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Abstract: In verifying programs for embedded systems, it is essential to reduce the verification time
because state explosion may occur during model checking. One solution is to reduce the number
of interrupt handler executions. In particular, when periodic interrupts such as timer interrupts
are incorporated, it is necessary to know the physical time. In this paper, we define a control flow
automaton (CFA) that can handle time and propose an algorithm based on interrupt handler execution
reduction (IHER). The proposed method reduces the number of interrupt executions, including timer
interrupts. A case study verified the effectiveness of this algorithm.

Keywords: model checking; embedded assembly program; reduction of interrupt handler executions

1. Introduction

Embedded software is widely used in cell phones, TVs, and cars, and the complexity of
both hardware and software has increased over time. Many tests are required for embedded
systems because they are subject to many errors. For example, in the automotive industry,
safety-critical automotive software requires high reliability, resiliency, and recovery. This
affects its design, development, testing, and maintenance. In addition, the number of
verifications required increases the time and cost consumption. Not only testing but also
strict rules are needed. Formal methods are effective for this purpose. In this paper, we
focus on model checking [1]. The model checker in the existing C language is hardware-
independent, so it is intended for ANSI-C verification [2]. To verify an embedded system,
it is necessary to construct a verification system that takes into account many hardware-
dependent functions. In a program written in C, for some types of interrupt service routines
(ISRs) the timing of the execution is unpredictable or hard to predict. This causes problems
with the verification of the time constraints that embedded and safety-critical software
usually feature. Since each state in which an instruction is executed represents a state of
each block of the control flow graph (CFG) or CFA, the state explosion problem occurs.
B. Schlich et al. developed an interrupt handling execution reduction (IHER) [3] algorithm
to suppress the generation of these interrupts. IHER is an algorithm that prevents the
interrupt handler (IH) from processing interrupts that occur at specific locations in the
program. The core idea is to reduce the number of executions with no dependencies [3].
We will explain the concept of a ’dependency’ in Section 3. If there is a dependency, the
execution is allowed to occur, but if there is no dependency, it is not allowed to occur. In
B. Schlich’s study, although he used timers in the experiments, there was no mention of
periodic timer interrupts. However, timer interrupts are often used in the construction of
embedded systems. Therefore, the introduction of the concept of time can contribute to
reducing not only simple event interrupts but also periodic interrupts, also called timer
interrupts. In this paper, in order to reduce timer interrupts, we define a timed CFA that
can handle time, and propose timed IHER.
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2. Related Works

In this section, we explain the context of this research in terms of timed models and
interrupt processing methods for reducing timer interrupts based on related research.

B. Schlich studied a new method for verifying the assembly code of model checking
software for microcontrollers [4]. The simulator based on static analysis constructs a
state space, abstracts time, handles non-determinism, and over-approximates the behavior
exhibited by the actual microcontroller. On the other hand, our previous paper developed
a model checker that uses static and dynamic analysis, such as undefined values [5]. This
paper and reference [4] adopt the following different approaches. In the reference, when
the model checker requests a successor to a state it has not yet generated, the state space
generates the successor on the fly using the simulator. In this paper, the verification system
completes the state transition system and passes it to the simulator. This article generates
the entire CFG upfront. The latter is better [4], and we will achieve it in the future.

B. Schlich et al. studied IHER to reduce the number of interrupt handler executions [3].
B. Schlich et al. also studied various abstraction techniques based on static program
analysis [6]. In this paper, we extend this IHER.

S. Yamane and et al. conducted a study using IHER to enable verification via SMT
solvers [7] together with an Assembly Code Block (ACB) [8]. We focus on timer interrupts
and do not use SMT solvers for verification.

M. Kuo et al. [9] calculated the worst-case response time (WCRT) using reachability
to analyze the assembly code. However, the model was different from that in our study:
M. Kuo et al. generated a TCCFG (timed concurrent control flow graph) by static analysis
from each assembly code, whereas we verify microcontrollers that run on a single thread
and perform model checking.

W. Yajun [10] defined a timed Kripke structure and verified its real-time nature. A
timed Kripke structure is a non-deterministic finite automaton but it is not appropriate
for our study because its model does not hold the instruction element of the program. We
have to control a model by the value of the program counter, and the edges should hold
the instruction.

R. Alur and D. L. Dill studied timed automata [11]. A timed automaton, an extension
of a finite-state automaton, is a model that describes a system by both discrete events and a
continuous time lapse according to state transitions. On the other hand, in this study, we
develop a timed CFA for the execution time of an assembly program. The object of our
study is different from timed automata. The proposed structure deals with discrete time,
and we use the execution time of each instruction of the assembly program in each state.

Our previous study [12] reduced timer interrupts to include real-time performance.
This study differs in that it does not consider real-time performance but defines the al-
gorithm more concretely and conducts experiments using multiple timer interrupts in a
case study.

Recently, L. Lihao et al. proposed an efficient verification of low-level embedded
C software with interrupts based on partial-order coding and symbolic execution [13].
On the other hand, this paper verifies an assembly program with an algorithm that also
reduces timer interrupts based on the reducing the number of interrupt handlers by IHER;
if the method of L. Liang et al. is adopted, nested interrupts can be handled effectively in
this paper.

3. IHER

IHER is a method developed by B.Schlich et al. to block the execution of IHs as much
as possible. It is an abstraction technique based on partial order reduction [14]. If there is
no dependency between the IH and the main program, the IH’s execution is reduced by
blocking the IH. The core idea of dependency is that one instruction influences another.

For example, when an assembly instruction of the IH and the main program read/write
in the same memory location, the overall processing behavior of the program may change
according to whether the interrupt is blocked or not. This technique was developed to
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execute the IH only when there are such behavior changes. IHER consists of the following
four steps:

1. Detect dependencies between IHs.
Step 1 is performed when two or more IHs exist. i, j ∈ IH depend on each other if any
of the following conditions are true (access here means both writing and reading):

• One IH enables or disables the other IH;
• One IH writes to a memory location accessed by the other IH;
• One IH writes to the memory location used in an atomic proposition (AP).

Examples of APs include a variable being equal to a certain value. An IH that
manipulates the memory location of an AP manipulates the core of the program. It is
therefore necessarily associated with all IHs. In other words, only one IH is mentioned,
and if one IH writes the memory location used by the AP, then all IHs are dependent
on each other.

2. Detect dependencies between program locations and IHs.
Step 2 shows the conditions under which two labels, the executioni label and the
barrieri label, are attached to locations to detect dependencies between the program
and the IH. An executioni label allows the execution of an IH after the execution of
the program instruction. On the other hand, the label barrieri denotes that there exists
a dependency between that program location and an IH, and therefore this IH needs
to be executed before the instruction at that location is executed. In determining the
label, we assume that program location k is a direct predecessor of program location l.
Let program location k be a direct predecessor of program location l. Formally, for
each i ∈ IH, l is labeled with executioni if one of the following conditions is satisfied:

• k enables or disables i;
• k writes a memory location that i accessed;
• k writes a memory location that is used in an AP.

Also, for each i ∈ IH, a program location l is labeled with barrieri if one of the following
conditions is satisfied.

• i writes a memory location that l accesses;
• l enables or disables i;
• l writes a memory location that i accesses;
• l writes a memory location that is used in an AP.

3. Refine results.
Step 3 performs refinement on the executioni label. Each executioni label is moved
until one of the following conditions is satisfied.

• A program location labeled with barrieri is reached;
• A loop entry is found;
• A loop exit is found.

4. Label blocking locations.
In the last step, all program node positions are labeled IH. At this point, i ∈ IH, and
we assign a blockingi label to any location without an executioni label.

IHER can reduce the number of program locations where an interrupt handler (IH)
may execute. In this paper, we use IHER to reduce the state space. The paper by B. Schlich
proved that the model checking of CTL*-X is valid even though IHER reduces the number
of program locations where the execution of an interrupt handler (IH) must be considered.
Here, CTL*-X is defined as prohibiting the next time operator X in the CTL* formulas [15].
In this paper, since safety is verified for the assembly code using a subclass of CTL*-X, the
verification is valid even if the IHER reduces the location of the assembly program.

4. Formal Model of an Assembly Program

In this paper, the assembly program is applied to a CFA (control flow automaton) [16]
because an IH can occur at every assembly instruction. In Shlich’s study [3], IHER was
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explained using a CFG [17,18], which is different from a CFA. Nodes in a CFA are program
locations, and directed edges between nodes are instructions that are executed when a
control moves from the source to the destination. In this paper, since time must be calculated
when dealing with timer interrupts in the static analysis, we use the execution time of
instructions to calculate the time. Therefore, we define a timed CFA, which extends the CFA
and introduces the concept of time. While Toth et al.’s TCFA represented real number time,
our timed CFA represents natural number time to handle program execution time [19]. We
deal with exact program execution times, while Ermedahl et al. dealt with worst-case and
best-case response times [20]. The paper by G. Hou et al. treated interrupts as randomly
occurring [21]. Our paper covers all possible interruptions.

The timed CFA of the assembly program is defined as N = (L, l0, O, I,→, T), where:

- L is a set of program locations;
- l0 ⊂ L, and l0 is the initial location of the program;
- O is a finite set of instructions in the main program (non-interrupt);
- I is a finite set of executions of interrupt handlers;
- T indicates execution times such as the OT and IT of each instruction in O and I at

each program location;
- → ⊆ L × O × OT × I × IT × L is the set of transition relations.

The “execution time of each instruction in O and I” refers to a single natural number.
Also, it is a point in time after program execution begins. There is an O and I within the
same transition, with both O and I executed in the transition.

We consider only the fact that the execution time of the interrupt handler has
to be constant. We represent branching based on data from the timed CFA with
branched structures.

In addition, each node is shown as follows: nj ∈→, where nj = (lj, opj, tm_opj, ihi,
tm_ihi, lj+1). The assumption is that i is the number of interrupts and j is the number of
nodes. lj is the current location of the timed CFA, opj is the instruction of the program,
tm_opj is the execution time of the instruction in the program, ihi is the interrupt handler,
tm_ihi is the execution time of the interrupt handler executions, and lj+1 is the next location
of the timed CFA.

An example of the timed CFA is shown in Figure 1. The right side of the figure
represents a timer interrupt, and period_ihi represents the timer period. The time can
be accurately calculated by having each node hold the execution time of the instruction.
Instructions are microcontroller instructions, such as SUB.L and MOV.L, and are associated
with transitions.

Figure 1. An example of the timed CFA for an assembly code.
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5. Proposed Method of Timed IHER
5.1. Verification System

This subsection describes the verification system used in this paper (Figure 2). As
a premise, this study used the assembly code corresponding to the H8/3687F microcon-
troller [22] manufactured by Electronics Corporation (Tokyo, Japan) as the verification
target and conducted implementation and experiments. The details are explained in the
experimental section. First, the assembly code was subjected to lexical analysis and syntax
analysis by a lexer and parser, respectively. We used JFlex v1.9.1 (created by Scott Hudson
affiliated with CMU in USA) [23] and BYACC/J v1.15 (created by Florian Weimer affiliated
with University Stuttgart in Deutschland) [24] in Java v17 to develop the lexer and parser.
Next, the timed CFA was constructed from the memory map and the parsed code. Then, a
static analysis called timed IHER, the proposed method, was performed to output a timed
CFA with reduced interrupt executable locations. The timed CFA was then input into the
model checker along with the verification properties to confirm that the state space could
be reduced.

Figure 2. Verification system.

5.2. Algorithm

The timed IHER algorithm is described in Algorithm 1. The central idea is to suppress
execution at the node of occurrence by strictly calculating the execution time not only for
interrupts due to events but also for timer interrupts.

In step 1, the dependencies between interrupts are detected. This is achieved under
the same conditions as in existing research [3]. If the timer interrupt is ready to be executed,
it must be executed in the same way as the dependent interrupt.

Algorithm 1 Timed IHER

Require: Timed CFA
Ensure: Reduced Timed CFA

1: nj = (lj, opj, tm_opj, ihi, tm_ihi, lj+1) ∈→
2: ε(nj) // the conditions for executioni in step 2 of IHER
3: ψ(nj) // the conditions for barrieri in step 2 of IHER
4: period_ihi // the timer period of each timer interrupt
5: L(nj) // sets of labels at the node
6: pre_time[j][i] // the timer value at pre_timer_executioni
7: TMi // the total instruction execution time
8: x // the node number after transition in step 3
9: // step 1

10: Detect dependencies between ihi
11: // step 2
12: for opj of nj do
13: for ihi ∈ interrupts do
14: if ihi is timer interrupts then
15: if period_ihi ≤ TMi && ε(nj−1) == true then
16: L(nj) := L(nj) ∪ timer_executioni
17: ∀i.TMi += tm_ihi
18: TMi %= period_ihi
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19: else if period_ihi > TMi && ε(nj−1) == true then
20: L(nj) := L(nj) ∪ pre_timer_executioni
21: pre_time[j][i] = TMi
22: TMi -= period_ihi
23: end if
24: if ψ(nj) == true then
25: L(nj) := L(nj) ∪ timer_barrieri
26: end if
27: else
28: if ε(nj−1) == true then
29: L(nj) := L(nj) ∪ executioni
30: ∀i.TMi += tm_ihi
31: end if
32: if ψ(nj) == true then
33: L(nj) := L(nj) ∪ barrieri
34: end if
35: end if
36: end for
37: ∀i.TMi += tm_opj
38: end for
39: // step 3
40: for opj of nj do
41: for ihi ∈ interrupts do
42: if timer_executioni ∈ L(nj) then
43: Transition to a node with a timer_barrieri

loop entry or loop exit
44: L(nx) := L(nx) ∪ timer_executioni
45: else if pre_timer_executioni ∈ L(nj) then
46: Transition to a node with a timer_barrieri

loop entry or loop exit
47: pre_time[j][i] += total time of passed nodes
48: if period_ihi ≤ pre_time[j][i] then
49: L(nx) := L(nx) ∪ timer_executioni
50: for all j such that x ≤ j do
51: ∀i.pre_time[j][i] += tm_ihi
52: end for
53: else
54: L(nx) := L(nx) ∪ blockingi
55: end if
56: end if
57: if executioni ∈ L(nj) then
58: Transition to a node with a barrieri

loop entry or loop exit
59: L(nx) := L(nx) ∪ executioni
60: end if
61: end for
62: //step 4
63: for nj do
64: if (timer_executioni || executioni) /∈ L(nj) then
65: L(nj) := L(nj) ∪ blockingi
66: end if
67: end for
68: end for
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In step 2, the execution time is calculated and the label is determined. For this purpose,
the labels are determined for each interrupt in order of execution priority, and the cases
are divided into timer interrupts and other interrupts. In the latter case, the conventional
executioni and barrieri labels are used. In the former case, it is first determined whether the
total instruction execution time TMi exceeds period_ihi, which is the timer period. Then, if the
same conditions as for the executioni label are satisfied, the timer_executioni label is applied to
the node, the execution time of the interrupt process is added to all TMi, and TMi is assigned
through division by period_ihi. If TMi does not exceed period_ihi, the current timer time is
stored in pre_time[j][i] for use in step 3, TMi is assigned by subtracting period_ihi, and the
label pre_timer_executioni is applied. Also, if the same conditions for the barrieri label are
satisfied, then the node should be labeled timer_barrieri. Finally, the instruction time of the
main program of the current node is added, and the next node is checked.

In step 3, refinements are made to the timer_executioni and executioni labels. The
timer_executioni label is moved until reaching the timer_barrieri label, i.e., the entrance
or exit of the loop. The executioni label is moved until reaching the barrieri label, i.e.,
the entrance or exit of the loop. If one of the following is satisfied, we label the node
with timer_executioni or executioni, and x is the node number after the transition. On the
other hand, in the case of the pre_timer_executioni label, we add the execution time of the
instruction of the node that has passed to pre_time[j][i], including the instruction of the
interrupt when it reaches a node satisfying the same conditions as the timer_executioni
label in the transition. If this pre_time[j][i] exceeds period_ihi, the label timer_barrieri is
applied, and we add the execution time of the interrupt to pre_time[j][i] after the transi-
tioned node destination. In other words, even when the timer period has not elapsed in
step 2, if it has elapsed at the destination, the execution of the timer interrupt is permit-
ted. We can accurately calculate the time by adding the execution time to the timer of
the pre_timer_executioni label and the other timer interrupt after the node following the
transition, to the extent that we do not add them in step 2.

In step 4, the label blockingi is applied to block interrupts at node positions other than
those where the labels executioni or timer_executioni are not applied. This is the algorithm of
the proposed method.

The reason for the subtraction at line 24 is to distinguish pre_timer_executioni from the
timer_executioni label and to prevent execution even though permission to execute has not
been granted. For example, if both nodes before and after the pre_timer_executioni label
are converted to the timer_executioni label in step 3, and the node is actually executed, the
timer at the later node may not overflow.

5.3. Example

For a better understanding of the algorithm, we will present a simple example.
We apply timed IHER to the simple code written in Figure 3. To simplify the time, we

include one timer interrupt with a period of 3 ms and set the execution time of each instruc-
tion as shown in Figure 4. The pre_timer_execution0 label is green, the timer_execution0
label is blue, and the timer_barrier0 label is hexagonal.

First, we perform labeling in step 2. At n0, the condition of timer_barrieri is satisfied.
At n1, since TM0 is 2 ms, it is less than the period, and the condition of pre_timer_executioni
is satisfied. Then, after TM0 is assigned to pre_time[1][0], period_ih0 is subtracted from
TM0. At n2, the condition of timer_barrieri is satisfied, and TM0 is 0 ms. At n3, TM0 is
2 ms, so the condition of pre_timer_executioni is satisfied as with n1. Then, after assigning
TM0 to pre_time[3][0], period_ih0 is subtracted from TM0. The condition for timer_barrier0
is also satisfied, so this label is applied. Since n4 and n5 do not satisfy any of the conditions,
step 2 follows the scheme presented in Figure 4.
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Figure 3. Test code.

Figure 4. After step 2.

Next, we perform refinement in step 3. First, pre_timer_execution0 of n1 is transitioned
to n2 and labeled timer_barrier0. At this time, the 1 ms of the MOV instruction is added to
the 2 ms stored in pre_time[1][0], resulting in 3 ms, which is equal to the 3 ms of the timer
period, allowing the execution. Therefore, n2 is labeled timer_execution0. The execution
time of the timer interrupt must be added to pre_time[j][i] after n2. Thus, since the 2 ms of
the timer interrupt is added to the 2 ms stored in pre_time[3][0] to obtain 4 ms, and n3 is
labeled timer_barrier0, the label timer_execution0 is applied. Step 3 is shown in Figure 5.

Figure 5. After step 3.
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Finally, in step 4, the execution of the timer interrupt is suppressed by labeling with
blocking0 the nodes that are not labeled with timer_execution0. The result is shown in Figure
6. The blocking0 label is applied to multiple locations (0, 1, 4, and 5) with no interruptions.

Figure 6. After step 4.

5.4. Computational Analysis and Partial Correctness of Algorithm 1
5.4.1. Computational Analysis of Algorithm 1

The computational analysis of our proposed algorithm is presented below:

1. Step 1.
Let |ihi| be the number of locations in the interrupt handler ihi, i = 1, . . . , m. The time
complexity is O(|ih1| × . . . × |ihm|).

2. Step 2:
j is the number of nodes, and |opj| is the number of instructions in nj. Also, |Interrupts|
is the number of interrupts. The time complexity is O(j × |op|| × |Interrupts|).

3. Step 3:
The time complexity is O(j × |opj| × |Interrupts|).

4. Step 4:
The time complexity is O(j × |opj|).
From step 1 to step 4, the total time complexity is O(|ih1| × . . . × |ihm|+ j × |opj| ×

|Interrupts|).

5.4.2. Partial Correctness of Algorithm 1

The partial correctness of our proposed algorithm is presented below.
We justify our algorithm in terms of the following two aspects:

1. The correctness of the theory of timed IHER.
We establish the correctness of our timed IHER by showing that the original timed
CFA G and the reduced timed CFA Greduced are equivalent. According to the reference
[3], we can show the correctness of the time interrupt reduction by defining the
semantics of a timed CFA using a labeled transition system. Only a summary of the
correctness is given below. We define the labeled transition system T(G) of a timed
CFA G and the labeled transition system T(Greduced) of a reduced timed CFA Greduced
by timed IHER. We can establish the correctness of our timed IHER by showing that
the original timed CFA G and the reduced timed CFA Greduced are equivalent. More
concretely, we can show that the original timed CFA G and the reduced timed CFA
Greduced are related by divergence-sensitive stutter bisimulation [15,25].

2. The correctness of the algorithm of timed IHER.
We show that the reduced timed CFA Greduced resulting from timed IHER is correctly
constructed by our algorithm. The fundamental idea of Schlich’s IHER is to reduce the
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number of normal IH executions by blocking normal HIs at program locations where
there is no dependency between certain normal HIs and the program [3]. Also, the
fundamental idea of our proposed timed IHER is to reduce the number of timer IH
executions by blocking timer HIs at program locations where there is no dependency
between certain timer HIs and the program. In order to realize timed IHER, we deal
with the execution time of the program. For reasons of space limitation, this section
will focus on the key points such as step 2 and step 3 of the algorithm:

a Step 2.
The execution time is calculated and the label is determined. First, in order
to calculate the execution time, the outermost loop denoted by “FORopj of nj”
adds up the execution times of the instructions. Next, the inner loop denoted
by “FORihi ∈ interrupts” depends on whether timer interrupts or normal
interrupts are used as follows:

a-1 Timer interrupts.
If the same conditions as for the executioni label are satisfied, the timer_executioni
label is applied to the node, the execution time of the interrupt process is
added to all TMi, and TMi is assigned through division by period_ihi. If TMi
does not exceed period_ihi, the current timer time is stored in pre_time[j][i]
for use in step 3, TMi is assigned by subtracting period_ihi, and the label
pre_timer_executioni is applied. Also, if the same conditions for the barrieri
label are satisfied, then the node should be labeled timer_barrieri.

a-2 Normal interrupts. We label locations with executioni and barrieri according
to [3].

b Step 3.
The outermost loop denoted by “FORopj of nj” refines the timer_executioni
and executioni labels. The timer_executioni label is moved until reaching the
timer_barrieri label, i.e., the entrance or exit of the loop. The executioni label is
moved until reaching the barrieri label, i.e., the entrance or exit of the loop.

c Step 4.
As locations without executioni or timer_executioni labels do not affect the
execution and can be reduced, the label blockingi is applied to block interrupts
at these locations.

6. Experiment

We developed our own model checker. We performed our validation in the environ-
ment shown in Table 1.

Table 1. Environment of experiment.

OS macOS Monterey 12.4
CPU Intel(R) Core(TM) i5-8257U CPU @ 1.40 GHz

Memory 8 GB
Java 11.0.4

Program 12,000 lines

In this experiment, the assembly code for the Renesas Electronics H8/3687F micro-
controller [22] was used as the verification target, and implementation and experiments
were conducted. All general-purpose registers were 16 bits wide, and 16 registers (E0–E7
and R0–R7) were installed. When general-purpose registers were used as data registers,
they could be accessed as 8-, 16-, or 32-bit registers. When 32-bit registers were accessed, E
and R were integrated and handled as ER registers, of which ER7 functioned as the stack
pointer (SP). On the other hand, the control register consisted of one 24-bit-wide program
counter register (PC) and one 8-bit-wide condition code register (CCR). The total address
space for the program and data area was 64 Kbytes.
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We examined three cases. In each case, we conducted experiments for several combi-
nations of the number of timer interrupts (TIs) and software interrupts (SIs). Case 1 was
used for transfer by the serial communication interface (SCI3) with two timer interrupts.
Case 2 used two LEDs. Two timer interrupts were used, the first to light one LED at a
prime number and the second to light the other LED at an even number, adding 1 every
0.5 s until the number rose from 0 to 10. Case 3 was a PID control program. One timer in-
terrupt acquired the sensor value and set a new target current value when a timer overflow
occurred. When the other timer overflowed, the timer interrupt performed PID control for
a fixed cycle based on the current target value and the measured current value and output
the value to the motor. All three cases were implemented in e-nuvo WHEEL [26], and the
verification property was AG¬error. e-nuvo WHEEL is a microcomputer-controlled robot.
The reference language was Japanese. Only a manual in Japanese exists.

Table 2 shows the required memory, execution time, and state space reduction rate
for cases 1 through 3. The required memory was computed by an activity monitor. We
confirmed a reduction of about 90% for case 1 and case 3 and a reduction of about 60% for
case 2, but the reduction rate and execution time varied greatly depending on the number
of programs and interrupts.

Table 2. The number of states stored by the verification.

Case TI SI Without Without Reduction
Timed Timed Timed Timed
IHER IHER IHER IHER

(Required (Execution (Required (Execution
Memory (kb)) Time (µs)) Memory (kb)) Time (µs))

1 2 0 117,448 1889.6 7134 997.2 94%
2 1 158,747 2125.8 8049 1075.2 95%

2 1 1 20,260 304.3 8624 280.4 57%
2 0 26,324 253.8 10,520 131 60%

3 2 0 2,160,677 45,032.7 204,433 25,032.7 91%
2 1 2,528,550 52,042 573,202 32,051.3 77%

7. Conclusions

In this paper, we proposed a formal model and algorithm based on IHER that can
reduce timer interrupts. Twelve thousand lines of Java code were used to develop the
entire system, including model building and model checking, and its effectiveness was
demonstrated. However, the system does not strictly take into account priority and multiple
interrupts and is limited to verification when the program is executed in a certain position.
Also, the optimal refinement of timers when loops exist in the program is unknown.
Therefore, the handling of loops, including strict timer understanding, must be studied.
Currently, we are considering algorithms that can further reduce the number of states and
aiming to expand the scope of applications for the proposed method.

Since the current version is a prototype, we will develop a fully fledged system and
conduct more experiments in the future.
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