small targets in the detection process.

The improved YOLOv7 model is shown in Figure 2. In the figure, the red part
represents the Input section of YOLOv7; The yellow section represents the Backbone
section of YOLOvV?7; The purple part is the Neck part of YOLOv7; The light blue part is the
Head part of YOLOv7; The dark blue section represents the specific components of each
module of YOLOV7; The green section is an added module based on YOLOV?7.
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Figure 2. Schematic diagram of improved algorithm of YOLOv?7.

3.1. Improvement of Feature Fusion Network

When using a convolutional neural network to extract image features, with the deep-
ening of convolution layers, the resolution of the feature map decreases gradually, and the
range of the local receptive field to perceive the original image expands continuously. More-
over, the feature map closer to the top tends to pay attention to the global information of the
image, so the deep features extracted by the deep neural network are very unfavorable for
small target detection. Although the shallow feature map has a small local receptive field
and contains more position and detailed information, which can make up for the deficiency
of deep features to some extent, if only shallow features are used to detect targets, it will
cause serious false detection and missed detection due to the lack of guidance of high-level
semantic information. Thus, shallow features and deep features are fused, and then the
object position is predicted on the fused feature maps of different scales.
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UPsampling

Downsampling

In YOLOV7, if the size of the input image is 640 x 640 x 3, the feature maps of
80 x 80 x 255,40 x 40 x 255 and 20 x 20 x 255 are obtained after 8 x, 16 x and 32 x down-
sampling, respectively, and the network finally detects the target on these three feature
maps with different scales. Among the feature maps of these three scales, the smallest local
receptive field is the eight times downsampled feature map; if the feature map is mapped to
the original input image, each pixel corresponds to the 8 x 8 area of the original image. For
the target with low resolution, the receptive field of the feature map obtained by eight times
downsampling is still too large, and it is easy to lose the position and detail information
of some small targets, which leads to its poor performance on the small target dataset. In
order to improve the current situation of missed detection, we optimized the structure of
YOLOv7 and added a new prediction branch. After three times of up-sampling, the size
of the detection layer corresponding to the new feature layer is 160 x 160, which can be
used to detect defect targets with a size of more than 4 x 4 and can effectively improve the
detection effect of small lesions.

The feature fusion structure used in the YOLOv?7 algorithm is PANet, which aggregates
different levels of features through a top-down and bottom-up bidirectional fusion network.
In order to integrate more shallow information into the feature enhancement part, some
information extracted from the Backbone is also integrated into the FPN process to improve
the recognition accuracy of the model. In the process of feature enhancement, in order to
minimize the information loss caused by the deepening of the network and the increase in
convolution modules, the original model continuously upsamples and downsamples the
loaded information, which undoubtedly loses much detailed information and reduces the
accuracy of the model in detecting small targets. On the basis of the previous improvement,
the modules on the Backbone are connected by leaps to retain more detailed information
and reduce the loss of information. The improved feature fusion results are shown in
Figure 3. The red arrow represents upsampling, the blue arrow represents downsampling,
the middle two boxes are YOLOv7’s FPN module and PAN module, the last box is the
detection layer part, and the red small box is the newly added P2 detection layer on the
original basis.

20x20 > P5
20x20 > 20x20 >
[y Ay R
] 40%40 > P4
40%40 >
/ Vﬁ AH

\ 4

> 160x160
Y

160x160 *

f 160x160 P2
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640%640

FPN PAN

Figure 3. FPN + PAN structure after adding detection layer P2.
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In summary, on the one hand, this structure increases the depth of the network so
that the network can better learn the multi-level feature information of the target and
enhance the network’s ability to detect multi-scale targets in complex environments. On
the other hand, it can transfer more shallow features to deep features so that the network
can obtain more small target information and improve the detection ability of the model
for small targets.

3.2. Improvement Based on E-ELAN

E-ELAN in YOLOV7 is improved based on ELAN. Compared with the ELAN network,
E-ELAN adds the use of group convolution to increase the cardinality of features. This
structure can enhance the feature extraction ability, improve the use of parameters and
calculation efficiency and improve the learning ability of the network without destroying
the original gradient path. E-ELAN has a good feature extraction ability when extracting
the information of major lesions but does not carry out much calculation when extracting
the information of small targets. As a result, the detection cannot guarantee the complete
accuracy of the lesion category.

The attention mechanism inside the E-ELAN module can help to understand the
decision-making process of the model, but it may not provide a completely accurate expla-
nation or deal with complex scenarios. Thus, this paper introduces asymmetric convolution
ACNet [34]. The core idea of ACNet is to decompose the original convolution, which
sums up the outputs of two convolutional branches with horizontal and vertical kernels,
respectively, thereby reducing the number of parameters and computations while ensuring
comparable accuracy. During the training phase, the feature extraction layer adopts a
parallel structure of 3 x 3 conventional convolution kernels and asymmetric convolution
kernels for feature extraction and then combines the extracted feature maps with channels
to improve the richness of semantic information within the feature maps. In the detection
stage, in order to operate the model using convolutional kernels with consistent parameters
while minimizing computational complexity, the parallel convolutional kernels in the AC
module are fused to obtain their equivalent convolutional kernels, and the convolutional
kernels are used for feature extraction. Moreover, when the distribution parameters of
the box convolution are uneven, the weight of the center cross position is greater, further
enhancing the expression ability.

ACNet uses three parallel d x d, 1 x dand d x 1 cores to replace the original d x d
core, as shown in Figure 4 (let d = 3):

Relu
—

\ 4

Training model Deployed model

(a) (b)

Figure 4. Schematic diagram of AC structure training and deployed process: (a) ACNet training
model; (b) ACNet deployed model.

ACNet is divided into the training stage and the reasoning stage. In the training phase,
ACNet replaces every 3 x 3 convolution in the existing network with 1 x 3, 3 x 1 and
3 x 3 convolution and finally fuses the calculation results of these three convolution layers
to obtain the output of the convolution layer. In the reasoning stage, ACNet mainly fuses
three convolution kernels. In this part, the fused convolution kernel parameters are used to
initialize the existing network; in the reasoning stage, the network structure is exactly the
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same as the original network, except that the network parameters adopt the parameters
with stronger feature extraction ability, that is, the fused convolution kernel parameters.

The E-ELAN network in YOLOV7 is improved, and shortcut connection, 1 x 3 and
3 x 1 convolution structures are added between ELAB modules to enrich the features
extracted from the network, as shown in Figure 5. The module with a plus sign in the circle
is used to add up the weights of the branches

e
jl )
| [

(a) (b)

Figure 5. E-ELAN model and improved E-ELAN model: (a)E-ELAN model; (b) improved E-
ELAN model.

BCconv [¢

E-ELAN in YOLOV7 is improved, and 3 x 1 and 1 x 3 convolution structures are
added between modules to make the network extract more abundant features to improve
the detection accuracy of the model.

3.3. Improvement Combined with Channel Attention

The attention mechanism establishes dynamic weight parameters by making relevant
and irrelevant choices on information features to strengthen important information and
weaken useless information. Among them, the Squeeze and Exclusion (SE) [35] channel
attention mechanism is widely used for its simplicity and high efficiency. However, the
attention mechanism of the SE channel ignores the importance of location information. In
the Convective Block Attention Module (CBAM) [36], GAP (global average pooling) and
GMP (global maximum pooling) are combined to improve performance, thereby increasing
the efficiency of deep learning algorithms and improving some defects of traditional deep
learning, but it needs more computing resources and has higher computational complexity.
Coordinate attention (CA) [37] is a flexible and efficient attention mechanism that can not
only obtain cross-channel information but also obtain location information and help the
model to locate and identify the target of interest more accurately without introducing
much computational overhead. The CA module completes the weight distribution of
feature information through two stages: coordinate information embedding and coordinate
attention generation. CA attention mechanism performs GAP operation on the input
feature map in the height and width directions to obtain the feature map in two directions.
However, the simplicity of GAP makes it difficult to capture the complex information of
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Input

Residual

various inputs. The existing CA channel attention mechanism divides the input feature map
into horizontal and vertical parts and calculates the corresponding weights, respectively.
However, this method cannot balance the global information and leads to the neglect of
important spatial information.

In order to overcome the limitations of the existing CA attention module, this paper
makes the following improvements:

(1) Add the GMP pathway to the GAP pathway of the original CA attention mechanism.
The input feature map contains many targets with different sizes, so it is a better
choice to average the pool first and then maximize the pool. This is because average
pooling can capture all the information in the feature map, smooth the image and
reduce noise better. Then, the maximum pooling is carried out, which can emphasize
the most prominent features of the target while retaining the size transformation and
further extracting effective information about the target.

(2) Calculate the weight by processing the input feature map. Adaptive average pooling
and full connection layer operation are performed on the input feature map to generate
a two-dimensional Softmax vector, which is used to represent the mixed proportion
of horizontal and vertical attention weights. This method can effectively balance the
global and local information, as shown in Figure 6.
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Figure 6. CA attention and improved CA attention: (a) CA attention; (b) improved CA attention.

3.4. Loss Function

The loss function in the YOLOvV7 network model is shown in Formula (1):

Lobject,Loss = Llos,Loss + Lconf,Loss + Lclass,Loss (1)

where Lig 1455 represents positioning 10ss, Leofoss represents confidence loss and Lygss Loss
represents classification loss. The coordinate loss is calculated using CloU [38]. In order to
describe the aspect ratio of the real frame and the predicted frame, when the aspect ratio is
the same, the penalty item value is 0, which means that the difference in the aspect ratio is
calculated as the penalty item, but it cannot represent the real difference between the length
and width. Different from the CloU loss function, the SIoU [39] loss function calculates the
relationship of length and width of the real box and the prediction box separately, rather
than calculating the difference of the aspect ratio, avoiding the loss of penalty terms when
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the aspect ratio of the prediction box and the real box is equal, and ensuring the stability of
convergence, as shown in Figure 7.

Figure 7. SIoU loss function model.

cx and ¢y, is the length and width of the real frame, c;, and c;, represent the difference
in width and height between the center point of the target box and the prediction box, B is
the prediction frame, bgt is the real frame, and ¢ represents the distance between the center
point of the target box and the prediction box.

In order to solve the direction angle regression problem of the target box, the SloU
loss function introduces angle perception, distance loss and shape loss on the basis of the
original IoU to improve the speed and accuracy of reasoning during the training of the
detection model.

The angle perception added by SloU first predicts whether the angle is greater than
45° and determines the use of minimization B or «. The calculation of angle cost is shown
in Equation (2):

A=1-2xsin? (arcsin(x) - %) 2
where o
x=-_= sin () (©)]
o= \/(bé’j —bcx)z— (zf;@'; —bcy)z @)
¢, = max (bfyt — bcy) — min (b‘g; — bcy) (5)
Cyp = max (b‘g — bcx) — min(b‘gi - bcx) (6)

In the formula, bg and b‘f; represent the coordinates of the center point of the target
box; b, and b, represent the coordinates of the center point of the prediction box. The
distance cost represents the distance between the center points of the predicted box and the
actual box. Based on the angle cost defined above, SloU redefines distance cost as follows.

A=Y (1—e) ?)

t=xy

2
B —b
Px = <Cx CX) (8)
Cw
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2
b§t - bc
B y
Py = ( o ©)
Y=2-A (10)
The shape cost () is defined as follows:
=Y (1—e®)° 11)
t=w,h
wg = Ol (12)
max (w — wet)
L]
=—"" = 13
“r = max (h— hg) 13

f controls the degree of attention to shape error, and its selection is related to the
specific dataset. If § = 1, shape error will be optimized, thereby reducing the free movement
of the predicted box and the actual box shape. The regression loss of the target box is
written as follows:

Lepu=1—IoU+ (A+Q)/2 (14)

4. Results
4.1. Experimental Environment

The experimental environment for the CPU is Intel(R) Core(TM) i7-9700k, the GPU is
NVIDIA GeForce RTX 2080 Ti with 24 GB memory, RAM is DDR4 with 64 GB, the CUDA
version is 1.12.1, and the deep learning framework is Pytorch 1.7.

4.2. Dataset Description

The dataset is grape leaf disease on the public dataset Plant Village [40]; labelimg
was used as the tool for labeling datasets. This experiment extracts blight, black rot and
black measles disease and uses the labelimg toolbox to manually label the grape disease
spots. In order to improve data diversity and solve the model overfitting caused by data
imbalance, this paper expanded the dataset by mirroring, flipping and other operations,
as shown in Table 1. The first column is the serial number of grape leaf diseases, the
second column is the name of grape leaf diseases, and the third column is the number
of original pictures of each type of grape leaf disease in the Plant Village dataset. The
original dataset is prone to overfitting in the training process of the deep learning model, so
this paper expands the dataset to increase the generalization ability of the model, thereby
alleviating the overfitting problem. In addition, the expanded dataset has better robustness
and enhanced the stability of the model, and the fourth column is the number of expanded
pictures in the Plant Village dataset; using python scripts, the original image is expanded
by translation, flipping, rotation, mirroring, scaling and noise. Column 5, column 6 and
column 7 are the numbers of images of the training set, the verification set and the test
set, respectively.
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Table 1. Dataset information.
Series Class Number of l::n;izre(()if N,[l; zrbf; of Number of Number of
Original Images P 8 Validation Set Test Set
Images Set
1 blight 1076 2908 2037 290 581
2 black rot 1180 2320 1624 232 464
3 black measles 1383 2528 1770 253 505

By reading the related articles in the field of crop leaf disease detection, it was found
that most of the training sets account for 70% of the total dataset, the verification sets
account for 10%, and the test sets account for 20%, so this paper divides them according to
this ratio. After inputting the dataset into the model, it was found that the indexes such as
accuracy, recall and average accuracy tend to be stable within 150 to 180 rounds; therefore,
this paper iterates 200 times. When training a deep learning model, the batch size directly
affects the required computing resources and memory. A large batch size may overflow the
GPU memory, while a small batch size may fail to make full use of the GPU’s computing
power. In this case, we chose a batch size of four to achieve a balance between compute
resources and memory. The learning rate determines the amplitude of weight updating in
each iteration of the model. The improved YOLOV7 model is a relatively complex model
containing a large number of parameters and layers. For a model of this scale, a higher
initial learning rate can accelerate the updating of parameters and the convergence of the
model. This can provide better training stability and convergence speed, and the learning
rate of 0.01 can help the model find a good solution space faster. Cycle learning rate is
a learning rate adjustment strategy that allows the learning rate to change dynamically
during the training process. By setting a periodic learning rate, the step size can be adjusted
at different stages of training to better optimize the model. In this paper, the cycle learning
rate is set at 0.01. This is in order to better adapt to the needs of model training and help the
model find the best step size in different training stages to improve the training efficiency
and performance. Learning rate momentum is a hyperparameter used to accelerate the
gradient descent process, usually between 0 and 1, in which a larger momentum value can
accelerate the convergence of the model. Through experiments and tuning, we found that
in the model, setting the learning rate momentum to 0.937 can help the model converge
faster and improve the stability of training, so we chose to set the learning rate momentum
to 0.937. The weight attenuation coefficient is 0.0005. The weight attenuation coefficient is
used to regularize the loss function to reduce the possibility of overfitting the model. The
weight parameter in the model can be penalized to be closer to zero, and in many deep
learning practices, 0.0005 is considered a relatively good experience value for different
models and tasks.

4.3. Evaluating Indicator

In this paper, four performance indicators, missed detection rate (M), precision rate
(P), recall rate (R) and mean average precision (mAP), are used to verify the effectiveness of
the network. mAP refers to the average of average accuracy AP of all categories. Generally,
the threshold is set to 0.5; that is, the prediction box with IoU greater than 0.5 is valid,
which is represented by mAP@0.5.

4.4. Experimental Results and Analysis

Firstly, the influence of SIoU loss function on the network is verified. YOLOV? is
trained with the original CloU loss function and SIoU loss function. The visualization result
of the loss function is shown in Figure 8. The loss value of using SIoU is smaller than that
of CloU, and the stability is also improved to some extent. Therefore, it is more important
to use SloU as the bounding box loss function of the dataset in this paper to improve the
performance of the network model.



Electronics 2024, 13, 464

15 of 22

0-117 — Clou

SloU
0.10 A1

0.09 1

0.08 A1

0.07 A

Loss

0.06 A

0.05 1

0.04 A

T T T T

T T T T T
0 25 50 75 100 125 150 175 200
Epochs

Figure 8. Loss visualization results diagram.

In order to verify the effectiveness of the method proposed in this paper in improving
the accuracy of the YOLOvV7 network, we compared it with other object detection models,
including Faster-RCNN, YOLOv3, SSD and YOLOvV?7, as shown in Table 2.

Table 2. Detection results of different models.

Method Blight (%) Black Rot (%) Black Measles (%) mAP (%)
Faster-RCNN 89.6 89.6 89.9 89.7
SSD 89.3 89.8 90.6 89.9
YOLOvV5 89.6 89.8 91.5 90.3
YOLOv7 89.9 914 91.1 90.8
YOLOv8 89.5 89.7 91.1 90.1
Improved YOLOv7 93.5 93.7 93.3 93.5

The mAP of the improved model is the highest, reaching 93.5%, which is 3.8%,
3.6%, 3.2%, 2.7% and 3.4% higher than that of Faster-RCNN, SSD, YOLOv5, YOLOv7
and YOLOVS, respectively. Compared with YOLOvV7, the mAP of blight, black rot and
black measles increased by 3.6%, 1.7% and 2.2%, respectively. The mAP of the improved
YOLOV? is the largest, which shows that adding a small target detection layer improve CA
attention can enhance the feature extraction ability of YOLOvV7 and can solve the problem
of low accuracy in identifying small disease spots in the early stage of grape leaf diseases.

In order to further analyze the performance of different classes, the precision, recall,
mAP@0.5 and mAP@0.5:0.95 of each class of the improved network are analyzed as shown
in Table 3. The detection accuracy of black rot and blight is higher than that of black measles,
mainly because the size and shape of black rot and downy mildew spots are regular, which
is beneficial to model detection.

In order to verify the effectiveness of this algorithm for small targets, 1551 images
in the test set are selected to verify this algorithm. Among them, there are 571 images of
blight disease with 1730 small targets, 478 images of black rot with 1356 small targets and
502 images of ring spot disease with 2098 small targets. As can be seen from Table 4, the
recognition rate of the three diseases was significantly improved by an improved YOLOv?7
algorithm. Compared with the original YOLOv7 model, the recognition rate of the three
diseases was increased by 6%, 8% and 7%, respectively.
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Table 3. Performance analysis of YOLOV7 and improved YOLOV?.
Class Method Precision (%) Recall (%) mAP@0.5 (%) mAP@0.5:0.95 (%)
blight YOLOv7 89.9 92.6 89.9 55.3
& Improved YOLOv?7 93.5 95.6 93.5 58.5
black YOLOv7 914 929 91.4 525
ackrot Improved YOLOv7 93.6 947 93.7 55.4
black ) YOLOv7 81.6 79.3 91.1 434
ackmeasles Improved YOLOv7 84.3 81.9 93.3 45.4
Table 4. Comparison of small target detection quantity.
Small Target Quantity YOLOv7 Improved YOLOvV7
blight 1730 1570 1675
black rot 1356 1223 1339
black measles 2098 1803 1954

ibligiblight

";;_h?;( 0.73
blight 0.82 &

In order to verify the advantages of the improved model in the identification of grape
leaf diseases, the detection results for each of the three diseases are shown in Figure 9 by
YOLOvV7 and improved YOLOV7, respectively. According to the comparison, it can be
found that the original YOLOvV7 model in the figure has many missed detections in the
detection of small disease spots, and the discrimination of a single disease spot is low. The
missed detection rate of the improved YOLOV?7 algorithm for grape leaf lesion detection is
obviously reduced, and the regional location of the lesion is more accurate. At the same
time, the disease spots of different leaves can be detected simultaneously in the natural
environment, and the disease spots in the edge area of the image also have a good detection
effect, as shown in Figure 9.

SR block meas)
gl"fﬁ?.oﬁ'k eosles |

Bblack rot 0.80 v SORE: -
-F g block meaosles 0.73
e

black measles 0.61

block rot 0.85 black measles 0.79
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Figure 9. Cont.
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Figure 9. The disease detection results of YOLOV7 and improved YOLOV?7: (a) Blight detected by
YOLOV7; (b) Black rot detected by YOLOvV7; (c) Black measles detected by YOLOv7; (d) Blight
detected by improved YOLOV7; (e) Black rot detected by improved YOLOv7Z; (f) Black measles
detected by improved YOLOV7; (g) The improved YOLOvV7 detects blight under natural conditions;
(h) The improved YOLOV7 detects black rot under natural conditions; (i) The improved YOLOvV7
detects black measles under natural conditions.

Through field experiments, we can better understand the performance of the algorithm
in actual use and provide us with more datasets in real scenarios, which is also very
beneficial to the training and verification of the algorithm. Therefore, we took three images
using a Canon EOS 90D mid-range DSLR camera with a pixel size of 1280 x 720, it is
produced in Shenzhen, Guangdong, China. Grape disease scenes were detected under
natural conditions, enhancing the credibility of grape disease image identification under
natural imaging conditions. As can be seen from Figure 9, this algorithm can not only
detect on the test set but also has a good detection effect in complex environments such as
background occlusion under natural conditions and similar colors between disease spots
and background.

5. Discussion

In order to verify the effectiveness of the improved CA attention in this paper, we
compared it with CA attention, as shown in Figure 10 and Table 5.

Table 5. Performance analysis of CA and improved CA.

Method Precision (%) Recall (%) mAP@0.5 (%) mAP@0.5:0.95 (%)

CA 87.8 88.4 91.5 51.3
Improved CA 89.3 88.8 92.4 51.9




Electronics 2024, 13, 464

18 of 22

Precision

mAP@0.5

0.9
ot e =2 ﬂﬂ.{r\hv-""""‘"-"'k—-r -
] "*\N“""M\i v I 0.8+ ApAPNFETTNY R
0.8 ,.’_\p' ' AN
T
0.7 /
1
0.6
0.6
0.5 1 =
£ 0.4
0.4
0.3
0.2 4
0.2
—_ A — CA
0.1 Improved CA 0.0 4 Improved CA
25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epochs Epochs
(a) (b)
059 — A .
,‘._ﬂ‘mﬂ'—— Improved CA /,,..—-—-‘"‘/—_—
0.8 4 ppart
. 2
/ﬂ. 0.4 /' ‘H'H
2
0.6 "{
n 0.3
]
S
A
8
0.4 1 @
0.2
S
0.27 0.1
— CA
0.0 1 Improved CA 0.0 4
25 50 7% 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epochs Epochs
(0) (d)

Figure 10. Performance comparison chart of CA and improved CA algorithms: (a) precision; (b) recall;
(c) mAP@0.5; (d) mAP@0.5:0.95.

As can be seen from the table, compared with the original CA model, the precision,
recall, mAP@0.5 and mAP@0.5:0.95 of the improved algorithm are increased by 1.5%, 0.4%,
0.9 and 0.6%, respectively.

As can be seen from Figure 10, precision, recall, mAP and mAP@0.5:0.95 all increase
to varying degrees, indicating that CA has a stronger feature extraction ability after im-
proved attention. Moreover, in rounds 10 to 25, the curves of the model with improved
CA were smoother than those with CA, indicating that the stability of the model was
further enhanced.

The mean of various objects was taken as the overall performance evaluation index
and compared with the original YOLOV?, as shown in Figure 11. It shows that the P2
detection layer constructed by this algorithm improves the accuracy of small targets, the
improved E-ELAN enhances the ability to extract small target features, the improved CA
attention enhances the ability to extract key information of disease spots, and the SIoU
enhances the positioning ability of the network, which means that the improved model
can improve the image detection accuracy of grape leaf diseases and greatly improve the
detection effect of small disease spots. The improved YOLOV? was compared with the
original YOLOV7, as shown in Figure 11. As can be seen from Figure 11, precision, recall,
mAP and mAP:0.95 all increase to varying degrees, and most of the four indexes of the
improved YOLOV?7 are higher than YOLOV? in 200 rounds, indicating that the improved
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YOLOV? has stronger feature extraction capability. It can solve the problem of low accuracy
of small spot recognition in the early stage of grape leaf disease.
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Figure 11. Performance comparison between YOLOv7 and the improved YOLOV7: (a) precision;
(b) recall; (c) mAP@0.5; (d) mAP@0.5:0.95.

In order to verify the model detection effect after adding different improvements, the
improved feature fusion network, improved E-ELAN module, improved CA attention
module and SIoU loss function are ablated and analyzed. The comparison results of
ablation experiments are shown in Table 6. As can be seen from the table, the mAP was
significantly improved after the improvement of the feature fusion network, which shows
that the low-level and high-level feature fusion and the addition of detection heads have
played a very good role and significantly improved the detection performance. Adding
improved E-ELAN and CA can obviously improve mAP, which shows that adding these
two modules is effective. After using the SIoU loss function, the model diagram is slightly
improved. Finally, it can be seen that the SIoU loss function not only accelerates the
convergence of the model but also improves the detection performance of the model. In
the table, “x” indicates that it was not added in YOLOv?7, and “/” indicates that it was
added in YOLOV?.
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Table 6. Ablation experimental results.

Experiment
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References

6. Conclusions

In this paper, three common diseases of grape leaves, namely black rot, black rot and
black measles, were taken as the research objects. An improved YOLOv7-based grape leaf
disease detection algorithm was proposed to counteract the problem of poor detection effect
of small spots. The algorithm first constructs a new feature layer and introduces PANet
to improve the E-ELAN structure. Secondly, Maxpool is introduced into the original CA
attention to obtain more abundant feature information, and the global information module
is introduced into the CA attention to assign different weights to deep image features so as
to obtain channel information and position information and improve the recognition effect
of the model. Finally, the loss function CloU is replaced by SloU to enhance the positioning
ability of the network. Compared with the original YOLOV?7, the algorithm proposed in
this paper increases the mAP by 2.7% and has a good detection effect in both natural and
simple environments.

This paper aimed to detect three kinds of diseases in grape leaves. In order to verify the
robustness of the model proposed in this paper, it is necessary to increase the categories in
the grape disease dataset to obtain a more comprehensive effect. In addition, the algorithm
can be applied to the detection of other agricultural diseases. Building an agricultural
disease detection platform through mobile phones can also provide farmers with convenient
and efficient disease detection services.
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